Linear Algebra — Lecture #7 Notes

The main topics this week are orthogonal projection, the Gram-Schmidt orthogonalization process, QR
factorization, isometries and orthogonal transformations, least-squares approximate solutions and applications
to data-fitting.

Some previous results:

T )
1) Suppose V =Span{v,,---,v,}.Let A=|v, - v, |.Thisisan nxk matrix with V =im(A) and
\’ 2

V*=(@{mA)" =ker(A")|.

2) Suppose B ={u,,---,u,} is an orthonormal (ON) basis for a subspace V < R". Then for any xeR",

T T
Proj, x = (X-u,)u, + (X-u,)u, +---+(x-u)u, |. If we writt B=|u, --- u, |, then |Proj, =BB"| is the
\J \2
matrix for orthogonal projection onto V, and |Ref, =2BB" — 1| is the matrix for reflection through this
subspace.
T T
3)If V=R"and B={u,,---,u,} isan orthonormal basis for all of R", then B=|u, --- u, [ will bean nxn
\J 2

matrix with ON columns (hence invertible), and Proj, =BB' = I. Therefore, in this special case we’ll have
B =B". Such a matrix is called an orthogonal matrix.

0 T
4)If B=|u, --- u,|isany nxk matrix with orthonormal columns, then B'B =1, . In the special case where
\ \

B is an nxn matrix with orthonormal columns, this gives B'B =1, .

Transpose Facts

The following relations hold wherever the expressions are defined:

(1) (AB)" =B'AT

(2) (A+B)'=A"+B’

(3) If A'is an invertible nxn matrix, then A" is also invertible and (AT)™" =(A™)"

The proofs are somewhat routine. For example, to establish (1), if A isan mxn matrix and B isa nx p matrix,
then the (i, j) of AB will be Zaikbkj . This will then be the (j,i) entry of (AB)". On the other hand, the
k=1
(j.k) entry of BT will be b, and the (k,i) entry of AT will be a,, so the (j,i) entry of B'A" will be
> bga, = a,b, which coincides with the (j,i) entry of (AB)". Therefore (AB)" =B'A'.
k=1 k=1
Corollary: The matrix A for any orthogonal projection or reflection is always symmetric, i.e. AT =A.

Proof: Using the previous results, any projection matrix can be expressed as A=BB' and
A" =(BB")" =BB" = A, so the matrix is symmetric. Similarly, Ref, = 2BB" —1 and

(2BB"—-1)" =2(BB")" —1" =2BB" -1, so this matrix is also symmetric.
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Gram-Schmidt Orthogonalization Process
Suppose we begin with a basis B = {vl,---,vk} for a k-dimensional subspace V < R". We would like to

construct an orthonormal basis for this same subspace. The Gram-Schmidt orthogonalization process
sequentially constructs such a basis. [Note: The method is named after Jargen Pedersen Gram and Erhard
Schmidt, but Pierre-Simon Laplace had been familiar with it before Gram and Schmidt.] It should be
emphasized that the resulting ON basis is very much dependent on the ordering of the original basis.

We proceed as follows:

(1) Start with v, and normalize it by scaling, i.e. u, = For reasons that will soon become clear, we write

vl 1||

I, = [vy]. We can also solve for v, =r,u,. Let V, =Span{v,} =Span{u,}.

(2) Next, we take the second basis vector v,, find its projection onto the subspace V,, subtract this from the

original to get a vector orthogonal to the first, then scale this to get a unit vector. We can calculate the
, —Proj, (v,)

projection as Proj, (v,)=(V,-u,)u,, so we take u, = Note that r,, = ||v2 — Proj,, (vz)” is

||v2 — PI’O]V ||
the perpendicular height of the parallelogram determined by the vectors {v,,v,} and the area of this
parallelogram is therefore (base)(L height) =r,,r,,. We can also solve for v, =(Vv,-u,)u, +r,u,. Let
V, =Span{v,,v,} =Span{u,,u,}.
(3) If k > 2, we continue with the third basis vector v,. We find its projection onto the subspace V,, subtract
this from the original to get a vector orthogonal to V,, then scale this to get a unit vector. We can calculate
v, —Proj, (v3)
||v3 —Proj, (v3)||

the projection as Proj, (V;)=(V;-U,)U; +(V;-U,)u,, so we take u, = . Note that

Fy = ||v3 —Proj, (v3)|| is the perpendicular height of the parallelepiped determined by the vectors
{vl, vz,vg} and the volume of this parallelepiped is therefore (area of base)(L height) =r,,r,,r,,. We can
also solve for v, =(v;-u,)u, +(V,-u,)u, +r,u,. Let V; =Span{v,,v,,v,} =Span{u,,u,,u,} .

We continue in this same manner until we exhaust our finite list of basis vectors. The last orthonormal vector

PrOij 1 ( )

will be u, =
||v —~Proj, (v )”

and if we write r, = ||vk Proj, (v, )” we can define the k-volume of the k-

dimensional parallelepiped determined by the vectors {v,,v,,---,v,} as r,r,, -, . We can also solve for
Vi = (Vi -uu +-+(V, U U, + U, . We then have V =Span{v,,---,v, } =Span{u,,---,u, }, and this
completes the orthogonalization process.

QR factorization

L) Uy + U,

v -u
If we assemble the equations from the above process as 4 v, = (Vv U, )u, +(V;-U, U, + ;U

Vi = (Vi Uy Uy o+ (ViU g J U U
we can express this as a product of matrices as follows:
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https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process

£ S N I N | s R

0 rz'2 - vk:u2

A=V, V, == Vi |=U U, - U] . : =QR
10 0 M
nxk matrix w/linearly nxk matrix - -
independent columns wi/orthonormal columns kxk upper triangular matrix

with nonzero diagonal entries

The columns of the matrix A are the original basis vectors; the columns of the matrix Q are those of the Gram-
Schmidt basis; and the entries of the matrix R capture all of the geometric aspects of the original basis, i.e.
lengths, areas, etc. and the non-orthogonality of the original vectors. Note that the k-volume is just the product
of the diagonal entries of R, i.e. 11,1, .

1 1 0
Example: In R*, let v, = i ,V, = 8 ,and v, = i ,and let V =Span{v,,v,,V,}. These vectors form a
1 1 -1
basis for V, but not an orthonormal basis. Using the Gram-Schmidt process, we have r,, =|v,|=2, so
1
u =% % . We next calculate
1
17 ( [17[1]) 1] [1 1] 1] [Y2] [12 1
v, —Proj, (v,) = 8 - % 8 : % %% = 8 -+(2) % = 8 - i//g = :1/5 4 :% . Its magnitude is
1 | (1] (1)) [1] |1 1| 1] |12 172 1
1
I, =||v2—Proj\,l (v,)|=1,s0u,=2 j . We next calculate
1
o] [1] [17 [y2 1
v, —Proj, (v3) =V, —(V,-u,)u, —(v,-u,)u, = i —%1 :i = _14/22 4 _11 ,and
1) 1] 1] |y2] |
1
fys = |Vs —Proj,, (v;)| =1, 50 u, =% _11 .
-1
The 3-volume of the parallelepiped determined by {v,,v,,Vv,} is 1,1, = (2)1)(1) = 2.
11 0] [¥2 ¥2 2, , ,
The corresponding QR-factorization is A = i 8 i = 1//3 :z; _1{/22 8 (1) —12 =QR.
11 -1] |y2 Y2 -2

Isometries and orthogonal transformations

Given two spaces V and W where there’s a notion of distance (metric spaces), an isometry is a transformation
T:V ->W that preserves distances. Familiar examples include rotations and reflections, but also “isometric
embeddings” such as the linear transformation that places R? in R® as either the xy-plane, xz-plane, yz-plane,

or any other plane in such a way that distances are preserved. In the case of linear transformations, we are more
specific:
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Definition: A linear transformation T : R" — R" is called an orthogonal transformation if it preserves norms,
i.e. [T(x)[|=|x| for all x. Its matrix is called an orthogonal matrix.

Proposition: If a linear transformation T : R" — R™ preserves norm, then ker(T) ={0}.
Proof: If T(x) =0, then [T (x)| = x| =[0]|=0,s0 x=0.

Corollary: If T:R" — R" is an orthogonal transformation, it must be invertible.

Proposition: If T:R" — R" is an orthogonal transformation, then T preserves dot products: T(x)-T(y) =x-y
forall x,yeR".

Proof: By linearity, T(x+y)=T(X)+T(y), so [T(x+y)|=[T(x)+T )| and [Tx+y)|" =[T)+T ) -
Since T is an orthogonal transformation,

||T(x+y)||2 :||x+y||2 =(X+Y) - (X+Y) =X-X+X-Y+Y-X+Y-Y :||x||2 +||y||2 +2x-y. Similarly,

ITE)+TO| =T +[T W[ +2Tx)-Ty) =[x +|ly[ +2T (x)-T(y) . Comparing both sides we see that
TX)-T(y)=x-y.

Proposition: If T:R" — R" is an orthogonal transformation, then T preserves angles. That is, if 6, is the angle
between two nonzero vectors x and y, and if &, is the angle between T (x) and T(y), then 6, =+6,.

Proof: We know that x-y = [x|[y|cosé, and T (x)-T (y) =T (X)|||[T ()| cos &, = |x||ly/ cos 6, , and
T(X)-T(y)=x-y. Therefore cosé, =cosé,, so 6, ==£4,.

Matrix of an orthogonal transformation

Because the standard basis & ={e,,e,,...,e,} is an orthonormal basis of R" and since orthogonal
transformations preserve length and angle, it follows that {T (e,), T (e,)....,T(e,)} must also be an orthonormal
basis of R". This includes rotations and reflections. The matrix of an orthogonal transformation must therefore

T T T T T T
be A=|[T(e)], - [T(,)], |=| Ae, -~ Ae, |=|u, --- u, [, i.e.it musthave orthonormal columns. It must
\ \ \2 \2 \2 \2
«u —|7 M fu-u - ueu ] 120
also be the case that ATA = : u, -~ u,|=| & . i |=|: . i|=1,,s0anorthogonal
«—u - J u,-u, -+ u -u 0 -1

matrix has the special property that A" = A™, and any matrix that satisfies this property must be the matrix of
an orthogonal transformation. Geometrically, these are all (compositions of) rotations and reflections.

Least-Squares approximate solutions
. . . . b i s e
Situation: We would like to solve a linear system Ax=Db where A e & 45 e

is an matrix, but we find that the system is inconsistent. This
means that b ¢ im A, but this suggests the possibility that we

might seek a vector x* such that Ax" is as close to the subspace
im A as possible. Orthogonal projection is a natural choice, so we

seek X" such that |Ax™ = Proj,b| where V =im A . This means that we want b— Ax" e (im A)* =V . We have
already shown that (im A)* = ker(A"), so we want b—Ax" e ker(A") ,i.e. AT(b—Ax")=0 or

|ATAX* = ATb|. This is known as the normal equation (or normal equations). A solution x* is called a least-
squares approximate solution.
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The name “least-squares solution” comes from an alternate way that it can be derived using multivariable
calculus methods in the special case where we’re trying to find the line that best fits a given data set. That
method involves minimizing the sum of the square deviations between values predicted by a best-fit line (also
called a regression line) and actual values provided by the data set.

The normal equation is easy to remember. If the original system is Ax =b, then you just have to apply the
matrix A" to both sides of the equation to get A"Ax = A"b. This system will always be consistent. If A is an
mxn matrix, then ATA will be an nxn (square) matrix. It will also be symmetric since (ATA)" = ATA.

In the case where ker(ATA) ={0}, the matrix A"A will be invertible and there will be a unique least-squares
solution x* = (ATA) " A'b . Many students memorize this formula and apply it blindly, but it is often simplest to
solve the consistent system ATAx =A"b using row reduction to find the least-squares solution.

Note of Caution: Given an inconsistent system of linear equations, we can use the normal equation to find a
Least-Squares approximate solution to that specific system of equations. However, if you scale any of the
equations by a nonzero scalar, this will yield a different (inconsistent) system of linear equations with a
different Least-Squares approximate solution.

There is a simple way to determine when the normal equation will yield a unique least-squares solution. This is
based on the following lemma:

Lemma: For any matrix A, it is the case that ker(ATA) = ker A.

Proof: If xeker A, then Ax=0.So ATAx=AT0=0 which means that x € ker(ATA). So

ker A c ker(A"A). On the other hand, if x e ker(ATA), then ATAx =0. But this means that

Ax e ker(AT) = (im A)" . But it’s obvious that Ax eim A, so we have Ax e (im A)* N (im A) ={0}. Therefore
Ax =0, and therefore x e ker A. So ker(A"A) c ker A. Therefore ker(A"A) =ker A.

We also know that for any matrix A, ker A ={0} if and only if the columns of A are linearly independent. If we

combine this fact and the previous results, we see that the matrix ATA will be invertible and there will be a
unique least-squares approximate solution to Ax =b if and only if the columns of A are linearly independent.

There’s an unexpected benefit provided by the least-squares solution. If V is any subspace with basis

0 0
(Vi v, ) ifwelet A=|v, - v, |, then V =im A and A will have linearly independent columns, so for
\: \

any beR", |Proj,b=Ax"=A(A"A)*A'b|. Therefore A(ATA)*A" will be the matrix for orthogonal

projection onto the subspace V. This is significant in that our previous method required the use of the Gram-
Schmidt process to produce an orthonormal basis for the subspace V. This alternative method only requires that

{Vy,--,V, } be a basis. It is perhaps worth noting that if {v,,---,v, } had been an orthonormal basis, then we
would have ATA=1, and A(ATA)*AT = AIAT = AA" which coincides with our previous method.

Data fitting

It is common that data occurs in the form of ordered pairs (or
ordered n-tuples). If we plot the data, the resulting graph is
called a scatterplot. If the scatterplot suggests a roughly
straight-line relationship, it is reasonable to ask which straight
line might best fit the given data.
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Suppose the data is {(x,, y,)} . We can use our least-squares method by assuming the absurd, namely that all
of the data fits a straight with equation y =mx+b perfectly. In this case, we get the system of linear equations:
mx, +b=y, x 1 Y1

mx, +b=y, [ _ | % 1{m}= Y| & Ac—y
: b :

mxy +b =Yy Xy 1 Yn
This is, of course, a hopelessly inconsistent linear system, but we can find a least-squares approximate solution

%1 ZN:XiZ ZN:Xi
i=1
N

by solving ATAc=A"y. We can calculate ATA=[X1 o XN} X 1=

and
1 1 -+ 1 T
X 1 ;xi N

y . y N .
X X o X yl ZXiyi Z i in m inyi
ATy{l 12 1'“} 2=l , s0 the normal equations are | " =1 [b}: = These
n | & 2% N 2
i=1 - .

can then be easily solved to find the slope m and the intercept b for the lie of best fit.

Best quadratic?
It may be the case that the scatterplot suggests something other than a straight-line relationship. If, for example,

you suspect a quadratic relationship, start by writing this as y = ax® + bx +c. If we again assume the absurd
possibility that all the data fits this quadratic perfectly, we get the system of linear equations:

ax’>+bx +c=y, X % 1 a Y1

b re=y, |1 % L 1Y | acy
: : : : c :

aXN2+bXN +C:yN XN2 XN 1 yN

Once again, we solve the normal equation ATAc = ATy to get the least-squares approximate solution. This
glves the system of equatlons
N
ZX|4 |3 Z |2 inzyi
i=1 1 i=1 i=1
N
X|3 X|2 z XI
i=1 =1
N
% N 2
More general least-squares methods
If a scatterplot suggests a relationship of the form y = ax® for some unknowns a and p, we can use logs to
rewrite thisas Iny=Ina+ pIlnx. IfweletY =Iny, A=Ina, and X =Inx, the relationship is then
Y = A+ pX and we can use least-squares with the adjusted data to find A and p, and then exponentiate to find a
and p.

E?

which we then solve to find the coefficients a,b,c.

H'Mz

O T Q
I
M=
=
<

i=1

X2

>
121

Il
=

Il
LN
Il
N

These same methods work if we have data in the form {(x, y;, zi)}i“i1 and we’re seeking the plane of best fit, or

if we are trying to find the constants that provide a best fit for a relationship such as z=ax"y® (in which case
we would first take the log of both sides to get a relationship that yields a system of linear equations).
Notes by Robert Winters
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