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Multivariable Calculus – Lecture #14 Notes 

In this lecture, we’ll state the Divergence Theorem (which relates flux of a vector field outward across a closed 
surface to the divergence of the vector field in the region bounded by this surface) and Stokes' Theorem (which 
relates the circulation of a vector field around a closed curve to the curl of that vector field on a surface bounded 
by this closed curve). We will prove both of these theorems by first giving coordinate-free geometric definitions 
of the divergence and curl of a vector field. We’ll then show that these definitions yield the algebraic definitions 
in the case of Cartesian coordinates. We’ll start by stating and providing context for five versions of the 
Fundamental Theorem of Calculus and make the case that they really constitute one theorem. 

Five Versions of the Fundamental Theorem of Calculus 

I – Fundamental Theorem of Calculus (FTC): Suppose a function ( )f x  is a differentiable at all points within 

the interval [ , ]I a b . Then ( ) ( ) ( )
b

a
f b f a f x dx   . 

Note that in terms of differentials we can write ( )df f x dx , so the right-hand side could be expressed as 

I
df . If we consider the interval to be oriented (from left to right, or in the direction of increasing values of x), 

the boundary of this interval consists of two points which we can also “orient” in the sense of the end point 
(which we’ll consider to be “positively oriented”) and the starting point (which we’ll consider to be “negatively 
oriented”). If we liberalize our definition to include discrete sums and write Boundary( ) { } { }I I b a      

with ( ) ( )
I

f f b f a


  , the theorem may be then be expressed as 
I I

f df


  . 

II – Fundamental Theorem of Line Integrals (FTLI): Let C be a smooth curve given by the vector function 

( ),t a t b r  and let V F


 where ( , )V x y  (or ( , , )V x y z ) is a differentiable function of two (or three) 

variables whose gradient V F


 is continuous on the curve C. Then: 

( ( )) ( ( )) (end) (start)
C C

d V d V b V a V V        F r r r r


 

Note that in terms of differentials we can write 
f f

df dx dy f d
x y

 
    
 

r


 for a function of two variables, or 

f f f
df dx dy dz f d

x y z

  
     
  

r


 for a function of three variables (in Cartesian coordinates). [These may 

also be expressed in other coordinate systems.] Thus the right-hand side may be expressed as 
C

dV . The curve 

is oriented and we can also orient its boundary (consisting of two points) as Bnd( ) { ( )} { ( )}C C r b r a      as 

above. If we write (end) (start)
C
V V V


  , the theorem may be expressed as 

C C
V dV


   which is of the 

same form as the FTC. 

III – Green’s Theorem: Suppose ( , ) ( , ), ( , )x y P x y Q x yF  defines a vector field in some bounded region D 

in R2 where the component functions ( , )P x y  and ( , )Q x y  are differentiable. Let C be the boundary of this 
region oriented in the counterclockwise sense (this can be understood generally to mean that as you traverse the 
boundary the region D will always be to the left). We denote this by Bnd( )D D C   . Then: 

circulation of

 around C D C D D

Q P
d Pdx Qdy dA

C D x y 

    
              
  F r

F    
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In this case, if we consider the “differential form” Pdx Qdy   . We can define the “wedge product” based on 
analogy with the cross product, i.e. we think of the “2-form” dx dy  as a vector-like quantity (they can be 
added and scaled) that represents an “oriented area” with magnitude dxdy dA . In analogy with the cross 
product, the wedge product will also be antisymmetric in the sense that dy dx dx dy    . Therefore 

0dx dx   and 0dy dy  . If we extend the 2-forms via scaling and adding with the corresponding 

distributive law, and if we calculate the differentials 
P P

dP dx dy
x y

 
 
 

 and 
Q Q

dQ dx dy
x y

 
 
 

, we can then 

define: 

P P Q Q
d dP dx dQ dy dx dy dx dx dy dy

x y x y

P
dx dx

x


      

                  


 


P Q Q
dy dx dx dy dy dy

y x y

  
     
  

Q P
dx dy

x y

  
     

 

With a little more formalism we can then also think of Green’s Theorem as 
D D

d 


  . 

IV – Divergence Theorem (also known as Gauss’ Theorem) 
Suppose S is a closed surface in R3 that bounds a solid region B and that this boundary S is oriented via an 
outward unit normal vector n. Further suppose that ( , , ), ( , , ), ( , , )P x y z Q x y z R x y zF  is a vector field defined 

and differentiable throughout B (and its boundary) with continuous first partial derivatives. Then: 

net flux of  outward
div( )

across NS B S B S B B
F dS dS dV

S B   

 
        
   

F
F n F dS F    

This theorem provides some explanation for the interpretation of the divergence of a vector field as a source 
density. Essentially, the total amount of “stuff” flowing outward across the boundary of a closed region should 
measure the total amount of the source of that “stuff” emanating from within the region. 

In terms of differential forms and extending some of the ideas previously expressed regarding the projections of 

the “vector element of surface area” in each of the coordinate directions as, respectively 
dydz
n i

, 
dxdz
n j

, and 

dxdy
n k

, we can write dydz dzdx dxdy  dS i j k  in terms of the respective area elements in each of the 

coordinate planes. The integrand “ F dS ” may then be expressed, utilizing the appropriate orientations, as 
Pdy dz Qdz dx Rdx dy        and: 

P P
dx dy

dx dy

d dP dy dz dQ dz dx dR dx dy

 
 

        

P
dz

dz




Q
dy dz dx

dx


  

 
 
 

Q Q
dy dz

dy dz

 
 

R
dz dx dx

dx


  

 
 
 

R
dy

dy




R
dz dx dy

dz

P Q R
dx dy dz

dx dy dz


  

 
 
 

   
     
 

 

If we identify the “oriented volume element dV  with the “3-form” dx dy dz  , then the Divergence Theorem 

may be expressed as 
B B

d 


  . 
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V - Stokes’ Theorem 
Suppose S is an oriented surface in R3 (with unit normal vector n defined on the surface to choose a “side”) 
with boundary curve C oriented in the counterclockwise sense, i.e. if the unit normal vector n represents “up”, 
then you traverse the boundary in such a way that the surface is to your left [ Bnd( )S S C   ]. Further 

suppose that ( , , ), ( , , ), ( , , )P x y z Q x y z R x y zF  is a vector field defined and differentiable throughout S (and 

its boundary) with continuous first partial derivatives. Then: 

circulation of
curl( ) [curl( ) ]

 around C S S S
d dS

C S 

 
        
  F r F dS F n

F   

This theorem provides some explanation for the interpretation of the curl of a vector field as a circulation 
density, i.e. a measure of local rotation of the vector field. Essentially, the circulation of the vector field around 
the perimeter is the same as the integral of the circulation density over the surface. 

As in the case of Green’s Theorem, if we express the integrand as Pdx Qdy Rdz     we can calculate: 

dP dx dQ dy dR dz
P

dx
x

d      





P P Q
dy dz dx dx

y z x

Q
dy

y

  
    
  





 
 
 

R
dz

z

Q R R
dz dy dx dy

z x y





  
    
  

 
 
 

dz

R Q P R Q P
dy dz dz dx dx dy

y z z x x y


 
 
 

                              

 

So, if we again translate Stokes’ Theorem into the language of differential forms, it reads 
S S

d 


  . This 

result is known as the “Generalized Stokes’ Theorem” and it’s valid generally for all geometric objects known 
as “manifolds” in any dimension and using any coordinates with the corresponding assumptions that all 
functions involved are differentiable throughout the object. 

We now proceed to the proofs of these last two theorems by first giving coordinate-free definitions of the 
divergence and curl of a vector field. 

Geometric Definition of Divergence as a “Source Density” 
Suppose F is vector field defined and sufficiently differentiable in the vicinity of a point ( , , )x y z  x . If we 

“build a bubble” kB  containing this point, we can measure the amount of flux that is emanating through the 

boundary k kB S  of this (small) bubble and create a density by dividing by the volume kV of the bubble. 

Note that this is a scalar quantity. To get an exact value for this density at the given point we shrink the bubble 
down to the point by lettings its diameter approach zero. Assuming that this limit is uniquely determined 
independent of all choices, we define this to be the divergence at the given point. That is: 

( ) 0

F
lim (div )( )k

k

S

diam B
kV

 
  
 
 

 dS
F x


 

Proof of Divergence Theorem: Partition the solid region B into uniformly small cells  kB  and write the 

boundary of each cell as k kS B  . Within each cell, choose a sample point kx . If each cell is small, we can say 

that 
F

(div )( )kS
k

kV





 dS

F x


. Multiplication gives F (div )( )
k

k kS
V   dS F x  for each cell, and if we sum these 

over all cells we get F (div )( )
k

k kS
k k

V    dS F x . In the left-hand sum, note that for any two adjacent cells 
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the flux out of one will be the same as the flux into its neighbor, so all of the internal outward fluxes will cancel 
pairwise. The only flux that will remain is the flux passing out through the overall boundary S B  . Thus 

F (div )( )
k

k kS B S
k k

V


      F dS dS F x  . This approximation will become more and more precise as the 

mesh   of the partition gets smaller and smaller, and in the limit we get that: 

0
lim (div )( ) (div )( )k kS B B

k

V dV
 

     
 
 F dS F x F x  

In essence, the Divergence Theorem is just an integral version of the definition of divergence. 

Geometric definition of divergence yields the algebraic definition of divergence (Cartesian coordinates) 

To show that div
P Q R

x y z

  
  
  

F  for a differentiable vector field ( , , ), ( , , ), ( , , )P x y z Q x y z R x y zF , 

choose any point ( , , )x y z  and build a (Cartesian) bubble around it, i.e. a rectangular bubble with edge lengths 
x , y , and z . For convenience, let ( , , )x y z  be at a corner of the bubble. This bubble will have six faces and 

we can calculate the net flux out of this (small) bubble by simply adding up the flux outward through each of 
these faces, i.e. ( )NF S S   F n . We must take care when estimating NF  for each of the faces to choose a 

point that’s actually on each of these faces. This information is best gathered into the following table: 

Face n 
NF  F n  S  

Front i  ( , , )P x x y z   y z   

Back i  ( , , )P x y z  y z   

Right j  ( , , )Q x y y z   x z   

Left j  ( , , )Q x y z  x z   

Top k  ( , , )R x y z z   x y   

Bottom k  ( , , )R x y z  x y   

Summing over all six faces and dividing by the volume V x y z     , we get: 

[ ( , , ) ( , , )] [ ( , , ) ( , , )] [ ( , , ) ( , , )]

[ ( , , ) ( , , )] [ ( , , ) ( , , )] [ ( , , ) ( , , )]

N P x x y z P x y z y z Q x y y z Q x y z x z R x y z z R x y z x y

x y z

F S

V

P x x y z P x y z Q x y y z Q x y z R x y z z R x y z

x y z

                

  





        

  
  


 

Finally, we let the mesh approach zero by letting x , y , and z  all approach zero. This gives: 

0 0 0

[ ( , , ) ( , , )] [ ( , , ) ( , , )] [ ( , , ) ( , , )]
lim lim lim(div )( , , )

x y z

P x x y z P x y z Q x y y z Q x y z R x y z z R x y z

x y z
x y z

P Q R

x y z

     

        
 

  


  
  
  

F
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Example: Find the net flux of the vector field , ,x y z x F  outward through the boundary of the upper half 

ball with 2 2 2 4x y z    and 0z  . 

Solution: If we calculate this directly, we first observe that the boundary consists of the upper hemisphere S 

with 2 2 2 4x y z    oriented with an upward (outward) unit normal vector 
, ,

2

x y z
n ; and the disk D of 

radius 2 in the 0z   plane oriented with downward (outward) unit normal vector 0,0, 1   n k . On the 

spherical portion we have 
2 2, ,

, ,
2 2

x y z x y yz xz
x y z x

  
    F n . Thus the flux through the spherical 

portion will be 
2 2

2S

x y yz xz
dS

  
 . By symmetry, the last two terms will integrate to give zero, so we’re 

left with the integral 2 21
2 ( )

S
x y dS . In spherical coordinates with 4sindS d d    and 

2 2 2 24sinx y r    , we have: 
2 22 2 22 2 3

0 0 0 0 0

321 1
2 3 3(4sin )4sin 8 (1 cos )sin 8 cos cos 2d d d d

                           . 

For the bottom disk, , , 0,0, 1x y z x x      F n , so the flux through the bottom disk will be 
S

x dS . 

By symmetry this will yield a flux of zero. So the overall outward flux is 32
3
 . 

By the Divergence Theorem, we calculate div 1 1 0 2   F , so: 
3 322

3 3(div ) 2 2 2 Vol( ) 2 (2)
B B B

dV dV dV B         F . 

Another interpretation of the Divergence Theorem (with applications) 
Suppose 1S  and 2S  are two oriented surfaces that share a common boundary curve C but which do not 

otherwise intersect, and suppose B is a solid region having the union 1 2S S  as its boundary. If 2S  is oriented 

outward (think of it as the upper boundary), and 1S  is oriented inward, denote by 1S  the same surface with 

downward (outward) orientation. Then    2 1B S S    . If F is a differentiable vector field, we can then 

apply the Divergence Theorem to get 
2 1

div( )
S B S S B

dV


        F dS F dS F dS F . 

So 
2 1

div( )
S S B

dV     F dS F dS F . This can be interpreted as saying that the flow out through the top is 

equal to the flow in through the bottom plus the amount of new flow spawned by any sources in the interior 
region. This idea can often be used for calculating the flux through a non-closed surface by sewing in another 
surface (on which it’s hopefully easy to calculate the flux). 

Example: Calculate the flux of the vector field 2 2 2,3 ,y z y z zF upward through the hemisphere 
2 2 2 4x y z    with 0z  . 

Solution: Carrying out the calculations directly for this surface S is cumbersome, but we can sew in the disk D 
of radius 2 in the xy-plane (with upward orientation) to close this surface and make it the boundary of the solid 

half-ball B within. Then    B S D    . We can then calculate div( )
S D B

dV     F dS F dS F . For the 

disk D, the unit (upward) normal is n k  and 0 0
D D D D

dS zdA dA        F dS F n . We calculate 

div( ) 0 6 1yz  F , so div( ) ( 6
B

dV yz F 3 162
3 31) Volume( ) (2)

B B
dV dV B        . 

So 16 16
3 3div( ) 0

S D B
dV          F dS F dS F . 
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Geometric Definition of Curl as a “Circulation Density” or measure of local rotation 
Suppose F is vector field defined and sufficiently differentiable in the vicinity of a point ( , , )x y z  x . Defining 
the curl of this vector field is more involved that defining the divergence because curl is a vector quantity rather 
than a scalar quantity. Since a vector can be specified by providing its components, we’ll focus of defining the 
component (scalar projection) of the curl in any specified direction. To do this, let’s think of a “probe” as a 
small surface patch kS  with unit normal vector n  (“the handle”) inserted into the given vector field at the 

specified point. If the vector field has some local rotation, it will yield some circulation around the boundary of 
the probe k kS C  , i.e. 

kC
 F dr . We can create a density by dividing by the area kS of the probe. To get an 

exact value for this “circulation density” at the given point associated with the normal vector of the probe, we 
shrink the probe down to the point by lettings its diameter approach zero. Assuming that this limit is uniquely 
determined independent of all choices, we define this to be the curl at the given point. That is: 

( ) 0
lim [(curl )( )]k

k

C

diam S
kS

 
   
 
 

 F dr
F x n


, i.e. the component of the curl in the direction of n  

We’ll shortly use this definition to find the x, y, and z components of the curl by choosing n  to be, respectively, 
the unit vectors i, j, and k. 

Proof of Stokes’ Theorem: Partition the surface S into uniformly small “patches”  kS  with normal vector n  

provided by the orientation of the surface and write the boundary of each patch as k kC S  . We can then think 

of each of these patches as the base of a “probe”. Within each patch, choose a sample point kx . If each cell is 

small, we can say that [(curl )( )]kC
k

kS


 


 F dr

F x n


. Multiplication gives [(curl )( )]
k

k kC
S    F dr F x n  for 

each patch, and if we sum these over all patches we get [(curl )( )]
k

k kC
k k

S     F dr F x n . In the left-hand 

sum, note that for any two adjacent patches the work along one edge will be the same as the work along the 
edge of its neighbor but oppositely directed, so the work associate with any such internal pairs will cancel. The 
only contributions to the sum that will remain will yield the circulation about the overall boundary of the 
surface C S  . Thus [(curl )( )]

k
k kC S C

k k

S


       F dr F dr F x n  . This approximation will become 

more and more precise as the mesh   of the partition gets smaller and smaller, and in the limit we get that: 

0
lim [(curl )( )] [(curl )( )] (curl )k kC S S S

k

S dS
 

          
  F dr F x n F x n F dS  

In essence, Stokes’ Theorem is just an integral version of the definition of curl. 

 

Geometric definition of curl yields the algebraic definition of curl (Cartesian coordinates) 

We’ll demonstrate that curl , ,
R Q P R Q P

y z z x x y

     
   

     
F  for a differentiable vector field 

( , , ), ( , , ), ( , , )P x y z Q x y z R x y zF  by calculating its z-component. The calculation of the other two 

components will be similar. We choose any point ( , , )x y z  and “insert the probe” with normal vector k  and a 
small rectangular patch with side lengths x  and y  and with area S x y    . For convenience, let ( , , )x y z  
be at a corner of the patch. This boundary of this patch will consist of four (oriented) edges and we can calculate 
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the net circulation around the boundary of the patch by adding up the work along each of these edges, i.e. 
( )TF s s   F T  where T represents the unit tangent vector for each edge and s  is the length of each edge. 

We must take care when estimating TF  for each of the edges to choose a point that’s actually on each of these 

edges. This information is best gathered into the following table: 

Edge T 
TF  F T  s  

Left i  ( , , )P x y z  x  

Front j  ( , , )Q x x y z   y  

Right i  ( , , )P x y y z   x  

Back j  ( , , )Q x y z  y  

Summing over all four edges faces and dividing by the area S x y    , we get: 

[ ( , , ) ( , , )] [ ( , , ) ( , , )]

( , , ) ( , , ) ( , , ) ( , , )

T Q x x y z Q x y z y P x y y z P x y z x

x y

F s

S

Q x x y z Q x y z P x y y z P x y z

x y

        

 





     

 
 


 

Finally, we let the mesh approach zero by letting x  and y both approach zero. This gives: 

0 0

( , , ) ( , , ) ( , , ) ( , , )
lim lim
x y

Q x x y z Q x y z P x y y z P x y z Q P

x y x y   

                    
 

The other components are similar. 

Example: Calculate the work done by the vector field 2 , ,x x zF  around the curve where the plane 

2 5x y z    intersects the cylinder 2 2 4x y   where the curve is oriented counterclockwise as viewed from 
the positive z-axis. 

By direct calculation: The work integral is 2

C C
x dx xdy zdz    F dr  . We can parameterize this curve C by 

circling around the cylinder while staying on the plane, i.e. 5 2z x y   . A simple parameterization is 

2cos
2sin
5 4cos 2sin

x t
y t
z t t

   
    

 from 0t   to 2t  . This gives 
2sin

2cos
(4sin 2cos )

dx tdt
dy tdt
dz t t dt

    
   

. Substitution then gives: 

22 2

0

2 2 2 2 2

0

2

[(4cos )( 2sin ) (2cos )(2cos ) (5 4cos 2sin )(4sin 2cos )]

[ 8cos sin 4cos 20sin 16sin cos 8sin 10cos 8cos 4sin cos ]

[ 8cos sin

C
x dx xdy zdz t t t t t t t t dt

t t t t t t t t t t t dt

t t





        

        

 

 



2 2 2

0
4cos 8sin 12sin cost t t t


   20sin t 10cos t

2

0

]

(crossed-out terms integrate to 0 over a full cycle)

1 cos 2 1 cos 2
4 8 2(1 cos 2

2 2

dt

t t
dt t

                    
 ) 4(1 cos 2t 

2 2

0 0
) 2 4dt dt

 
     
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By Stokes’ Theorem: We calculate curl 0 0,0 0,1 0 0,0,1    F . If we consider C as the boundary of the 

oval-shaped region in the plane 2 5x y z    then we can identify the unit normal as 
2, 1,1

6


n  and the 

surface area element as 6
dxdy

dS dxdy 
n k

, and 
2, 1,1 1

(curl ) 0,0,1
6 6


   F n . So, denoting the region 

in the xy-plane below the surface S as the circular disk D, we have: 

1
[curl( ) ] 6 Area( ) 4

6C S S D D
d dS dxdy dxdy D



         
    F r F n  

Green’s Theorem is a corollary of Stokes’ Theorem 
If we consider the region D in the xy-plane as a surface embedded in R3 with (upward) unit normal vector n k  
and if we extend the vector field to ( , ) ( , ), ( , )x y P x y Q x yF  in the xy-plane to a vector field 

( , , ) ( , ), ( , ),0x y z P x y Q x yF  in R3, then curl 0,0,
Q P

x y

 
 

 
F , and (curl )

Q P

x y

 
  

 
F n , and

dS dA dxdy  , so the right-hand side of Stokes’ Theorem becomes simply 
D

Q P
dA

x y

  
   

 . Furthermore, 

the left-hand side is just ( , ) ( , )
C D C D

d P x y dx Q x y dy
 

   F r   which is the left-hand side of Green’s 

Theorem. 

Notes by Robert Winters and Renée Chipman 


