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Multivariable Calculus – Lecture #2 Notes 
This lecture focuses primarily on the dot product and its many applications, especially in the measurement of 
angles and scalar projection and determining the equation of a plane. We also introduce the cross product in 3R  
which can be used to find a vector orthogonal (perpendicular) to any pair of nonzero, nonparallel vectors in 3R  
and can also be used in the measurement of area. 
 
The Dot Product (or Scalar Product) 
In addition to the most basic operations of scaling and vector addition (both done component-wise), the 
measurement of lengths and angles are facilitated by the dot product of vectors (also known as the inner product 
or the scalar product). The dot product can be defined in nR  for any n which will allow for the definition of 
orthogonality in any dimension. 

Definition: The dot product of two vectors u, v in nR  is a scalar defined as follows: 

1 2 1 2 1 1 2 2, , , , , ,n n n nu u u v v v u v u v u v⋅ = ⋅ = + + +u v     

Measuring the length of a vector: Note that for any vector u in nR , 
22 2 2

1 2 1 2 1 2, , , , , ,n n nu u u u u u u u u⋅ = ⋅ = + + + =u u u   , so 2⋅ =u u u  or = ⋅u u u . 

There are some easy-to-verify algebraic properties of the dot product that follow from its definition: 

Algebraic Properties of the Dot Product: Suppose u, v, and w are vectors in nR  and that t is any scalar. 
1) ⋅ = ⋅v u u v  (symmetry, dot product is commutative) 

2) 
( )

( )
⋅ + = ⋅ + ⋅ 

 + ⋅ = ⋅ + ⋅ 

u v w u v u w
u v w u w v w

 (left and right distributive laws) 

3) ( ) ( ) ( )t t t⋅ = ⋅ = ⋅u v u v u v  (how the dot product behaves relative to scaling of vectors) 

4) 2 20  for all  (and 0  only for )⋅ = ≥ ⋅ = = =u u u u u u u u 0  

A corollary of the Pythagorean Theorem is the Law of Cosines. Referring to 
the figure, the Law of Cosines states that 2 2 2 2 cosC A B AB= + − θ  where A 
and B are the lengths of the sides adjacent to the angle θ  and C is the length of 
the side opposite this angle. 
We can state a vector version of this using a modified figure. In this figure the 
Law of Cosines can be expressed as 2 2 2 2 cos− = + − θu v u v u v . Using 
the facts above, the left-hand-side gives 

2 2 2( ) ( ) 2− = − ⋅ − = ⋅ − ⋅ − ⋅ + ⋅ = + − ⋅u v u v u v u u u v v u v v u v u v . Therefore 
2 2 2 22 2 cos+ − ⋅ = + − θu v u v u v u v , and cancellation gives that cos⋅ = θu v u v . This restatement 

of the Law of Cosines is also known as the geometric definition of the dot product. 
The great importance of this relation is that it connects the algebraically-defined dot product (sum of the 
products of the respective components) to the geometric measurements of lengths and angles. 

Example: A triangle in 2R  has vertices at the points with coordinates (1,1)A , (3, 2)B − , 
and (4,2)C . Find the angles , ,α β γ  shown. 

Solution: The dot product requires two vectors, so in order to proceed we have to choose 
vectors appropriate for each of the given angles . For example, to determine the angle α  we 
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will want to find the vectors 2, 3AB= = −u


 and 3,1AC= =v


 emanating out from this common vertex. The 

relation cos⋅ = αu v u v  can be expressed as cos ⋅
α =

u v
u v

, so 
2, 3 3,1 3cos

13 10 130
− ⋅

α = =  and 

1 3cos 74.74
130

−  α = ≅ ° 
 

. Similarly, we can use the vectors 2,3BA = −


 and 1,4BC =


 to calculate that 

10cos
221

β =  and 1 10cos 47.73
221

−  β = ≅ ° 
 

; and we can use the vectors 1, 4CB = − −


 and 3, 1CA = − −


 to 

calculate that 7cos
170

γ =  and 1 7cos 57.53
170

−  β = ≅ ° 
 

. Note that 180α +β+ γ = ° , as expected. 

Acute, obtuse, right angles 
We know that when an angle θ  is acute, then cos 0θ > ; when θ  is obtuse, then cos 0θ < ; and when θ  is a 
right angle, then cos 0θ = . If we couple these observations with the relation cos⋅ = θu v u v , we get that  

if u, v in nR  are nonzero vectors emanating from a common vertex to form an angle θ , then 

0⋅ >u v  if and only if the angle θ  is acute 

0⋅ <u v  if and only if the angle θ  is obtuse 

0⋅ =u v  if and only if the angle θ  is a right angle, i.e. ⊥u v  

Orthogonal Projection 
Referring to the sketch shown, the scalar projection of the vector v in the 
direction of the vector u (also called the component of the vector v in the 
direction of the vector u) is the length l (which will be positive for an acute 
angle and negative for an obtuse angle). Basic trigonometry gives that 

cosl = θv  and the relation cos⋅ = θu v u v  gives that 

cosl
 ⋅ ⋅

= θ = = = ⋅  
 

u v v u uv v
u u u

. This latter expression enables us to 

express this in words simply as “To find the component of a vector in a given direction, calculate the dot 
product of that vector with a unit vector in the desired direction.” This is consistent with our previous use of 
the word component, e.g. the x-component of the vector , ,x y z=v  is given by , , 1,0,0x y z x⋅ = ⋅ =v i . We 
can now, however, find the component of a vector in any given direction and not just in the directions of the 
coordinate axes. 
We can then use this fact to define the vector projection of v in the direction 
of u by construction it by starting with the vector u, normalizing it to get a 
unit vector in the same direction, and the scaling it by the value of the scalar 

projection to get 2Proj
   ⋅

= ⋅ =         
u

u u v uv v u
u u u

. This can be useful for 

expressing a vector as the sum of a “tangential component” vector and a 
“normal component” vector, especially in geometry and physics. 
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Equations for lines in 2R  and planes in 3R  
We can use the dot product to construct an equation for a line in 2R  given any 
known point 0 0( , )x y  on the line and a normal vector ,A B=n  perpendicular 
to the line. Note that for any other point ( , )x y  to be on this line it must be the 
case that the difference vector 0 0 0,x x y y− = − −x x  is orthogonal to the 

normal vector ,A B=n  and this will be the case if and only if 0( ) 0⋅ − =n x x . 

If we write this out in components we get that 0 0, , 0A B x x y y⋅ − − =  or 

0 0( ) ( ) 0A x x B y y− + − = . Note that the normal vector has slope B
A  (assuming it’s neither horizontal nor 

vertical) and we can re-express the previous equation in the form 0 0( ) ( )A
By y x x− = − −  which is just the 

familiar point-slope form of a line if we recognize that the slope A
B−  is just the negative reciprocal of the slope 

B
A  of the normal vector. 

The construction is essentially the same for a plane in 3R . In 
this case if 0 0 0 0, ,x y z=x  represents the position vector of 

any known point in the plane and if , ,A B C=n  is a normal 
vector for the plane (note that any nonzero scalar multiple will 
do just as well), then if , ,x y z=x  is the position vector of 
any other point in the plane it must necessarily be the case that 
the difference vector 0 0 0 0, ,x x y y z z− = − − −x x  is 

orthogonal to the normal vector , ,A B C=n  and this will be 

the case if and only if 0( ) 0⋅ − =n x x . If we express this in 

components, this becomes 0 0 0, , , , 0A B C x x y y z z⋅ − − − =  

or 0 0 0( ) ( ) ( ) 0A x x B y y C z z− + − + − = . If we expand this out and transpose all the constants to the right-hand-

side we get an equation of the form Ax By Cz D+ + =  where D is a constant. Note that the components of the 
normal vector appear as the coefficients in this linear equation. Had we used a scalar multiple for the normal 
vector we would get an equivalent linear equation with these coefficients still in the same proportion as the 
components of the normal vector. In problems, we often jump to this form once we know the normal vector and 
determine D by plugging in the coordinates of the given point. 

Example: Find an equation for the plane with normal vector 2,1, 4= −n  that passes through the point with 
coordinates (1,3,5) . 

Solution: We can simply substitute into the construction above to get that 2,1, 4 1, 3, 5 0x y z− ⋅ − − − =  or 

2( 1) ( 3) 4( 5) 0x y z− + − − − =  or 2 4 15x y z+ − = − . Note that a plane with the equation 2 4 11x y z+ − =  
would have the same (or a parallel) normal vector but shares no points with the previous plane. They are 
parallel planes. 

The Cross Product (or Vector Product) 
When find the equation of a plane we will not necessarily be provided with a known point and a convenient 
normal vector. We might, for example be given three points that are not co-linear, i.e. that do not all lie on a 
single line. 
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Problem: Find an equation for the plane that contains the three 
points (1, 2, 3)P − , (2,1,0)Q , and (3,3,1)R . 

In this case there are several productive approaches we can take. 
For example, we can take points pairwise to produce vectors 
parallel to the plane and then try to find a vector orthogonal to 
these two vectors. Such a vector will then serve as a normal 
vector for this plane. We would like to find a vector 

, ,A B C=n  such that 0PQ ⋅ =n


 and 0PR ⋅ =n


. For the given 

points we have 1, 1,3PQ = −


 and 2,1,4PR =


, so the above 
conditions translate into two equations in three unknowns, 

namely 3 0
2 4 0
A B C
A B C
− + = 

 + + = 
. This has infinitely many solutions 

(corresponding to that face that any scalar multiple of a normal vector will still be a normal vector), but adding 
them gives the relation 3 7 0A C+ =  or 3 7A C= − . If we simply choose 3C = , then we must necessary have 

7A = −  and we can use either of the two original equations to solve for 2B = . Therefore 7,2,3= −n  will 
work as a normal vector. This method gets us a solution, but it’s anything but routine. 

Alternatively, we might simply observe that the equation of the plane must be of the form Ax By Cz D+ + =  for 
appropriate constants , , ,A B C D . Since the three given points all presumably lie on this plane, they must all 
satisfy the equation for the plane, so we get three equations in the four unknowns , , ,A B C D , namely 

2 3
2
3 3

A B C D
A B D
A B C D

+ − =  + = 
 + + = 

 which also be written as 
2 3 0

2 0
3 3 0

A B C D
A B D

A B C D

+ − − =  + − = 
 + + − = 

. For those of you who are familiar with 

row reduction, this can be solved as 
7

12
1
6
1
4

1 0 0 01 2 3 1 0
2 1 0 1 0 0 1 0 0
3 3 1 1 0 0 0 1 0

RREF
−− −   

  − →
  −   

 to yield that 7
12A D= , 

1
6B D= − , and 1

4C D= − . If integer values are desired, we can choose 12D =  which then gives 7A = , 2B = − , 
and 3C = − . So an equation for this plane is 7 2 3 12x y z− − = . Once again, we get a solution, but there must be 
a better way. 

The most convenient way to do this is define the cross product of two vectors (defined only in 3R ). Given two 
vectors 1 2 3, ,u u u=u  and 1 2 3, ,v v v=v  in 3R , we can use the orthogonality requirement to show that the 
following cross product will be orthogonal to both vectors: 

1 2 3 1 2 3 2 3 3 2 3 1 1 3 1 2 2 1, , , , , ,u u u v v v u v u v u v u v u v u v× = × = − − −u v  

There are several different ways to express this using the definition of a 2 2×  determinant, namely 

det a b a b ad bcc d c d
  = = −  

. Examining the above expression we see that: 

2 3 3 1 2 3 1 31 2 1 2

2 3 3 1 2 3 1 31 2 1 2
, , , ,u u u u u u u uu u u u

v v v v v v v vv v v v× = = −u v  

Note the sign switch in the middle component. This is done so that you can conveniently perform the 

calculation by creating a 2 3×  array from the given two vectors 1 2 3

1 2 3

u u u
v v v
 
  

 and then respectively covering the 
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1st, 2nd, and 3rd columns and calculating the determinant of the resulting 2 2×  determinants (with appropriate 
sign switch of the middle component. For example, if 1, 1,3PQ= = −u



 and 2,1,4PR= =v


, we would get 

the array 1 1 3
2 1 4

− 
  

 and use the procedure to calculate 4 3, (4 6),1 ( 2) 7,2,3× = − − − − − − = −u v . This 

coincides with the normal vector we obtained with greater effort in our first attempt. 

Some people prefer to express this procedure using { }, ,i j k  notation by formally calculating the 3 3×  

determinant 2 3 1 3 1 2
1 2 3

2 3 1 3 1 2
1 2 3

u u u u u uu u u v v v v v vv v v
× = = − +

i j k
u v i j k . 

Using only this algebraic definition for the cross product, we can derive the following properties: 

Algebraic Properties of the Cross Product: Suppose u, v, and w are vectors in 3R  and that t is any scalar. 

1) × = − ×v u u v  (anticommutative)   [Corollary: × =u u 0  for any vector u ] 

2) 
( )

( )
× + = × + × 

 + × = × + × 

u v w u v u w
u v w u w v w

 (left and right distributive laws) 

3) ( ) ( ) ( )t t t× = × = ×u v u v u v     (how the dot product behaves relative to scaling of vectors) 

4) × =u 0 0  

5) ( ) ( )⋅ × = × ⋅u v w u v w     (triple scalar product) 

6) ( ) ( ) ( )× × = ⋅ − ⋅u v w u w v u v w     (triple vector product) 

All of the above algebraic properties of the cross product except for the last one are straightforward. You can 
prove the last one by noting that the first component would be: 

2 3
2 1 2 2 1 3 3 1 1 3 2 1 2 2 2 1 3 3 1 3 1 3

3 1 1 3 1 2 2 1

2 1 2 2 2 1 3 3 1 3 1 3 1 1 1 1 1 1 1 1 2 2 3 3 1 1 1 2 2 3 3 1

1 1

( ) ( )

( ) ( )
( ) ( )

u u u v w v w u v w v w u v w u v w u v w u v wv w v w v w v w
u v w u v w u v w u v w u v w u v w u w u w u w v u v u v u v w

v w

= − − − = − − +
− −

= − − + + − = + + − + +
= ⋅ − ⋅u w u v

 

Similarly, we can show that the 2nd and 3rd components are 2 2( ) ( )v w⋅ − ⋅u w u v  and 3 3( ) ( )v w⋅ − ⋅u w u v . 

Together these give that ( ) ( ) ( )× × = ⋅ − ⋅u v w u w v u v w . Physicists (and others) often refer to this property as 
the “BAC-CAB Rule” and express it as ( ) ( ) ( ) ( ) ( )× × = ⋅ − ⋅ = ⋅ − ⋅A B C A C B A B C B A C C A B . 

We can independent define the cross product in purely geometric terms. 

Geometric definition of the cross product: Suppose u and v are vectors in 3R . Then 
the cross product ×u v  is the unique vector in 3R  such that: 
(1) ×u v  is orthogonal to both u and v; 
(2) the magnitude of the cross product ×u v  is equal to the area of the parallelogram 

determined by u and v; 
(3) ×u v  is oriented according to the Right-Hand Rule (as explained in class and 

elsewhere). 
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It is true that these three properties uniquely determine the cross product, and we can also easily derive the 
previous algebraic definition from these requirements. We can also derive these geometric properties from the 
algebraic definition using the previously stated algebraic properties. Specifically: 

(1) ( ) ( ) 0⋅ × = × ⋅ = ⋅ =u u v u u v 0 v , so ×u v  is orthogonal to the vector u; 
( ) ( ) 0× ⋅ = ⋅ × = ⋅ =u v v u v v u 0 , so ×u v  is orthogonal to the vector v. 

(2) If we consider the parallelogram determined by u and v and let θ  be the 
angle between these vectors (drawing a picture is advisable), then the 
area of the parallelogram will be given by 
(length of base)( height) sinθ⊥ = u v . Squaring both sides gives 

2 2 2 2 2 2 2 2 2 22 2 2 2 2(Area) sin (1 cos ) cos ( )= θ = − θ = − θ = − ⋅u v u v u v u v u v u v . 

On the other hand, 2 2 2 2( ) ( ) [ ( )] [( ) ( ) ] ( )× = × ⋅ × = ⋅ × × = ⋅ ⋅ − ⋅ = − ⋅u v u v u v u v u v u v v u v u v u v u v . 

Therefore 22(Area) = ×u v , so Area = ×u v . 

(3) You can easily calculate using the algebraic definition that × =i j k  which satisfies the Right-Hand Rule. 
Then argue using a continuity argument that if this is true for these two vectors than by continuously 
varying these vectors in 3R  to align them with the given two vectors, the right-hand rule must be 
preserved. 

Volume and the Triple Scalar Product: 
Property (5) of the Algebraic Properties of the Cross Product (the triple 
scalar product) has an interesting geometric interpretation. Note that 
( ) cos× ⋅ = × θu v w u v w  where θ  is the angle between the vectors ×u v  
and w. [For simplicity, we’re considering the case where θ  is an acute 
angle. If it is obtuse, everything’s the same except for a change in sign.] 
Note that ×u v  gives the area of the parallelogram that forms the base of 

the parallelepiped determined by the three vectors u, v, and w in 3R ; and 
cosθw  corresponds to the perpendicular height of this parallelepiped, i.e. 

the scalar projection of the vector w in the direction of the vector ×u v . 
Thus ( )( ) cos (area of base)( height) Volume× ⋅ = × θ = ⊥ =u v w u v w  of 

the parallelepiped (up to sign). So the volume is ( )⋅ ×u v w  or ( )× ⋅u v w . 

The triple scalar product may also be calculated as 
1 2 3

1 2 3

1 2 3

( ) ( )
u u u
v v v
w w w

× ⋅ = ⋅ × =u v w u v w , a 3 3×  determinant. 

 

Notes by Robert Winters 


