Math S-21b: Linear Algebra and Differential Equations - Summer 2024

Instructor: Robert Winters robert@math.rwinters.com

Teaching Assistants: Renée Chipman, Jeremy Marcq, Kris Lokere

Course website: http://math.rwinters.com/S21b
Class meetings: Mondays, Wednesdays, and Fridays, 9:30am to 11:30am in Harvard Hall 101 or via Live Stream or On Demand Online from Mon, June 24 through Fri, Aug 2. The week of Aug 5-Aug 9 will be taken up with reviews and the Final Exam. There will be multiple (optional) problem sessions every week (mainly via Zoom) at times to be determined after the first class meeting.
Office Hours: Mon, Wed, Fri immediately after class and also via Zoom. Other times may be scheduled by appointment.
Prerequisites: Math 1 b or equivalent knowledge of algebra and calculus; and basic knowledge of vectors and vector algebra (as may be learned in Math 21a or equivalent). You should be able to solve simple systems of equations, find the roots of polynomials, and ideally be able to set up and solve the kind of simple differential equations found in a typical first-year calculus course. Math 21a or an equivalent multivariable calculus course is not necessary for successful completion of this course, though it is preferable. Math 21a and 21 b may be taken simultaneously, but doing the homework and exam preparation for both courses will require considerable commitment of time and attention.

Philosophy: This course is greatly dependent upon your participation. Most of the mathematical concepts and techniques will be presented in class, with ample opportunity for questions and clarification. Please take advantage of these opportunities. The best lessons learned are those derived from discussion and practice.
Outside of class, it is essential that you do the assigned homework to learn the material. This will be the best preparation for interaction in class and for the exams. Our Teaching Assistants will hold sections to clarify and expand upon material presented in class, especially the practical techniques and insights that help with the homework, and will allow a substantial fraction of time for your questions.
Homework: There will be a homework assignment given approximately every other lecture. All decisions regarding assignments turned in late will rest with our Teaching Assistants. Homework assignments and solutions will be posted on the course website as PDF documents which can be read using Adobe Acrobat. All submitted homework must be neatly organized with answers boxed where appropriate. You must provide evidence of your reasoning in your solutions of all homework problems. All assignments, due dates, and solutions will be posted in the Course Calendar on the course website.
Please note that the reading assigned with each homework is essential. Some topics not covered fully in class will be left to the reading (text and/or Lecture Notes) and you will be expected to pick up those additional details.
Academic Integrity: You are responsible for understanding Harvard Summer School policies on academic integrity (http://www.summer.harvard.edu/policies/student-responsibilities) and how to use sources responsibly.
Exams and grades: There will be two 70-minute online midterm exams scheduled during a 24 -hour window outside of class time. These will occur during the third and fifth weeks of the course on dates to be determined (see Course Calendar). The (2.5 hour) Final Exam is scheduled for Friday, August 9 in Proctorio. Practice exams and exam solutions will be posted on the course website. Your course grade will be computed according to:

$$
.20(\text { midterm exam } 1)+.20(\text { midterm exam } 2)+.25(\text { homework })+.35(\text { final exam })
$$

This scheme is subject to minor modification.
Text: Linear Algebra with Applications, 4th Edition (2008) or 3rd Edition (2005) by Otto Bretscher, published by Prentice-Hall. The newer 5th Edition (2013) of the text may also be used, but HW problems are currently keyed to the 4th Edition. We will cover almost all topics in this book, and homework will be primarily assigned from its large collection of exercises. The material is fundamentally the same in all editions, and all homework assignments will be made available as printable PDFs. A key matching HW exercises in different editions is available on request. Additional supplements on various topics in differential equations will also be made available during the course.
For Harvard College students: Different from the versions of Math $21 b$ taught in the fall and spring in the College, MATH S-21b does not currently count for the Quantitative Reasoning with Data requirement. However, it does count for the Science and Engineering distribution requirement.

Calculators, computers: Though not required for the course, you may find it very useful to have a matrix-capable calculator (such as a TI-83 Plus or higher) capable of finding the reduced row echelon form of a matrix (rref), matrix products, matrix inversion, and the calculation of determinants. Unless directed otherwise, calculators will be permitted on the exams.
Accessibility: The Summer School is committed to providing an accessible academic community. The Accessibility Office offers a variety of accommodations and services to students with documented disabilities. Please visit http://www.summer.harvard.edu/resources-policies/accessibility-services for more information.
Publishing or Distributing Course Materials: Students may not post, publish, sell, or otherwise publicly distribute course materials without the written permission of the course instructor. Such materials include, but are not limited to, the following: lecture notes,
lecture slides, video, or audio recordings, assignments, problem sets, examinations, other students' work, and answer keys. Students who sell, post, publish, or distribute course materials without written permission, whether for the purposes of soliciting answers or otherwise, may be subject to disciplinary action, up to and including requirement to withdraw from the Summer School. Further, students may not make video or audio recordings of class sessions for their own use without written permission of the instructor.

Mathematics S-21b syllabus

Date	Text sections	Topics
Week 1	1.1: Introduction to Linear Systems 1.2: Matrices and Gauss-Jordan Elimination 1.3: On the Solutions of Linear Systems 2.1: Introduction to Linear Transformations and their Inverses 2.2: Linear Transformations in Geometry 2.3: The Inverse of a Linear Transformation 2.4: Matrix Products	Algebra and geometry of lines, planes; solving equations simultaneously; row reduction and row operations; rank of a matrix; homogeneous vs. inhomogeneous systems; Inverse of a matrix; linear transformations from \mathbf{R}^{m} to \mathbf{R}^{n}; linearity; domain and codomain; invertibility; meaning of the columns of a matrix; rotations and dilations; shears; projections and reflections; matrix algebra, associativity and the composition of linear functions.
Week 2	3.1: Image and Kernel of a Linear Transformation 3.2: Subspaces of \mathbf{R}^{n}; Bases and Linear Independence 3.3: The Dimension of a Subspace of \mathbf{R}^{n} 3.4: Coordinates 4.1: Introduction to Linear Spaces 4.2: Linear Transformations and Isomorphisms 4.3: Coordinates in a Linear Space	Image and kernel of a linear transformation; linear combinations and the span of a set of vectors; subspaces; linear independence; basis; dimension of a subspace; bases for kernels and images; Rank-Nullity Theorem; coordinates of a vector relative to a basis; matrix of a linear transformation relative to a (nonstandard) basis; Examples of linear spaces other than \mathbf{R}^{n}, e.g. function spaces. Linear spaces; isomorphisms; coordinates; matrix of a general linear transformation relative to a basis.
Week 3	First Midterm exam 5.1: Orthogonal Bases and Orthogonal Projections 5.2: Gram-Schmidt Process and QR Factorization 5.3: Orthogonal Transformations and Orthogonal Matrices 5.4: Least Squares and Data Fitting 5.5: Inner Product Spaces	Orthogonality (perpendicularity) of vectors in \mathbf{R}^{n}; length (norm) of a vector, unit vectors; orthogonal complements; orthogonal projections; orthonormal basis; angle between two vectors; GramSchmidt orthogonalization process; QR factorization; orthogonal transformation; orthogonal matrix; Least-squares approximation; normal equation. Inner products and norms in a general inner product space; Fourier analysis.
Week 4	6.1: Introduction to Determinants 6.2: Properties of the Determinant 6.3: Geometrical Interpretations of the Determinant; Cramer's Rule 7.1: Dynamical Systems and Eigenvectors: An Introductory Example 7.2: Finding the Eigenvalues of a Matrix 7.3: Finding the Eigenvectors of a Matrix 7.4: Diagonalization	Determinant of a (square) matrix; multilinearity; minors, cofactors, and adjoints; k-volumes; determinant as an expansion factor; Cramer's Rule; Discrete (linear) dynamical system; iteration of a matrix; eigenvectors and eigenvalues. Eigenvalues and eigenvectors of a (square) matrix; characteristic polynomial; algebraic and geometric multiplicities; similarity of matrices; Diagonalization and the existence of a basis of eigenvectors; powers of a matrix; eigenvalues of a linear transformation.
Week 5	7.5: Complex Eigenvalues 7.6: Stability Second Midterm exam 8.1: Symmetric matrices 8.2: Quadratic Forms 8.3 Singular Values 9.1: An Introduction to Continuous Dynamical Systems	Complex numbers, polar form and related algebra; complex eigenvalues and eigenvectors; rotation-dilation matrices revisited; trace and determinant; stability of a discrete linear dynamical system; phase portraits. Spectral Theorem; symmetric matrices and diagonalization by an orthonormal basis; quadratic forms; positive definiteness of a matrix; principal axes; applications to ellipses and hyperbolas; 2nd derivative test for functions of several variables in terms of eigenvalues; Singular Values; Systems of linear differential equations and their solutions.
Week 6	9.2: The Complex Case: Euler's Formula 9.3: Linear Differential Operators and Linear Differential Equations 10: Topics in Partial Differential Equations (time permitting)	Systems of linear differential equations and their solutions. Eigenfunctions, characteristic polynomials; kernel and image of a linear differential operator; solutions to homogeneous and inhomogeneous linear differential equations; Partial differential equations - Laplace's equation, the heat equation, the wave equation.
Week 7	Review and Final Exam	

