Linear Algebra – Lecture #7 Notes

The main topics this week are orthogonal projection, the Gram-Schmidt orthogonalization process, QR factorization, isometries and orthogonal transformations, least-squares approximate solutions and applications to data-fitting.

Some previous results:

- 1) Suppose $V = \operatorname{Span} \left\{ \mathbf{v}_1, \dots, \mathbf{v}_k \right\}$. Let $\mathbf{A} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{v}_1 & \dots & \mathbf{v}_k \\ \downarrow & & \downarrow \end{bmatrix}$. This is an $n \times k$ matrix with $V = \operatorname{im}(\mathbf{A})$ and $V = \operatorname{Im}(\mathbf{A}) = \operatorname{Im}(\mathbf{A})$.
- 2) Suppose $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is an orthonormal (ON) basis for a subspace $V \subseteq \mathbf{R}^n$. Then for any $\mathbf{x} \in \mathbf{R}^n$,

$$\underline{\left[\text{Proj}_{V} \mathbf{x} = (\mathbf{x} \cdot \mathbf{u}_{1}) \mathbf{u}_{1} + (\mathbf{x} \cdot \mathbf{u}_{2}) \mathbf{u}_{2} + \dots + (\mathbf{x} \cdot \mathbf{u}_{k}) \mathbf{u}_{k} \right]}. \text{ If we write } \mathbf{B} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{u}_{1} & \dots & \mathbf{u}_{k} \\ \downarrow & & \downarrow \end{bmatrix}, \text{ then } \underline{\left[\text{Proj}_{V} = \mathbf{B} \mathbf{B}^{T} \right]} \text{ is the }$$

matrix for orthogonal projection onto V, and $\boxed{\operatorname{Ref}_V = 2\mathbf{B}\mathbf{B}^{\mathrm{T}} - \mathbf{I}}$ is the matrix for reflection through this subspace.

- 3) If $V = \mathbf{R}^n$ and $\mathbf{\mathcal{B}} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthonormal basis for all of \mathbf{R}^n , then $\mathbf{B} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u}_1 & \cdots & \mathbf{u}_n \\ \downarrow & \downarrow \end{bmatrix}$ will be an $n \times n$ matrix with ON columns (hence invertible), and $\operatorname{Proj}_V = \mathbf{B}\mathbf{B}^T = \mathbf{I}$. Therefore, in this special case we'll have $\mathbf{B}^{-1} = \mathbf{B}^T$. Such a matrix is called an orthogonal matrix.
- 4) If $\mathbf{B} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u}_1 & \cdots & \mathbf{u}_k \\ \downarrow & \downarrow \end{bmatrix}$ is any $n \times k$ matrix with orthonormal columns, then $\mathbf{B}^T \mathbf{B} = \mathbf{I}_k$. In the special case where

B is an $n \times n$ matrix with orthonormal columns, this gives $\mathbf{B}^{\mathsf{T}} \mathbf{B} = \mathbf{I}_n$.

Transpose Facts

The following relations hold wherever the expressions are defined:

- $(1) (\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$
- $(2) (\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}}$
- (3) If **A** is an invertible $n \times n$ matrix, then \mathbf{A}^{T} is also invertible and $(\mathbf{A}^{\mathsf{T}})^{-1} = (\mathbf{A}^{-1})^{\mathsf{T}}$

The proofs are somewhat routine. For example, to establish (1), if \mathbf{A} is an $m \times n$ matrix and \mathbf{B} is a $n \times p$ matrix, then the (i, j) of \mathbf{AB} will be $\sum_{k=1}^{n} a_{ik} b_{kj}$. This will then be the (j, i) entry of $(\mathbf{AB})^{\mathrm{T}}$. On the other hand, the (j, k) entry of \mathbf{B}^{T} will be b_{kj} and the (k, i) entry of \mathbf{A}^{T} will be a_{ik} , so the (j, i) entry of $\mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$ will be $\sum_{k=1}^{n} b_{kj} a_{ik} = \sum_{k=1}^{n} a_{ik} b_{kj}$ which coincides with the (j, i) entry of $(\mathbf{AB})^{\mathrm{T}}$. Therefore $(\mathbf{AB})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$.

1

Corollary: The matrix **A** for any orthogonal projection or reflection is always symmetric, i.e. $\mathbf{A}^T = \mathbf{A}$. **Proof**: Using the previous results, any projection matrix can be expressed as $\mathbf{A} = \mathbf{B}\mathbf{B}^T$ and $\mathbf{A}^T = (\mathbf{B}\mathbf{B}^T)^T = \mathbf{B}\mathbf{B}^T = \mathbf{A}$, so the matrix is symmetric. Similarly, $\operatorname{Ref}_V = 2\mathbf{B}\mathbf{B}^T - \mathbf{I}$ and $(2\mathbf{B}\mathbf{B}^T - \mathbf{I})^T = 2(\mathbf{B}\mathbf{B}^T)^T - \mathbf{I}^T = 2\mathbf{B}\mathbf{B}^T - \mathbf{I}$, so this matrix is also symmetric.

Gram-Schmidt Orthogonalization Process

Suppose we begin with a basis $\mathcal{B} = \{\mathbf{v}_1, \cdots, \mathbf{v}_k\}$ for a k-dimensional subspace $V \subseteq \mathbf{R}^n$. We would like to construct an orthonormal basis for this same subspace. The <u>Gram-Schmidt orthogonalization process</u> sequentially constructs such a basis. [**Note**: The method is named after Jørgen Pedersen Gram and Erhard Schmidt, but Pierre-Simon Laplace had been familiar with it before Gram and Schmidt.] It should be emphasized that the resulting ON basis is very much dependent on the ordering of the original basis.

We proceed as follows:

- (1) Start with \mathbf{v}_1 and normalize it by scaling, i.e. $\mathbf{u}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$. For reasons that will soon become clear, we write $r_{11} = \|\mathbf{v}_1\|$. We can also solve for $\mathbf{v}_1 = r_{11}\mathbf{u}_1$. Let $V_1 = \operatorname{Span}\{\mathbf{v}_1\} = \operatorname{Span}\{\mathbf{u}_1\}$.
- (2) Next, we take the second basis vector \mathbf{v}_2 , find its projection onto the subspace V_1 , subtract this from the original to get a vector orthogonal to the first, then scale this to get a unit vector. We can calculate the projection as $\operatorname{Proj}_{V_1}(\mathbf{v}_2) = (\mathbf{v}_2 \cdot \mathbf{u}_1)\mathbf{u}_1$, so we take $\mathbf{u}_2 = \frac{\mathbf{v}_2 \operatorname{Proj}_{V_1}(\mathbf{v}_2)}{\|\mathbf{v}_2 \operatorname{Proj}_{V_1}(\mathbf{v}_2)\|}$. Note that $r_{22} = \|\mathbf{v}_2 \operatorname{Proj}_{V_1}(\mathbf{v}_2)\|$ is the perpendicular height of the parallelogram determined by the vectors $\{\mathbf{v}_1, \mathbf{v}_2\}$ and the area of this parallelogram is therefore $(base)(\bot height) = r_{11}r_{22}$. We can also solve for $\mathbf{v}_2 = (\mathbf{v}_2 \cdot \mathbf{u}_1)\mathbf{u}_1 + r_{22}\mathbf{u}_2$. Let $V_2 = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\} = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$.
- (3) If k > 2, we continue with the third basis vector \mathbf{v}_3 . We find its projection onto the subspace V_2 , subtract this from the original to get a vector orthogonal to V_2 , then scale this to get a unit vector. We can calculate the projection as $\operatorname{Proj}_{V_2}\left(\mathbf{v}_3\right) = \left(\mathbf{v}_3 \cdot \mathbf{u}_1\right)\mathbf{u}_1 + \left(\mathbf{v}_3 \cdot \mathbf{u}_2\right)\mathbf{u}_2$, so we take $\mathbf{u}_3 = \frac{\mathbf{v}_3 \operatorname{Proj}_{V_2}\left(\mathbf{v}_3\right)}{\left\|\mathbf{v}_3 \operatorname{Proj}_{V_2}\left(\mathbf{v}_3\right)\right\|}$. Note that $r_{33} = \left\|\mathbf{v}_3 \operatorname{Proj}_{V_2}\left(\mathbf{v}_3\right)\right\|$ is the perpendicular height of the parallelepiped determined by the vectors $\left\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\right\}$ and the volume of this parallelepiped is therefore $(area\ of\ base)(\perp\ height) = r_{11}r_{22}r_{33}$. We can also solve for $\mathbf{v}_3 = \left(\mathbf{v}_3 \cdot \mathbf{u}_1\right)\mathbf{u}_1 + \left(\mathbf{v}_3 \cdot \mathbf{u}_2\right)\mathbf{u}_2 + r_{33}\mathbf{u}_3$. Let $V_3 = \operatorname{Span}\left\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\right\} = \operatorname{Span}\left\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\right\}$.

We continue in this same manner until we exhaust our finite list of basis vectors. The last orthonormal vector will be $\mathbf{u}_k = \frac{\mathbf{v}_k - \operatorname{Proj}_{V_{k-1}}(\mathbf{v}_k)}{\|\mathbf{v}_k - \operatorname{Proj}_{V_{k-1}}(\mathbf{v}_k)\|}$ and if we write $r_{kk} = \|\mathbf{v}_k - \operatorname{Proj}_{V_{k-1}}(\mathbf{v}_k)\|$ we can define the k-volume of the k-dimensional parallelepiped determined by the vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ as $r_{11}r_{22} \cdots r_{kk}$. We can also solve for $\mathbf{v}_k = (\mathbf{v}_k \cdot \mathbf{u}_1)\mathbf{u}_1 + \dots + (\mathbf{v}_k \cdot \mathbf{u}_{k-1})\mathbf{u}_{k-1} + r_{kk}\mathbf{u}_k$. We then have $V = \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\} = \operatorname{Span}\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$, and this completes the orthogonalization process.

2

QR factorization

If we assemble the equations from the above process as $\begin{cases} \mathbf{v}_1 = r_{11}\mathbf{u}_1 \\ \mathbf{v}_2 = (\mathbf{v}_2 \cdot \mathbf{u}_1)\mathbf{u}_1 + r_{22}\mathbf{u}_2 \\ \mathbf{v}_3 = (\mathbf{v}_3 \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{v}_3 \cdot \mathbf{u}_2)\mathbf{u}_2 + r_{33}\mathbf{u}_3 \\ \vdots \\ \mathbf{v}_k = (\mathbf{v}_k \cdot \mathbf{u}_1)\mathbf{u}_1 + \dots + (\mathbf{v}_k \cdot \mathbf{u}_{k-1})\mathbf{u}_{k-1} + r_{kk}\mathbf{u}_k \end{cases}$

we can express this as a product of matrices as follows:

$$\mathbf{A} = \begin{bmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{k} \\ \downarrow & \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{k} \\ \downarrow & \downarrow & \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} r_{11} & \mathbf{v}_{2} \cdot \mathbf{u}_{1} & \cdots & \mathbf{v}_{k} \cdot \mathbf{u}_{1} \\ 0 & r_{22} & \cdots & \mathbf{v}_{k} \cdot \mathbf{u}_{2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{kk} \end{bmatrix} = \mathbf{Q}\mathbf{R}$$

$$\xrightarrow{n \times k \text{ matrix w/linearly independent columns}} \mathbf{v} = \mathbf{Q}\mathbf{R}$$

$$\xrightarrow{n \times k \text{ matrix w/linearly independent columns}} \mathbf{v} = \mathbf{Q}\mathbf{R}$$

The columns of the matrix **A** are the original basis vectors; the columns of the matrix **Q** are those of the Gram-Schmidt basis; and the entries of the matrix **R** capture all of the geometric aspects of the original basis, i.e. lengths, areas, etc. and the non-orthogonality of the original vectors. Note that the \underline{k} -volume is just the product of the diagonal entries of **R**, i.e. $r_{11}r_{22}\cdots r_{kk}$.

Example: In
$$\mathbf{R}^4$$
, let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 2 \\ 1 \\ -1 \end{bmatrix}$, and let $V = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. These vectors form a

basis for V, but not an orthonormal basis. Using the Gram-Schmidt process, we have $r_{11} = ||\mathbf{v}_1|| = 2$, so

$$\mathbf{u}_1 = \frac{1}{2} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
. We next calculate

$$\mathbf{v}_2 - \text{Proj}_{V_1}(\mathbf{v}_2) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} - \begin{pmatrix} \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix} \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{4}(2) \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}. \text{ Its magnitude is }$$

$$r_{22} = \|\mathbf{v}_2 - \text{Proj}_{V_1}(\mathbf{v}_2)\| = 1$$
, so $\mathbf{u}_2 = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$. We next calculate

$$\mathbf{v}_{3} - \operatorname{Proj}_{V_{2}}(\mathbf{v}_{3}) = \mathbf{v}_{3} - (\mathbf{v}_{3} \cdot \mathbf{u}_{1})\mathbf{u}_{1} - (\mathbf{v}_{3} \cdot \mathbf{u}_{2})\mathbf{u}_{2} = \begin{bmatrix} 0 \\ 2 \\ 1 \\ -1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \\ -1/2 \\ -1/2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \text{ and }$$

$$r_{33} = \|\mathbf{v}_3 - \text{Proj}_{V_2}(\mathbf{v}_3)\| = 1$$
, so $\mathbf{u}_3 = \frac{1}{2} \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}$.

The 3-volume of the parallelepiped determined by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is $r_{11}r_{22}r_{33} = (2)(1)(1) = 2$.

The corresponding QR-factorization is
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{QR}$$
.

Isometries and orthogonal transformations

Given two spaces V and W where there's a notion of distance (metric spaces), an isometry is a transformation $T:V\to W$ that preserves distances. Familiar examples include rotations and reflections, but also "isometric embeddings" such as the linear transformation that places \mathbf{R}^2 in \mathbf{R}^3 as either the xy-plane, xz-plane, yz-plane, or any other plane in such a way that distances are preserved. In the case of linear transformations, we are more specific:

Definition: A linear transformation $T : \mathbf{R}^n \to \mathbf{R}^n$ is called an **orthogonal transformation** if it preserves norms, i.e. $||T(\mathbf{x})|| = ||\mathbf{x}||$ for all \mathbf{x} . Its matrix is called an **orthogonal matrix**.

Proposition: If a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ preserves norm, then $\ker(T) = \{0\}$.

Proof: If $T(\mathbf{x}) = \mathbf{0}$, then $||T(\mathbf{x})|| = ||\mathbf{x}|| = ||\mathbf{0}|| = 0$, so $\mathbf{x} = \mathbf{0}$.

Corollary: If $T: \mathbb{R}^n \to \mathbb{R}^n$ is an orthogonal transformation, it must be invertible.

Proposition: If $T : \mathbf{R}^n \to \mathbf{R}^n$ is an orthogonal transformation, then T preserves dot products: $T(\mathbf{x}) \cdot T(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$.

Proof: By linearity, $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$, so $||T(\mathbf{x} + \mathbf{y})|| = ||T(\mathbf{x}) + T(\mathbf{y})||$ and $||T(\mathbf{x} + \mathbf{y})||^2 = ||T(\mathbf{x}) + T(\mathbf{y})||^2$. Since T is an orthogonal transformation,

$$\left\|T(\mathbf{x}+\mathbf{y})\right\|^2 = \left\|\mathbf{x}+\mathbf{y}\right\|^2 = (\mathbf{x}+\mathbf{y})\cdot(\mathbf{x}+\mathbf{y}) = \mathbf{x}\cdot\mathbf{x} + \mathbf{x}\cdot\mathbf{y} + \mathbf{y}\cdot\mathbf{x} + \mathbf{y}\cdot\mathbf{y} = \left\|\mathbf{x}\right\|^2 + \left\|\mathbf{y}\right\|^2 + 2\mathbf{x}\cdot\mathbf{y}$$
. Similarly,

$$\|T(\mathbf{x}) + T(\mathbf{y})\|^2 = \|T(\mathbf{x})\|^2 + \|T(\mathbf{y})\|^2 + 2T(\mathbf{x}) \cdot T(\mathbf{y}) = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 + 2T(\mathbf{x}) \cdot T(\mathbf{y})$$
. Comparing both sides we see that $T(\mathbf{x}) \cdot T(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$.

Proposition: If $T: \mathbf{R}^n \to \mathbf{R}^n$ is an orthogonal transformation, then T preserves angles. That is, if θ_1 is the angle between two nonzero vectors \mathbf{x} and \mathbf{y} , and if θ_2 is the angle between $T(\mathbf{x})$ and $T(\mathbf{y})$, then $\theta_2 = \pm \theta_1$.

Proof: We know that $\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta_1$ and $T(\mathbf{x}) \cdot T(\mathbf{y}) = \|T(\mathbf{x})\| \|T(\mathbf{y})\| \cos \theta_2 = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta_2$, and $T(\mathbf{x}) \cdot T(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$. Therefore $\cos \theta_1 = \cos \theta_2$, so $\theta_2 = \pm \theta_1$.

Matrix of an orthogonal transformation

Because the standard basis $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is an orthonormal basis of \mathbf{R}^n and since orthogonal transformations preserve length and angle, it follows that $\{T(\mathbf{e}_1), T(\mathbf{e}_2), \dots, T(\mathbf{e}_n)\}$ must also be an orthonormal basis of \mathbf{R}^n . This includes rotations and reflections. The matrix of an orthogonal transformation must therefore

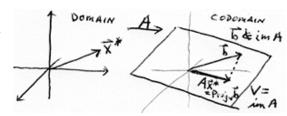
be
$$\mathbf{A} = \begin{bmatrix} \uparrow & & \uparrow \\ [T(\mathbf{e}_1)]_{\varepsilon} & \cdots & [T(\mathbf{e}_n)]_{\varepsilon} \end{bmatrix} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{A}\mathbf{e}_1 & \cdots & \mathbf{A}\mathbf{e}_n \end{bmatrix} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{u}_1 & \cdots & \mathbf{u}_n \end{bmatrix}$$
, i.e. it must have orthonormal columns. It must

also be the case that
$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \begin{bmatrix} \leftarrow & \mathbf{u}_{1} & \rightarrow \\ & \vdots & \\ \leftarrow & \mathbf{u}_{n} & \rightarrow \end{bmatrix} \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{1} \cdot \mathbf{u}_{1} & \cdots & \mathbf{u}_{1} \cdot \mathbf{u}_{n} \\ \vdots & \ddots & \vdots \\ \mathbf{u}_{n} \cdot \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \cdot \mathbf{u}_{n} \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} = \mathbf{I}_{n}$$
, so an orthogonal

matrix has the special property that $\mathbf{A}^{T} = \mathbf{A}^{-1}$, and any matrix that satisfies this property must be the matrix of an orthogonal transformation. Geometrically, these are all (compositions of) rotations and reflections.

Least-Squares approximate solutions

Situation: We would like to solve a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ where \mathbf{A} is an matrix, but we find that the system is <u>inconsistent</u>. This means that $\mathbf{b} \not\in \operatorname{im} \mathbf{A}$, but this suggests the possibility that we might seek a vector \mathbf{x}^* such that $\mathbf{A}\mathbf{x}^*$ is as close to the subspace im \mathbf{A} as possible. Orthogonal projection is a natural choice, so we



seek \mathbf{x}^* such that $\mathbf{A}\mathbf{x}^* = \operatorname{Proj}_V \mathbf{b}$ where $V = \operatorname{im} \mathbf{A}$. This means that we want $\mathbf{b} - \mathbf{A}\mathbf{x}^* \in (\operatorname{im} \mathbf{A})^{\perp} = V^{\perp}$. We have already shown that $(\operatorname{im} \mathbf{A})^{\perp} = \ker(\mathbf{A}^{\mathsf{T}})$, so we want $\mathbf{b} - \mathbf{A}\mathbf{x}^* \in \ker(\mathbf{A}^{\mathsf{T}})$, i.e. $\mathbf{A}^{\mathsf{T}}(\mathbf{b} - \mathbf{A}\mathbf{x}^*) = \mathbf{0}$ or

 $A^{T}Ax^{*} = A^{T}b$. This is known as the **normal equation** (or normal equations). A solution x^{*} is called a **least-squares approximate solution**.

4

The name "least-squares solution" comes from an alternate way that it can be derived using multivariable calculus methods in the special case where we're trying to find the line that best fits a given data set. That method involves minimizing the sum of the square deviations between values predicted by a best-fit line (also called a regression line) and actual values provided by the data set.

The normal equation is easy to remember. If the original system is Ax = b, then you just have to apply the matrix \mathbf{A}^{T} to both sides of the equation to get $\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$. This system will always be consistent. If \mathbf{A} is an $m \times n$ matrix, then $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ will be an $n \times n$ (square) matrix. It will also be symmetric since $(\mathbf{A}^{\mathrm{T}} \mathbf{A})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} \mathbf{A}$.

In the case where $ker(\mathbf{A}^T\mathbf{A}) = \{\mathbf{0}\}\$, the matrix $\mathbf{A}^T\mathbf{A}$ will be invertible and there will be a unique least-squares solution $\mathbf{x}^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$. Many students memorize this formula and apply it blindly, but it is often simplest to solve the consistent system $\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$ using row reduction to find the least-squares solution.

Note of Caution: Given an inconsistent system of linear equations, we can use the normal equation to find a Least-Squares approximate solution to that specific system of equations. However, if you scale any of the equations by a nonzero scalar, this will yield a different (inconsistent) system of linear equations with a different Least-Squares approximate solution.

There is a simple way to determine when the normal equation will yield a unique least-squares solution. This is based on the following lemma:

Lemma: For any matrix **A**, it is the case that $ker(\mathbf{A}^T\mathbf{A}) = ker \mathbf{A}$.

Proof: If $\mathbf{x} \in \ker \mathbf{A}$, then $\mathbf{A}\mathbf{x} = \mathbf{0}$. So $\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{0} = \mathbf{0}$ which means that $\mathbf{x} \in \ker(\mathbf{A}^{\mathsf{T}}\mathbf{A})$. So $\ker \mathbf{A} \subset \ker(\mathbf{A}^{\mathsf{T}}\mathbf{A})$. On the other hand, if $\mathbf{x} \in \ker(\mathbf{A}^{\mathsf{T}}\mathbf{A})$, then $\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{0}$. But this means that $\mathbf{A}\mathbf{x} \in \ker(\mathbf{A}^{\mathrm{T}}) = (\operatorname{im} \mathbf{A})^{\perp}$. But it's obvious that $\mathbf{A}\mathbf{x} \in \operatorname{im} \mathbf{A}$, so we have $\mathbf{A}\mathbf{x} \in (\operatorname{im} \mathbf{A})^{\perp} \cap (\operatorname{im} \mathbf{A}) = \{\mathbf{0}\}$. Therefore Ax = 0, and therefore $x \in \ker A$. So $\ker(A^TA) \subseteq \ker A$. Therefore $\ker(A^TA) = \ker A$.

We also know that for any matrix A, ker $A = \{0\}$ if and only if the columns of A are linearly independent. If we combine this fact and the previous results, we see that the matrix $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ will be invertible and there will be a unique least-squares approximate solution to Ax = b if and only if the columns of A are linearly independent.

There's an unexpected benefit provided by the least-squares solution. If V is any subspace with basis

$$\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$$
, if we let $\mathbf{A} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{v}_1 & \cdots & \mathbf{v}_k \\ \downarrow & & \downarrow \end{bmatrix}$, then $V = \operatorname{im} \mathbf{A}$ and \mathbf{A} will have linearly independent columns, so for

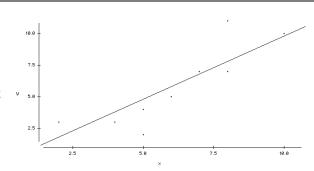
any $\mathbf{b} \in \mathbf{R}^n$, $|\operatorname{Proj}_{\mathbf{b}} \mathbf{b} = \mathbf{A} \mathbf{x}^* = \mathbf{A} (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b}|$. Therefore $\mathbf{A} (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}}$ will be the matrix for orthogonal

projection onto the subspace V. This is significant in that our previous method required the use of the Gram-Schmidt process to produce an orthonormal basis for the subspace V. This alternative method only requires that $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ be a basis. It is perhaps worth noting that if $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ had been an orthonormal basis, then we would have $\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{I}_{k}$ and $\mathbf{A}(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}} = \mathbf{A}\mathbf{I}\mathbf{A}^{\mathrm{T}} = \mathbf{A}\mathbf{A}^{\mathrm{T}}$ which coincides with our previous method.

5

Data fitting

It is common that data occurs in the form of ordered pairs (or ordered *n*-tuples). If we plot the data, the resulting graph is called a scatterplot. If the scatterplot suggests a roughly straight-line relationship, it is reasonable to ask which straight line might best fit the given data.



Suppose the data is $\{(x_i, y_i)\}_{i=1}^N$. We can use our least-squares method by *assuming the absurd*, namely that all of the data fits a straight with equation y = mx + b perfectly. In this case, we get the system of linear equations:

$$\begin{cases}
 mx_1 + b = y_1 \\
 mx_2 + b = y_2 \\
 \vdots \\
 mx_N + b = y_N
\end{cases}
\Rightarrow
\begin{bmatrix}
 x_1 & 1 \\
 x_2 & 1 \\
 \vdots & \vdots \\
 x_N & 1
\end{bmatrix}
\begin{bmatrix}
 m \\
 b
\end{bmatrix}
=
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_N
\end{bmatrix}
\Rightarrow
\mathbf{Ac} = \mathbf{y}$$

This is, of course, a hopelessly inconsistent linear system, but we can find a least-squares approximate solution

by solving
$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{c} = \mathbf{A}^{\mathrm{T}}\mathbf{y}$$
. We can calculate $\mathbf{A}^{\mathrm{T}}\mathbf{A} = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \\ 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_N & 1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} x_i & N \end{bmatrix}$ and

$$\mathbf{A}^{\mathsf{T}}\mathbf{y} = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \\ 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^N x_i y_i \\ \sum_{i=1}^N y_i \end{bmatrix}, \text{ so the normal equations are } \begin{bmatrix} \sum_{i=1}^N x_i^2 & \sum_{i=1}^N x_i \\ \sum_{i=1}^N x_i & N \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^N x_i y_i \\ \sum_{i=1}^N y_i \end{bmatrix}. \text{ These}$$

can then be easily solved to find the slope m and the intercept b for the lie of best fit.

Best quadratic?

It may be the case that the scatterplot suggests something other than a straight-line relationship. If, for example, you suspect a quadratic relationship, start by writing this as $y = ax^2 + bx + c$. If we again assume the absurd possibility that all the data fits this quadratic perfectly, we get the system of linear equations:

$$\begin{cases} ax_1^2 + bx_1 + c = y_1 \\ ax_2^2 + bx_2 + c = y_2 \\ \vdots \\ ax_N^2 + bx_N + c = y_N \end{cases} \Rightarrow \begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ \vdots & \vdots & \vdots \\ x_N^2 & x_N & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \Rightarrow \mathbf{Ac} = \mathbf{y}$$

Once again, we solve the normal equation $\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{c} = \mathbf{A}^{\mathrm{T}}\mathbf{y}$ to get the least-squares approximate solution. This gives the system of equations:

$$\begin{bmatrix} \sum_{i=1}^{N} x_i^4 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i & N \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_i^2 y_i \\ \sum_{i=1}^{N} x_i y_i \\ \sum_{i=1}^{N} y_i \end{bmatrix}$$
 which we then solve to find the coefficients a, b, c .

More general least-squares methods

If a scatterplot suggests a relationship of the form $y = ax^p$ for some unknowns a and p, we can use logs to rewrite this as $\ln y = \ln a + p \ln x$. If we let $Y = \ln y$, $A = \ln a$, and $X = \ln x$, the relationship is then Y = A + pX and we can use least-squares with the adjusted data to find A and p, and then exponentiate to find a and p.

These same methods work if we have data in the form $\{(x_i, y_i, z_i)\}_{i=1}^N$ and we're seeking the *plane* of best fit, or if we are trying to find the constants that provide a best fit for a relationship such as $z = ax^p y^q$ (in which case we would first take the log of both sides to get a relationship that yields a system of linear equations).

6

Notes by Robert Winters