
Revised January 14, 2017 1 

Multivariable Calculus – Lecture #9 Notes 
In this lecture we continue the discussion of integration of functions of several variables. We’ll develop a 
library of applications and also discuss methods for calculating multiple integrals using iterated single integrals. 

Recall from the previous lecture: 

1) If ( , )f x y  is a function of two variables defined over a (closed and bounded) domain D and if this function 
has positive values in this domain, the volume under this graph (and above the xy-plane and within the 
vertical “curtain wall” lying above the boundary of the domain D) is given by ( , )

D
f x y dA∫∫ . In the case 

where the function ( , )f x y  takes on positive and negative values in different parts of the domain , we can 
interpret ( , )

D
f x y dA∫∫  as a signed volume. 

2) The total area of a region D can be calculated as: Area( )
D

D dA= ∫∫ . 

3) If ( , )x yσ  is a mass density function for an object that occupies a domain D in the xy-plane then the total 

mass of this object (often referred to as a lamina) is given by: mass( ) ( , )
D

D x y dA= s∫∫ . 

If the density measure electrical charge, the integral ( , )
D

x y dAσ∫∫  would then give the total charge 

(summing both positive and negatively charged regions to produce the net charge). If ( , )x yσ  measured 
population density in a region D, then ( , )

D
x y dAσ∫∫  would give the total population in the region. 

Generally, ( , )
D

x y dAσ∫∫  will give the total amount of any quantity with associated density function 

( , )x yσ . 

Average value of a function over a domain 
Most of us were first introduced to the idea of average value in elementary school. Given a discrete list of 
numerical scores { }1 2, , , nS S S , we define the (unweighted) average S  by adding up these values and dividing 

by the number of scores, i.e. 1

1

1
n

n
i

i
n

S SS S
n =

+ +
= = ∑ . That is, the sum of the scores should be the same as 

what we would get if we added up an equal number of scores each of which had the average score. This can be 

expressed as 1
1

n

n i
i

n S S S S
=

⋅ = + + =∑ . If we think of this in terms of a bar graph with equal width of 1 unit per 

score, this says simply that the total area of the bar graph should be the same as a rectangle with the same total 
width (n) but with constant height equal to the average. This perspective allows us to extend the idea of average 
value to any integrable function ( )f x  defined on an interval [ , ]a b . We define the average value f  to be that 

value such that (length of [ , ]) ( ) ( )
b

a
a b f b a f f x dx⋅ = − ⋅ = ∫ . So 

( ) ( )

length of [ , ]

b b

a a
f x dx f x dx

f
a b b a

= =
−

∫ ∫
. A good way 

to think of this (unweighted) average is that it’s the integral of the function over its domain divided by the 
“geometric content” of its domain, i.e. its length. This can be completely generalized. 
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4) In the case of a function of two variables ( , )f x y  defined over a domain D, we can (at least in the case of a 
function with positive values) think of the average value as an average height f  such that 

[ ](Area of ) ( , ) Volume under graph
D

D f f x y dA⋅ = =∫∫ . So 
( , )

Area of 
D

f x y dA
f

D
=
∫∫

. 

For example, if a region D in the xy-plane has an associated mass density function ( , )x yσ , we would calculate 

the average density as 
( , ) Mass of 

Area of Area of 
D

x y dA D
D D

s
s = =

∫∫
, and this coincides with the more familiar way of 

thinking about average density. 

Weighted averages 
There are situations where it is completely appropriate to compute an average value where different “weights” 
are assigned to the values, e.g. the way a course grade might be calculated by counting the Final Exam more 
than the individual midterm exams. This is relatively simple to quantify. If the scores are { }1 2, , , nS S S  and we 

assign to these scores the respective weights { }1 2, , , nw w w , then we would define the weighted average 

implicitly by the condition that 1 1
1

(total weight)
n

wtd n n i i
i

S S w S w S w
=

⋅ = + + =∑ , so 1

total weight

n

i i
i

wtd

S w
S ==

∑
. 

To define a weighted average of a function of more than one variable in a region D, it’s helpful to use the fact 
that for a small piece iD  its mass will be approximately ( , )i i i im x y A∆ ≅ σ ∆  where ( , )x yσ  is an associated 
density function. We can use differential notation to capture this idea as it enters into an integral expression as a 
limit by expressing this as dm dA= σ . This will be very useful notation for succinctly expressing some of the 
quantities that follow. 

5) In the case of a function of two variables ( , )f x y  defined over a domain D, if we have an associated density 
function ( , )x yσ  for the region D that permits us to “weigh” some parts more than others, we can define the 
weighted average of the function implicitly by the condition that (Mass of ) ( , )wtd D

D f f x y dm⋅ = ∫∫ . This 

gives the definition 
( , ) ( , ) ( , )

Mass of ( , )
D D

wtd

D

f x y dm f x y x y dA
f

D x y dA

s
= =

s

∫∫ ∫∫
∫∫

. 

Given any region D in the xy-plane, we can use the idea of averaging to define the geometric center (centroid) 
of the region as well as the center of mass of the region. We just have to average the coordinate functions in the 
region. 

6) The centroid or geometric center of a region D in the xy-plane is the point ( , )x y  where  

Area of 
D

x dA
x

D
=
∫∫

 and 
Area of 

D
y dA

y
D

=
∫∫

. 
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7) The center of mass of a region D in the xy-plane with mass density function ( , )x yσ  is the point ( , )cm cmx y  

where 
( , )

Mass of ( , )
D D

cm

D

x dm x x y dA
x

D x y dA

s
= =

s

∫∫ ∫∫
∫∫

 and 
( , )

Mass of ( , )
D D

cm

D

y dm y x y dA
y

D x y dA

s
= =

s

∫∫ ∫∫
∫∫

. 

It is worth noting that in the case of constant density the centroid and center of mass will coincide. 

We now have a pretty respectable library of applications involving double integrals. We now turn to the issue of 
how to most effectively compute them. 

Calculation of double integrals via iterated single integrals (Method of Successive Slicing) 
For the sake of simplicity, let’s start by assuming that a function ( , )f x y  is positive everywhere in a region D in 
the xy-plane. In this case, we can interpret the integral ( , )

D
f x y dA∫∫  as a volume. However, in single-variable 

Calculus we learned another way to find such a volume by integrating the areas of cross-sections. For example, 
if the solid region was such that we could find an expression for the cross-sectional area ( )A x  for any given x, 

and if the region was such that a x b≤ ≤ , then the volume would be given by ( )
b

a
A x dx∫ . 

This was the basis for finding volumes of solids of revolution for figures with known cross-sections such as 
disks and washers, but the method is more general than just those specific applications. [Some call it the 
Stacking Principle, but it is known historically as Cavalieri's principle (after Bonaventura Cavalieri, 1598-
1647) and grew out of what was known as the “method of indivisibles” going back to the time of Archimedes 
(287-212 BC).] 

In the current context, suppose the region D is bounded in such a 
way that for each x we can uniquely describe the lower bound of the 
region algebraically by ( )y g x=  and we can uniquely describe the 
upper bound of the region algebraically by ( )y h x= . If this is the 
case, we can recognize the area ( )A x  of a cross-sectional planar 
slice as the area under a curve ( , )z f x y=  where x is held constant 
and y varies between the limits ( )y g x=  and ( )y h x= . Thus, we 

can calculate this as 
( )

( )
( ) ( , )

y h x

y g x
A x f x y dy

=

=
= ∫ . It’s important to 

emphasize that the variable x is treated as a constant in this 
integration. 

If we insert this into ( )
b

a
A x dx∫ , we get that this volume can be 

calculated via iterated single integrals as 
( )

( )
( , )

x b y h x

x a y g x
f x y dy dx

= =

= =

 
  ∫ ∫ . So 

( )

( )
( , ) ( , )

x b y h x

D x a y g x
f x y dA f x y dy dx

= =

= =

 =   ∫∫ ∫ ∫ . 

Though it is better perhaps to include the parentheses and the specific references in the integral limits, this is 
often expressed more succinctly as 

( )

( )
( , ) ( , )

b h x

D a g x
f x y dA f x y dy dx=∫∫ ∫ ∫ . Note that this has an prescribed order 

of integration – x for the outside integral and y for the inside integral – and this is often captured by saying that 
the “area element” is dA dy dx= . 
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Before proceeding with any calculations, it’s important to note that we 
could have sliced up this solid region in a completely different way. 
That is, suppose the region D is bounded in such a way that for each y 
(where c y d≤ ≤ ) we can uniquely describe the lower (left-hand) bound 
of the region algebraically by ( )x k y=  and we can uniquely describe 
the upper (right-hand) bound of the region algebraically by ( )x l y= . If 
this is the case, we can recognize the area ( )A y  of a cross-sectional 
planar slice as the area under a curve ( , )z f x y=  where y is held 
constant and x varies between the limits ( )x k y=  and ( )x l y= . Thus, 

we can calculate this as 
( )

( )
( ) ( , )

x l y

x k y
A y f x y dx

=

=
= ∫ . It’s important to 

emphasize that the variable y is treated as a constant in this integration. 
If we then insert this into ( )

d

c
A y dy∫ , we get that this volume can be 

calculated via iterated single integrals as 
( )

( )
( , )

y d x l y

y c x k y
f x y dx dy

= =

= =

 
  ∫ ∫ . So 

( )

( )
( , ) ( , )

y d x l y

D y c x k y
f x y dA f x y dx dy

= =

= =

 =   ∫∫ ∫ ∫ . Once again, this is often expressed more succinctly as 

( )

( )
( , ) ( , )

d l y

D c k y
f x y dA f x y dx dy=∫∫ ∫ ∫ . Note that this has an prescribed order of integration – y for the outside 

integral and x for the inside integral – and this is often captured by saying that the “area element” is dA dx dy= . 

Fubini Theorem: If the function ( , )f x y  is integrable over the region D, and if we can calculate both of the 

iterated single integral expressions 
( )

( )
( , )

b h x

a g x
f x y dy dx∫ ∫  and 

( )

( )
( , )

d l y

c k y
f x y dx dy∫ ∫ , then these will yield the same 

value, i.e. 
( ) ( )

( ) ( )
( , ) ( , ) ( , )

b h x d l y

D a g x c k y
f x y dA f x y dy dx f x y dx dy= =∫∫ ∫ ∫ ∫ ∫ . We can think of this theorem more 

simply as “no matter how you slice it, the volume is still the volume.” 

It’s important to now emphasize that although we used the idea of volume to develop this method of calculating 
double integrals, the method works just as well to calculate any double integral (assuming you can actually find 
the necessary antiderivates using the Fundamental Theorem of Calculus). It is sometimes the case that we will 
be unable to do these integrations using one order of integration, so the Fubini Theorem gives us the flexibility 
to try doing it by reversing the order of integration. It is generally necessary to draw the region D and 
determine the algebraic expressions for the boundaries when doing this. It is not as simple as switching the 
integral limits. 
Now, on to some examples. 

Example 1: Calculate the volume under the graph of the function 2 2( , ) 9f x y x y= − −  over the rectangular 
region D with 0 1x≤ ≤  and 0 2y≤ ≤ . 

Solution: (a) If we use the order of integration associated with the area element dA dy dx= , we first note that 
0 1x≤ ≤  and that for each x in between 0 and 1, y will vary between the constant limits 0y =  and 2y =  
(because the region is a simple rectangle). The integral limits are determined completely by the region. 
What the graph of ( , )f x y  looks like isn’t relevant as long as the function is positive in this domain and 
we’re calculating the volume under the graph. The iterated integrals corresponding to this method of slicing 
is therefore 

1 2 2 2

0 0
(9 )

y

y
x y dy dx

=

=
− −∫ ∫ . We then calculate: 
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Inner Integral:  
232 2 2 2 2 2

0
0

8 46
3 3(9 ) (9 ) (9 )2 2

3

y
y

y
y

yx y dy x y x x
=

=

=
=

 
− − = − − = − − − 

 
=∫  

Outer Integral:  ( )1 12 3

0 0
46 46 462 2 44
3 3 3 3 3 32x dx x x − = − = − = ∫  

(b) If we had instead used the order of integration associated with the area element dA dx dy= , we would first 
note that 0 2y≤ ≤  and that for each y in between 0 and 2, x will vary between the constant limits 0x =  and 

2x = . The iterated integrals corresponding to this method of slicing is therefore 
2 1 2 2

0 0
(9 )

x

x
x y dx dy

=

=
− −∫ ∫ . 

We then calculate: 

Inner Integral:  
131 2 2 2 2 2

0
0

261
3 3(9 ) (9 ) 9

3

x
x

x
x

xx y dx y x y y
=

=

=
=

 
− − = − − = − − − 

 
=∫  

Outer Integral:  ( )2 22 3

0 0
26 26 52 81 44
3 3 3 3 3 3y dy y y − = − = − = ∫   

As you can see, the Fubini Theorem guaranteed that these results had to be the same. 

Things are a bit more complicated for non-rectangular domains. 
Example 2: Find the centroid of the quarter-circular region D by the x-axis, the y-axis, and the circle of radius R 
(centered at the origin), with 0x ≥  and 0y ≥ , i.e. in the first quadrant. 

Solution: It is a good protocol to always first write down what it is you wish to calculate. In this case, the 

centroid is the point ( , )x y  where 
Area of 

D
x dA

x
D

=
∫∫

 and 
Area of 

D
y dA

y
D

=
∫∫

. We can simplify our calculations 

considerably by noting that for this particular region we must have x y=  by symmetry. Furthermore, we can 
calculate the denominator without Calculus as 21

4( )Area D R= π . If we choose to calculate y , we might choose 

the order of integration so that 
2 2

0 0

x R y R x

D x y
y dA ydy dx

= = −

= =

 
=  

 ∫∫ ∫ ∫ . Note that the upper limit on the inner integral 

is 2 2y R x= −  since the (upper) circular boundary is described by the equation 2 2 2x y R+ = . When using 
Cartesian coordinates, non-rectangular regions will yield non-constant integral limits. We calculate: 

Inner:  
2 2 2 2

2 2 2

00
1 1
2 2 ( )

y R x y R x

yy
ydy y R x

= − = −

==
 = = − ∫  

Outer:  2 2 2 3 3

0 0
1 1 1 1
2 2 3 3( ) ( )

x R R

x
R x dx R x x R

=

=
 − = − = ∫  

This calculation could also have been done with the order of integration reversed, though the integration would 
be marginally more difficult. 

Therefore 
3

2

1
3 4

31
4

.4244
Area of 

D
y dA R

y R R
D R π= = = ≅

π
∫∫

 and the centroid is therefore at ( )4 4
3 3( , ) ,x y R Rπ π= . 

Integration over regions in R2 using polar coordinates 
There is nothing in the original definition of the double integral that says we must use Cartesian coordinates. 
The only requirement is that we should be able to partition the given region into small pieces so that the integral 
may be defined when we take the limit as the mesh of the partition goes to 0. We can do this relatively easily 
using polar coordinates to divide things up. If in the above example we were to carve up this region using 
concentric circles and rays emanating from the origin with the circles spaced by very small distance r∆  and the 
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rays spaced by a very small ∆θ  (using radian measure, of course), then the 
resulting pieces of the region lying between circles and between rays will be 
approximately rectangular with side lengths r∆  along the rays and r∆θ  along 
the circular arcs. The area of each piece will then be approximately 

( )( )A r r r r∆ ≅ ∆ ∆θ = ∆ ∆θ . Note that these areas grow as the radius grows. In 
terms of differential quantities for the purpose of integration, we say that the 
area element in polar coordinates is dA rdrd= θ . The r factor in this area 
element is a fundamentally important part of setting up any integral in polar 
coordinates. 
It is very important to note that the shape of the region is what usually drives 
the decision about what coordinates to use in the integration. In the above 
example, the region is clearly better described in terms of polar coordinates. If 
we were to redo the integral 

D
y dA∫∫  in polar coordinates, we have to address 

three things – the integrand, the area element, and the integral limits. For the integrand, we note that in polar 
coordinates we have siny r= θ . The area element will be dA rdrd= θ . The region is such that θ  varies between 

0θ =  and 2
πθ = , and for each θ  in between,  the radius will vary between 0r =  (the origin) and r R= . The 

integral then becomes 
2 2

0 0
sin

R

D
y dA r drd

π
= θ θ∫∫ ∫ ∫  

Inner:  
3

2 3

0
0

1
3sin sin sin

3

R
R rr dr R

 
θ = θ = θ 

 
∫  

Outer:  [ ]
2 23 3 3 3

00
1 1 1 1
3 3 3 3sin cos (0 1)R d R R R

π πθ θ = − θ = + =∫  

This agrees with the previous result. 

Example 3: Calculate the area of a circular disk of radius R using a double integral. 
Solution: We already know the answer, of course, but it’s remarkably simple to get the result using polar 
coordinates. If we call this disk D, then 

2

0 0
Area( )

R

D
D dA rdrd

π
= = θ∫∫ ∫ ∫ . The Inner integral is 

2 21 1
2 200

R R
rdr r R = = ∫  and the Outer integral is ( ) ( )( )

2 2 2 21 1
2 20

2R d R R
π

θ = π = π∫ . 

For regions not bounded entirely by circles and rays, polar coordinates will likely produce some non-constant 
integral limits (just as was the case for non-rectangular regions in Cartesian coordinates). 

Example 4: Calculate the average distance from the origin for points in the triangular region D bounded by the  
x-axis, the line 4x = , and the line y x= . 
Solution: First, the distance from the origin to any arbitrary point ( , )x y  in this region is given by 

2 2( , )f x y x y r= + = , so we want to calculate 
2 2

2 21
81

2Area( ) (4)(4)
D D

D

f dA x y dA
f x y dA

D

+
= = = +
∫∫ ∫∫

∫∫ .  

The region suggests either Cartesian coordinates or polar coordinates might be a good choice, but the 
integration will likely be much simpler in polar coordinates. The only difficulty is that although the polar angle 
will vary from 0θ =  to 4

πθ = , for each θ  in between the radius will vary from 0r =  out to the vertical line 
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where 4x = . That’s not expressed in polar coordinates, but we can rewrite it as cos 4r θ =  or 4secr = θ . The 
integral therefore becomes: 

4 4sec 4 4sec2 2 2

0 0 0 0
1 1 1
8 8 8( )

r r

D r r
x y dA r rdrd r drd

θ=π = θ θ=π = θ

θ= = θ= =
+ = θ = θ∫∫ ∫ ∫ ∫ ∫  

Inner:  
4sec 4sec2 3 3

00
641

3 3 sec
r r

rr
r dr r

= θ = θ

==
 = = θ ∫  

Outer:  [ ] ( )4 4 43 3
00 0

64 81 4 4
8 3 3 3 3sec sec sec tan ln(sec tan ) 2 ln 1 2 3.06d d

θ=π θ=π π

θ= θ=
 θ θ = θ θ = θ θ+ θ+ θ = + + ≅ ∫ ∫ . 

This is a very plausible result for this region. 

One class of multiple integrals for which polar coordinates are especially suitable are those that involve polar 
graphs such as roses, cardioids, lemniscates, etc. 

Example 5: Find the area of one leaf of the rose determined by the polar equation 4cos3r = θ . 
Solution: The radius will reach its maximum when 0θ =  and close in to the origin when 23 πθ = ± , i.e. when 

6
πθ = ± . To calculate the area of one leaf of this rose, we calculate: 

6 4cos3

6 0
Area( )

r

D r
D dA rdrd

+π = θ

−π =
= = θ∫∫ ∫ ∫  

Inner:  
4cos3 4cos32 21

2 00
8cos 3

r r

rr
rdr r

= θ = θ

==
 = = θ ∫  

Outer:  
6 6 62

6 6 6
41

6 38cos 3 4 (1 cos 6 ) 4 sin 6d d
+π +π +π

−π −π −π

π θ θ = + θ θ = θ+ θ = ∫ ∫ . 

In the next lecture we’ll look at integration over regions in space, i.e. triple integrals, using Cartesian 
coordinates, cylindrical coordinates, and spherical coordinates. We’ll also show how to change coordinates 
more generally and also see some examples of integration on surfaces (though that’s a topic we will address 
more fully later). 

Notes by Robert Winters and Renée Chipman 


