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Linear Algebra – Lecture #13 Notes 

Vector fields, Continuous Dynamical Systems, and Systems of 1st Order Linear Differential Equations 

Definition: A vector field in n
R  is an assignment of a vector to every point in n

R  (with the possible exception 

of some singular points). This can be viewed as a function 
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the i-th component of the vector assigned to the point 1( , , )nx x . We can also write this more succinctly as 
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. In practice we usually assume some reasonable properties such as that the component functions 

are continuous or differentiable except perhaps at a finite number of singular points. 

If we view the vector assigned to each point as a velocity vector associated with some smoothly varying 

system, a reasonable question to ask is this: Given a starting point 0x  (the initial condition), can we find a 

parameterized curve ( )tx  such that 0(0) =x x  and the velocity vector at any point on this parameterized curve 

matches the underlying vector field, i.e. ( ( ))d
dt

t=x F x . This is equivalent to a system of (time-independent) first-

order differential equations, i.e. 

1

1 1

1

( , , )

( , , )n

n

n n

dx
dt

dx
dt

f x x

f x x

 =
 
 
 =
 

. We are interested in knowing how a system defined in 

this way evolves over time for any given initial condition. This describes what we call a continuous dynamical 

system. We call the set of all such solution curves the flow of the dynamical system. 

If you imagine a vector field as describing a flowing liquid, then these parameterized curves simply describe 

what happens if you drop a particle into the flow and see where it goes as it carried by the flow. This is a good 

way to think about a continuous dynamical system even when the variables are describing such things as 

populations or economic variables rather than geometric coordinates. We’ll still refer to the solutions as the 

flow of the system even though there’s nothing physical about this flow. 

We are typically interested in the long-term behavior of such a system, but we often would also like to 

predict exactly where the particle will be after a specified time t, i.e. formulas for how the component functions 

evolve in time. In general, if the component functions of the underlying vector field are nonlinear, it’s very 

difficult to find a tidy formula for how the system evolves over time. The linear case, on the other hand, is 

completely solvable using matrix methods we’ve recently discussed. 

Definition: A linear continuous dynamical system is a system of first-order differential equations of the form 
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A  is the matrix of coefficients. That is, d
dt

=x Ax  where A is an n n  real matrix. 

Situation: You want to solve a system of first-order linear differential equations of the form d
dt

=x Ax  given 

some initial condition 0(0) =x x . How is this most efficiently accomplished? 
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Example 1: The simplest linear continuous dynamical system is the single equation dx
dt

kx=  with initial 

condition 0(0)x x= . This is something we solved in basic calculus and yields exponential growth or decay 

(depending on whether 0k   or 0k  ). Specifically, we write 1 dx
dtx

k=  and integrate both sides to get 

ln ( )x t kt c= +  for some arbitrary constant c. [Many people choose to do this calculation as dx
x

kdt=  and 

integrate both sides to get lndx
x kdt x kt c=  = +  .] In any case, exponentiating both sides gives 

( ) kt c c kt ktx t e e e ae+= = = , and we can remove the absolute value by allowing the constant a to be either positive 

or negative, so we get ( ) ktx t ae= . Using the initial condition 0(0)x x=  we see that 0(0)x a x= = , so the solution 

is 0( ) ktx t x e= . 

Uncoupled systems: We call a system uncoupled (or unlinked) if the rates of change of each of the variables do 

not depend on any of the other variables. In the linear case, this would mean a system of the form 
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with initial conditions 1(0), , (0)nx x . Note that such a system can be expressed in matrix form as d
dt

=x Dx  

where D is the diagonal matrix 
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D . Solving this system is nothing more than solving the 

previous problem repeatedly with different rate constants and corresponding initial conditions. We get the 

solution 
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x . Note that when 0t =  this matrix is just the 

identity matrix which simply reflects the fact that 0t =  corresponds to the initial conditions 0(0) =x x . Of 

greater interest is the fact that this time-varying matrix evolves over time to produce the flow emanating from 

any given initial condition. It is for this reason that we refer to this matrix as the evolution matrix for this 

uncoupled system. If we refer to this matrix as [ ]te D
, a notation that is perhaps best not taken too literally, then 

the system d
dt

=x Dx  with initial conditions 0(0) =x x  has solution ( ) [ ] (0)tt e= D
x x . 

A coupled system, i.e. a system of the form d
dt

=x Ax  where the matrix A is not diagonal, can often be 

solved by changing coordinates so that relative to some new basis (of eigenvectors) the system has a diagonal 

matrix. The tool at the heart of these methods is diagonalization or, in the case where a matrix cannot be 

diagonalized, finding an appropriate change of basis relative to which the underlying linear transformation has 

the simplest possible matrix representation, i.e. Jordan Canonical Form. The introduction of corresponding 

“evolution matrices” is a useful formalism for handling these general cases. 

Solving systems using diagonalization and evolution matrices 

Given an n n  matrix A, suppose S is a change of basis matrix corresponding to either diagonalization or 

reduction to Jordan Canonical Form. We will have 1− =S AS B  in this case, where B is diagonal or otherwise in 

simplest form. We then calculate 1−=A SBS , and substitution gives 1d
dt

−=x SBS x . 
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Multiplying on the left by S-1 and using the basic calculus fact that ( )d d
dt dt

= xMx M  for any (constant) 

matrix M, we have 
1

1 1( )
( )

dd
dt dt

−
− −= =

S xxS B S x . If we write  1−= =u S x x
B

, where B is the new, preferred 

basis, then in these new coordinates the system becomes d
dt

=u Bu , but now the system will be much more 

straightforward to solve. 

The diagonalizable case 

In the case where B is a diagonal matrix with the eigenvalues of A on the diagonal, the system is just 
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This has the solution 

1

1 1( ) (0)

( ) (0)n

t

t

n n

u t e u

u t e u





 =
 
 
 = 

 or 

1

1 1( ) 0 (0)

( ) [ ] (0)

( ) (0)0 n

t

t

t
n n

u t e u

t e

u t ue

    
    = = =
    
     

B
u u





. 

To revert back to the original coordinates, we write =x Su , so 
1( ) ( ) [ ] (0) [ ] (0)t tt t e e −= = =B B

x Su S u S S x . If 

we denote the evolution matrix for the system in its original coordinates as [ ]te A
 where ( ) [ ] (0)tt e= A

x x , then 

the previous calculation gives the simple relation 
1[ ] [ ]t te e −=A B

S S . 

In other words, the evolution matrices for the solution are in the same relationship as the matrices A and B, 

namely A = SBS-1. This pattern is very easy to remember, and this same pattern will again be the case where B 

is not diagonal but where the corresponding evolution matrix is still relatively easy to calculate. 

1 1[ ] [ ]t te e− −=  =A B
A SBS S S , and the solution of the original system will be ( ) [ ] (0)tt e= A

x x . 

The complex eigenvalue case 

Suppose we want to solve a system of the form d
dt

=x Ax  where A is an 2 2  real matrix with a complex 

conjugate pair of eigenvalues a ib = +  and a ib = − . There are several reasonable ways to proceed, but they 

all come down to determining the evolution matrix [ ]te A
 so that we can solve for ( ) [ ] (0)tt e= A

x x . 

First, put the system into (real) normal form. [Standardize] 

Use the complex eigenvalue a ib = +  to find a complex eigenvector i= +w u v . If we change to the basis 

{ , }v u  then, using the change of basis matrix  =S v u , we’ll get 1 a b

b a
− − 

= =   
S AS B , a rotation-dilation 

matrix. Noting, as before, that 
1 1[ ] [ ]t te e− −=  =A B

A SBS S S , we need only to determine [ ]te B
. 

Second, find the evolution matrix for the (real) normal form. [Solve] 

In fact, if 
a b

b a

− 
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B  then 
cos sin
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bt bt
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B , a time-varying rotation matrix with exponential 

scaling. For any initial condition (except the zero vector), this yields a trajectory that spirals out in the case 

where Re( ) 0a =   (look to the original vector field to see whether it’s clockwise or counterclockwise), or a 

trajectory that spirals inward toward 0 in the case where Re( ) 0a =  . 



 4 revised May 6, 2022 

To derive this expression for [ ]te B
, make another coordinate change with complex eigenvectors starting 

with 
a b

b a

− 
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B . We know this has the same eigenvalues of A, namely a ib = +  and a ib= − . Use 

a ib = +  to get the complex eigenvector 
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It follows that (using Euler’s Formula as needed): 
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Express the solution in terms of the original coordinates. [Switch Back] 

These calculations enable us to write down a closed form expression for the solution of this linear system, 

namely ( ) [ ] (0)tt e= A
x x  where 1 1cos sin

[ ] [ ]
sin cos

t t at bt bt
e e e

bt bt
− −− 
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A B
S S S S . However, the more important result 

is the ability to qualitatively describe the trajectories for this system by knowing only the real part of the 

eigenvalues of the matrix A and the direction of the corresponding vector field (clockwise vs. 

counterclockwise). 

Repeated eigenvalues (with geometric multiplicity less than the algebraic multiplicity) 

Suppose we want to solve a system of the form d
dt

=x Ax  where A is a non-diagonalizable 2 2  real matrix 

with a repeated eigenvalue  . We’ve seen that in this case, we can always find a change of basis matrix S such 

that 1 1

0




−  

= =   
S AS B . As in the previous two cases, 

1 1[ ] [ ]t te e− −=  =A B
A SBS S S  and it comes down 

to finding [ ]te B
. This is perhaps most easily done by explicitly solving the corresponding differential equations. 

In the new coordinates, this system translates into 
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. The second equation is easily solved to get 

2 2( ) (0)tu t e u= . We can guess a solution for the first equation of the form 
1 1 2( ) t tu t c te c e = + . Differentiating 

this and substituting into the first equation, we get 
1 2 1 2 2( ) ( ) (0)t t t t t tc e te c e c te c e e u       + + = + + . 

Comparing like terms, we conclude that 1 2 (0)c u= . Substituting t = 0, we further conclude that 1 2(0)u c= . 

Putting these results together, we get 
1 2 1 1 2( ) (0) (0) (0) (0)t t t tu t u te u e e u te u   = + = + . We therefore have that 
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t t
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e te
e

e

 
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B  in this case and the solution is given by 1 1( ) [ ] (0) (0)
0

t t
t

t

e te
t e

e

 
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 

B
x S S x S S x . 

An alternate method of deriving this result may be found in the homework exercises. 

Similar calculations enable us to deal with cases such as a repeated eigenvalue where the geometric 

multiplicity is 1 and the algebraic multiplicity is 3 (or even worse). 
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Finally, an actual system may exhibit several of these qualities – one or more complex pairs of eigenvalues, 

repeated eigenvalues, and distinct real eigenvalues. The Jordan Canonical Form of the matrix for such a system 

can be analyzed block by block and each of the above solutions applied within each block to determine the 

evolution matrix for the entire system. 

The Main Idea: 

Given a system of 1st order linear differential equations d
dt

=x Ax  with initial conditions (0)x , we use 

eigenvalue-eigenvector analysis to find an appropriate basis 1{ , , }n= v vB  for Rn and a change of basis 

matrix 
1 n

  
 =
 
   

S v v  such that in coordinates relative to this basis ( 1−=u S x ) the system is in a standard 

form with a known solution. Specifically, we find a standard matrix 1[ ] −= =B A S ASB
, transform the system 

into d
dt

=u Bu , solve it as ( ) [ ] (0)tt e= B
u u  where [ ]te B

 is the evolution matrix for B, then transform back to the 

original coordinates to get ( ) [ ] (0)tt e= A
x x  where 

1[ ] [ ]t te e −=A B
S S  is the evolution matrix for B. That is 

1( ) [ ] (0) [ ] (0)t tt e e −= =A B
x x S S x . This is easier to do than it is to explain, so here are a few illustrative examples: 

The diagonalizable case 

Problem: Solve the system 

5 6

3 4

dx
x y

dt
dy

x y
dt

 
= − 

 
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 with 

initial conditions (0) 3, (0) 1x y= = . 

Solution: In matrix form, we have d
dt

=x Ax  where  

5 6

3 4

− 
=  − 

A  and 
3

(0)
1

 
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x . We start by finding 

the eigenvalues of the matrix: 

5 6

3 4






− 
− =  − + 

I A , and the characteristic 

polynomial is 2( ) 2 ( 2)( 1)p     = − − = − +A
. 

This gives the eigenvalues 1 2 =  and 2 1 = − . The 

first of these gives the eigenvector 
1

2

1

 
=   

v , and the second gives the eigenvector 
2

1

1

 
=   

v . So we have 

1 1 1

2 2 2

=  
 
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Av v

Av v
. The change of basis matrix is 

2 1

1 1

 
=   

S  and with the new basis (of eigenvectors) 

1 2{ , }= v vB we have 1 1

2

0 2 0
[ ]

0 0 1
−    

= = = =   −  
A S AS DB




, a diagonal matrix. [There is no need to carry 

out the multiplication of the matrices if 1 2{ , }= v vB  is known to be is a basis of eigenvectors. It will always 

yield a diagonal matrix with the eigenvalues on the diagonal.] 

The evolution matrix for this diagonal matrix is 
2 0

[ ]
0

t
t

t

e
e

e−

 
=  
 

D , and the solution of the system is: 
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2 2
1

2

2
2 2

2 1 2

2 1 0 1 1 3 2 2
( ) [ ] (0) [ ] (0)

1 1 1 2 1 10

4 2 1
2 2

1 12

t t t
t t

t t t

t t
t t t t

t t

e e e
t e e

e e e

e e
e e e e

e e

−
−

− −

−
− −

−

   −       = = = =   − −                 
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A Dx x S S x

v v

 

The complex eigenvalue case 

Problem: Solve the system 

2 5

2 4

dx
x y

dt
dy

x y
dt

 
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 with 

initial conditions (0) 0, (0) 1x y= = . 

Solution: In matrix form, we have d
dt

=x Ax  where 

2 5

2 4

− 
=  − 

A  and 
0

(0)
1

 
=   

x . We again start by 

finding the eigenvalues of the matrix: 

2 5

2 4

− 
 − =  − + 

I A , and the characteristic 

polynomial is 2 2( ) 2 2 ( 1) 1p  = + + = + +A
. 

This gives the complex eigenvalue pair 1 i = − +  

and 1 i = − − . We seek a complex eigenvector 

for the first of these: 
3 5 0

2 3 0

i

i





− +     
=     − +     

 

gives the (redundant) equations ( 3 ) 5 0i  − + + =  and 2 (3 ) 0i− + + =  . The first of these can be written as 

5 (3 )i = − , and an easy solution to this is where 5, 3 i = = − . (We could also have used the second 

equation – which is a scalar multiple of the first. The eigenvector might then have been different, but 

ultimately we’ll get the same result.) This gives the complex eigenvector 
5 5 0

3 3 1
i i

i

     
= = + = +     − −     

w u v . 

We have shown that with the specially chosen basis { , }= v uB , the new system will have standard matrix 

1[ ]
a b

b a
− − 

= = =  
A S AS BB

 where a is the real part of the complex eigenvalue and b is its imaginary part. 

We also showed that 
cos sin

[ ]
sin cos

t at bt bt
e e

bt bt

− 
=   

B . In this example, 1a = −  and 1b = ,  
0 5

1 3

 
= =  − 

S v u , 

1 1
5

3 5

1 0
− − 
=   

S , 
1 1

1 1

− − 
=  − 

B , and 
cos sin

[ ]
sin cos

t t t t
e e

t t
− − 

=   

B . The solution to the system is therefore: 

1

5

0 5 cos sin 3 5 0
( ) [ ] (0) [ ] (0)

1 3 sin cos 1 0 1
t t te t t

t e e
t t

− − − −       
= = =        −       

A B
x x S S x  

5

5sin 5cos 5 5sin

cos 3sin sin 3cos 0 cos 3sin
tte t t t

e
t t t t t t

−− − −     
= =     − + + −     

. That is, 
( ) 5 sin

( ) cos 3 sin

t

t t

x t e t

y t e t e t

−

− −

 = −
 

= − 
. 

 



 7 revised May 6, 2022 

Repeated eigenvalue case [with geometric multiplicity (GM) less than the algebraic multiplicity (AM)]: 

Problem: Solve the system 

4 4

dx
y

dt
dy

x y
dt

 
= 

 
 = − +
 

 

with initial conditions (0) 3, (0) 2x y= = . 

Solution: In matrix form, we have d
dt

=x Ax  

where 
0 1

4 4

 
=  − 

A  and 
3

(0)
2

 
=   

x . We again 

start by finding the eigenvalues of the matrix: 

1

4 4

 − 
 − =   − 

I A , and the characteristic 

polynomial is 2 2( ) 4 4 ( 2)p  = − + = −A
. 

This gives the repeated eigenvalue 2 =  with 

(algebraic) multiplicity 2. We seek 

eigenvectors: 
2 1 0

4 2 0

−      
=     −      

 gives the 

(redundant) equations 2 0− =  and 

4 2 0−  = . Therefore 2 =  , so we can choose 
1

1

2

 
=   

v  or any scalar multiple of this as an eigenvector, 

but we are unable to find a second linearly independent eigenvector. (We say that the geometric multiplicity 

of the 2 =  eigenvalue is 1.) 

The standard procedure in this case is to seek a generalized eigenvector for this repeated eigenvalue, i.e. a 

vector 2v  such that 2( ) −I A v  is not zero, but rather a multiple of the eigenvector 1v . Specifically, we seek a 

vector such that 2 1 2= + Av v v . This translates into seeking 2v  such that 2 1( ) − = −I A v v . That is, 

2 1 1

4 2 2

−  −     
=     −  −     

. This gives redundant equations the first of which is 2 1− = −  or 2 1 =  + . 

If we (arbitrarily) choose 0 = , then 1 = , so 
2

0

1

 
=   

v . The fact that 1 1

2 1 2

2

2

= 
 

= + 

Av v

Av v v
 tells us that with the 

change of basis matrix 
1 0

2 1

 
=   

S , we will have 1 2 1
[ ]

0 2
−  

= = =  
A S AS BB

. 

The standard form in this repeated eigenvalue case is a matrix of the form 
1

0

 
=   

B . (There are analogous 

forms in cases larger than 2 2  matrices.) Note that we can write 
1

0

 
= =  +  

B I P  where 
0 1

0 0

 
=   

P . 

There is a simple relationship between the solutions of the systems d
dt

=x Bx  and d
dt

=u Pu , namely 

( ) ( )tt e t=x u . This is easily seen by differentiation: 

[ ( )] ( ) ( ) ( )t t t t t t t td d d
dt dt dt

e t e e e e e e e       = = + = + = + =  + =  + =x uu u Pu u Pu Iu I P u I P u Bx  

together with the fact that (0) (0)=x u . 
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Furthermore, solving d
dt

=u Pu  is simple. If 1

2

u

u

 
=  
 

u , then with 
0 1

0 0

 
=   

P  we have 1 2

2

( )

( ) 0

u t u

u t

  = 
 

 =  

. 

The second equation gives that 2 2 2( ) (0)u t c u= = , a constant. The first equation is then 
1 2( ) (0)u t u = , so 

1 2 1( ) (0)u t u t c=  + . At 0t =  this gives 1 1(0)u c= , so 1 1 2( ) (0) (0)u t u u t= +  . Together this gives: 

1 1 2 1

2 2 2

( ) (0) (0) (0)1 1
( ) (0) (0)

( ) (0) (0)0 1 0 1
tu t u u t ut t

t e
u t u u

+         
 = = = = =                  

P
u u u  

Therefore 
1

( ) (0) (0)
0 1 0

t t
t

t

t e te
t e

e

 




  
= =      

x x x , so 
0

t t
t

t

e te
e

e

 



 
  =   

 

B  for 
1

0

 
=   

B . 

If we apply this to the problem at hand, we get 
2 2

2
[ ]

0

t t
t

t

e te
e

e

 
=  
 

B . The solution to the system is therefore 

2 2 2 2
1

2 2 2 2

1 0 1 0 3 3
( ) [ ] (0) [ ] (0)

2 1 2 1 2 40 2 2

t t t t
t t

t t t t

e te e te
t e e

e e te e

−           
= = = =          − −+          

A B
x x S S x   

2 2 2 2
2

2 2 2 2 2

3 4 3 4 3 4

2 86 8 4 2 8

t t t t
t

t t t t t

e te e te t
e

te te e e te

   − − − 
= = =     −− − −     

. That is, 
2

2

( ) (3 4 )

( ) (2 8 )

t

t

x t e t

y t e t

 = −
 

= − 
. 

It’s worth noting that this can also be expressed as 2 23 1
( ) 4

2 2
t tt e te
   

= −      
x . 

The phase portrait in this case has just one invariant (eigenvector) direction. It gives an unstable node which 

can be viewed as a degenerate case of a (clockwise) outward spiral that cannot get past the eigenvector 

direction. 

Moral of the Story: It’s always possible to find a special basis relative to which a given linear system is in its 

simplest possible form. The new basis provides a way to decompose the given problem into several simple, 

standard problems which can be easily solved. Any complication in the algebraic expressions for the solution is 

the result of changing back to the original coordinates. 

The standard 2 2  cases are: 

Diagonalizable with eigenvalues 1 2,  : 1

2

0

0

 
= =   

B D  
1

2

0
[ ] [ ]

0

t
t t

t

e
e e

e





 
= =  

 

B D  

Complex pair of eigenvalues a ib =  :  
a b

b a

− 
=   

B   
cos sin

[ ]
sin cos

t at bt bt
e e

bt bt

− 
=   

B  

Repeated eigenvalue   with GM AM :  
1

0

 
=   

B   
1

[ ]
0 10

t t
t t

t

e te t
e e

e

 




   
= =     

B  

In general, you should expect to encounter systems more complicated than these 2 2  examples. To illustrate 

the line of reasoning in a significantly more complicated case, here is a Big Problem. 
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Big Problem: a) Find the general solution for the following system of differential equations: 

1
1 4 5

2
2 3 4

3
2 4

4
4

5
4 5

2 4 3

2 2 2

3 2

dx
x x x

dt
dx

x x x
dt
dx

x x
dt

dx
x

dt
dx

x x
dt

 
= − + 

 
 = − +
 
 

= − 
 
 = −
 
 

= − + 
 

              b) Find the solution in the case where 

5

4

(0) 3

2

1

 
 
 

=
 
 
  

x . 

Solution: This is a continuous dynamical system of the form 
d

dt
=

x
Ax  where 

2 0 0 4 3
0 2 2 2 0
0 1 0 1 0
0 0 0 1 0
0 0 0 3 2

− 
− 

=  −
 −
 − 

A . 

We start by seeking the eigenvalues. We have 

2 0 0 4 3
0 2 2 2 0
0 1 1 0
0 0 0 1 0
0 0 0 3 2

 − − 
 − − 

 − =  − 
  +
  − 

I A .  

The characteristic polynomial is 2 2( ) ( 2) ( 1)( 2 2)p  = − +  − +A
 which yields the repeated eigenvalue 

1 2 2 =  =  (with algebraic multiplicity 2), the distinct eigenvalue 3 1 = − , and the complex pair 4 1 i = +  and 

5 4 1 i = = − . 

The repeated eigenvalue 1 2 2 =  =  yields just one eigenvector 
1

1
0
0
0
0

 
 

=  
 
  

v , so its geometric multiplicity if just 1. 

We then seek a “generalized eigenvector” 2v  such that 2 1 2= + Av v v  where 2 = . That is, we seek a vector 

2v  such that 2 2 2 1( ) − =  − = −v Av I A v v . This is just an inhomogeneous system which yields solutions of the 

form 2

1
3

0
0
0

t 
 

=  
 
  

v . For simplicity, take the solution with 0t = , i.e. 2

1
3

0
0
0
0

 
 

=  
 
  

v .  
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The eigenvalue 3 1 = −  yields the eigenvector 
3

1
0
3
3
3

 
 

=  
 
  

v . A straightforward calculation with the complex 

eigenvalue 4 1 i = +  yields the complex eigenvector 
5 4

0 0 0
1 1 1

1 1 0
0 0 0
0 0 0

i
i i

     
+     

= = + = +     
     
          

v v v  in accordance with the 

method previously derived. 

Using the basis 1 2 3 4 5

1
3

1 0 1 0 0
0 0 0 1 1

, , , ,0 0 3 0 1
0 0 3 0 0
0 3 0 0

          
           

= = = = = =          
          
                    

v v v v vB  and change of basis matrix 

1
3

1 0 1 0 0
0 0 0 1 1
0 0 3 0 1
0 0 3 0 0
0 3 0 0

 
 

=  
 
  

S , we compute the inverse matrix 

1
3

1 1
3

1 0 0 0
0 0 0 3 3
0 0 0 0
0 1 1 1 0
0 0 1 1 0

−

− 
− 

=  
− 

 − 

S . 

We know that 

1 1

2 1 2

3 3

4 4 5

5 4 5

2
2

= 
= +  
= − 
= + 
= − +  

Av v
Av v v
Av v
Av v v
Av v v

, so the matrix of A relative to the basis B is 

1

2 1 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 1 1

−

 
 

= =  −
 −
  

B S AS . 

Since 1−=A SBS , it will be the case that the evolution matrices are related via 1t te e −   =   
A B

S S  where  

2 2

2

0 0 0
0 0 0 0
0 0 0 0
0 0 0 cos sin
0 0 0 sin cos

t t

t

t t

t t

t t

e te
e

e e
e t e t
e t e t

−

 
 
   =   

− 
 

B
. 

The solution is then 
2 2

1
3

2

1 1
3

1
3

0 0 01 0 1 0 0 1 0 0 0
0 0 0 00 0 0 1 1 0 0 0 3 3

( ) (0) (0) (0)0 0 3 0 1 0 0 0 00 0 0 0
0 1 1 1 00 0 3 0 0 0 0 0 cos sin
0 0 1 1 00 3 0 0 0 0 0 sin cos

t t

t

t t t

t t

t t

e te
e

t e e e
e t e t
e t e t

− −

  −   
  −   
    = = =           − −    −    

A Bx x S S x x . 
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If we multiply the leftmost matrices and write 

1

2
1

3

4

5

(0)

c
c
c
c
c

−

 
 
 =
 
 
 

S x , this yields the general solution: 

2 2

1

2
1

3

4
21

53

0 0
0 0 0 (cos sin ) (cos sin )

( ) (0) (0) 0 0 3 sin cos
0 0 3 0 0
0 3 0 0

t t t

t t

t t t t t

t

t t

e te e c
e t t e t t c

ct e e e e t e t
ce
ce e

−

− −

−

−

   
 + −  
      = = =       
   

   

A Bx x S S x  

or 

2 2

1 1 2 3

2 4 5

3 3 4 5

4 3
21

5 2 33

( )

( ) (cos sin ) (cos sin )

( ) 3 sin cos

( ) 3

( ) 3

t t t

t t

t t t

t

t t

x t c e c te c e

x t c e t t c e t t

x t c e c e t c e t

x t c e

x t c e c e

−

−

−

−

 = + +
 = + + −
 

= + + 
 =
 = + 

. 

If, on the other hand, we use the initial condition 

5
4

(0) 3
2
1

 
 

=  
 
  

x , we get the specific solution: 

2 2
13

3

2
3

21
3

0 0
0 0 0 (cos sin ) (cos sin ) 3

( ) 0 0 3 sin cos
30 0 3 0 0
10 3 0 0

t t t

t t

t t t

t

t t

e te e
e t t e t t

t e e t e t
e

e e

−

−

−

−

   
 + − − 
 =  
   
      

x  

or 

2 213 2
1 3 3

2

3

4
2

5

( ) 3

( ) (4cos 2sin )

( ) 2 (3sin cos )

( ) 2

( ) 2

t t t

t

t t

t

t t

x t e te e

x t e t t

x t e e t t

x t e

x t e e

−

−

−

−

 = − +
 = +
 

= + + 
 =
 = − + 

. 
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