Matrix of alinear transformation relativeto a preferred basis

(and how you might deal with repeated eigenvalues and complex eigenvalues)

The question of whether amatrix A can be diagonalized can be described succinctly as follows:

Can a basis of eigenvectors be found for the given matrix A?
If the answer is Yes, then there is a basis of eigenvectors B = { vy, Va,..., v} with eigenvalues{A1,Az,...,An} such that

Av, =MV fork =1,2,...,n. It isauseful construction to talk about the idea of the matrix of alinear transformation relative

to an alternate basis B. Simply put, amatrix A tells us how to calculate for any given vector expressed in terms of the

standard basis{ ey, &,..., &} itsimage relative to the standard basis.

If we were to use an alternate basis{ vy, v,,..., i} to express the coordinates of both a vector and its image under the
linear transformation corresponding to the matrix A, what would the new matrix [A]B look like? To do this, we define the
matrix P = [vy V2 ... V], i.e. we insert the basis vectors vy, Vs,..., v, as the columns of the matrix P. Thisisknown asa

change of basis matrix because of the fact that Pe, = v fork =1,2,...,n.

We have shown that for any vector x, its coordinate vector relative to the basis B is given by [x], = P'x. The
coordinate vector of itsimage is similarly given by [Ax]_ = P"Ax. Sincex = P[x] , we have that [AX] = P"AP[x] .

In other words, [A] = P'AP. Two matrices A and B such that B = P*AP for some invertible matrix P are called similar.

It isgenerdly quite easy, if the basisis chosen in a sensible way, to calculate [A]B column-by-column by directly
expressing each of the vectors Avy, ..., Av, interms of the basis vectorsvy, va, ..., vy, .

Asan example, in the case of a diagonalizable matrix A, we were ableto find abasis B ={vy, vy, ..., V} such that

Avy = AV . What this saysis:

0
Avi =2V +0vo+ - +0vyg + 0OV .
The k-th equation says that the k-th column of [A] is
AV, =0vy + Apva + - + 0vpg + Ovy Ay
0
%, O 0 0
Av,=0vy+ 0vy + -« + OV + AnVn ) ) o .. 0 : O
We see directly that the matrix [A] =D = . 0w o LI
v :
0 .0
(0 0 - 0 %]

which coincides with our previous knowledge that P*AP = D. This diagonal form alows us to calculate and describe
powers of the matrix in avery simple way, away in which, except for a coordinate change, the eigenvectors and
eigenvaluestell the entire story.

The fact isthat not all matrices can be diagonalized. The reason is that the eigenvalues of a given matrix, given by the
roots of the characteristic polynomial of the matrix, need not be distinct nor must they necessarily be real. We can

certainly have repeated roots and complex eigenvalues. Though it sometimes happens that we can find a compl ete basi s of
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eigenvectors even though some eigenvalues are repeated, thisis usually not the case. In the case of complex eigenvalues

we certainly cannot find any corresponding real eigenvectors. The question in these cases then comes down to this:

Can we find a basis consisting of eigenvectors and other sensibly chosen vectors such that the matrix of A relative to this

basis takes on an especially simple (also called a canonical, or normal) form?

Repeated eigenvalues:

When the algebraic multiplicity k of an eigenvalue A of A (the number of times A occurs as aroot of the
characteristic polynomial) is greater than 1, we usually are not able to find k linearly independent eigenvectors
corresponding to this eigenvalue. We use the term geometric multiplicity for the number of linearly independent
eigenvectors corresponding to a given eigenvalue, i.e. the dimension of the kernel of the matrix (Al - A).

The next best thing to an eigenvector in this caseisavector v such that Av =Av + u whereu is an eigenvector with
eigenvalue . It is easy to show that any such avector v isin the kernel of the matrix (Al - A)2. If this still leaves us short
on basis vectors corresponding to the eigenvalue A, we can continue by looking for a vector w such that Aw = Aw + v .

It will then be the case that w isin the kernel of the matrix (Al - A)°.

It can be shown that this process will alwaysyield k linearly independent vectors corresponding to the eigenvalue A,
the first few vectors of which will be actual eigenvectors of A. If amatrix A has all real eigenvaues and if we carry out
this process for all eigenvalues of A, we'll produce a complete basis B = {vy, Vs, ..., Vn} Where we assume that all vectors
corresponding to a given eigenvalue are grouped together and ordered in the way in which they were found.

For example, let A be 10 x 10 matrix with nonrepeating eigenvalues A4, A,, and A3; with eigenvalue L, of multiplicity
3 with only one eigenvector; and with eigenvalue As with multiplicity 4 with just two linearly independent eigenvectors. It

is easy to see that the matrix of A relativeto the basis B = {vy, V», ..., Vig} where vy, v,, and vs correspond, respectively, to

A1, Ao, @nd Ag; V4, Vs, and Ve correspond to A4; and where vz, Vg, Vo, and vy correspond to As; is of the form shown in the

7| frameon the following page, where P is the change of
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If we arrange things so that, for example, the
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eigenvalues are listed in increasing order, the resulting
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[A],=P*AP=
matrix is caled the Jordan canonical form of the

matrix. It follows that any matrix A with all real
eigenvaluesis similar to a matrix in Jordan canonical
form, with Jor dan blocks (as indicated by the dotted
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lines) associated with each eigenvalue. It can be further
shown that if A and B are similar matrices, they necessarily have the same characteristic polynomials, the same
eigenvalues with the same algebraic and geometric multiplicities, and hence the same Jordan canonical forms. In other

words, they represent the “same” linear transformation relative to two different bases.




1 1 -1
Example: Consider thematrix A=|1 1 0 |. The characteristic polynomia isA®- 5A% + 8 - 4 and the eigenvalues
2 -2 3
0
are) =1,2,2. Theeigenvalue A = 1 yields the eigenvector v, = | 1|, and the repeated eigenvalue A = 2 yields the single
1
1
eigenvector v, = | 1 |. Following the procedure outlined earlier, we can find a third basis vector v3 such that
0
1
Avs = 2v3 + v,. One such vector isthe vector v = | o |. Using the basis B = { vy, V,, v}, and the matrix
-2

01 1 100
P=[vivavs={1 1 0], wehave[A]BzP'lAPz 0 2 1|.If, for example, we need to calculate A", we will have

10 -2 002

. . [y o
that A = P[A] P~ and A" =P([A] ) " P Since [A] _ is composed of Jordan blocks and since 0 1 = o |

1 0 0
itiseasy toshow that A"=P|g 20 n2t [P
o 0o 2

Complex eigenvalues

This situation is similar to the previous one in the sense that if the matrix A has any complex eigenvalues, we will not
be ableto find abasis of real eigenvectors. For al the real eigenvalues, everything is exactly the same as above. What we
need to do is to produce additional vectors associated with any complex eigenvalues in order to get abasisrelative to
which the matrix A has a simple, canonical form. In order to do this, we have to temporarily wander off into the world of
complex numbers, complex eigenvalues, and complex eigenvectors.

Y ou should not attempt to visualize a vector whose components are complex numbers. Thisis merely an algebraically
consistent extension of the idea of real vectors and real matrices where al the rules of linear algebra are still in effect. This
temporary excursion will yield real vectors relative to which the matrix acts in an easy-to-describe fashion, namely asa
rotation-dilation, i.e. it rotates vectorsin a 2-dimensional (invariant) subspace and scales them by the modulus of the

complex eigenvalue.



First, we need afew basic definitions associated with complex numbers. Im
A complex number z = x + iy, where i® = -1 can be viewed in vector-like

termsin the complex plane as shown in this diagram to the right. We define:

LZ= X+ 1y
modulus (2) = mod (2) = |7 = /X + Y? i y= 1M
argument(z) = arg(2) = 0 = tan(2). 9 : R

X = Re(2) €

We add complex numbers by adding their respective real and imaginary
parts, in much the same way as vector addition was defined. We multiply complex numbers via the distributive law and
the fact that i = -1. For example:

(3+2i)(-1-4i) = -3-2i - 12 - 8% = -3-14i +8 = 5- 14i.
If wenotethat x =]z cos6 andy = |7 sin 6, then we can write z=|Z(cos 6 + i sin 0) . A short calculation shows that when

we multiply two complex numbers, we multiply their moduli and add their arguments. Y ou may want to try this out with

some simple complex numbers to convince yourself of thisfact.

The complex conjugate of z=x+iy isdefinedto be Z=x- iy . Inthe complex plane, zand Z arereflections of each

other acrossthereal axis. It's not hard to show that ZZ, = 2,7, .

The Fundamental Theorem of Algebra guarantees that, at least in theory, any polynomial of degree n can be factored
into n linear factors and will therefore produce n roots. Some roots may have multiplicity greater that 1 and some of the
roots may be complex. It is also the case that for a polynomial with all real coefficients, any complex roots will

necessarily occur in complex conjugate pairs A and L.

Let A be amatrix which has a complex conjugate pair of eigenvalues A and A . We can proceed just as in the case of
real eigenvalues and find a complex vector v such that (Al - A)v = 0. The components of such avector v will have
complex numbers for its components. If we write A = a + ib, and decompose v into its real and imaginary vector
componentsasv = X + iy, we can calculate that:

(D] Av=2Av=(a+ib)(x +iy) = (ax - by) +i(bx + ay)

If we define the vector V = X - iy, we see, using the easy to prove fact that for amatrix A with all real entrieswe’ll have
Av =AV:

) AV =AV = LV =(a-ib)(x-iy) = (ax - by) - i(bx + ay)

Note that this gives us that the complex vector V isactually also a complex eigenvector corresponding to the complex
conjugate eigenvalue A . The true value of this excursion into the world of complex numbers and complex vectorsis seen
when we add and subtract equation (1) and (2). We get:

A(v+ V) =2(ax - by)
A(v - V) =2i(bx + ay)
If wefurther notethatv + Vv =2x andv - V = 2iy, we get, after cancellation of the factors of 2 and 2i in the respective

eguations,



Ay = ay + bx
AX =-by + ax
Note that we are now back in the “real world”: all vectors and scalars in the above equations arereal. If we use the
two vectorsy and x as basis vectors associated with the two complex conjugate eigenvalues, grouped together in the full

basis B ={vy, vy, ..., Vi}, W€ Il produce a2 x 2 Jordan block in the matrix [A]B of the form:

a —b JaZ+0? /Ja 2, p? /«/a 2, p? Y cpse —sino IR,
b A - % ~ sn® cosd
a’+b a’+b

where Rq is the rotation matrix corresponding to the angle 6 = arg()).

In other words, the Jordan block associated with the basis vectors {y, x} is arotation-dilation matrix where the angle
of rotation is the same as the angle of the complex eigenvalue and where the scaling factor isjust the modulus
(magnitude) of the complex eigenvalue. Again, the very nature of the complex eigenvalues tells us much about the way

the matrix acts, at least if we choose the right basis with which to view things.

. , 0 -1
Example: Consider the matrix A = [ 1 O} You'll recognize this as the matrix corresponding to counterclockwise

rotation in the plane through an angle of 90°. The characteristic polynomial is A2+ 1 = 0, with complex eigenvalues

A ==1i.Notethat with A = i, we have arg(X) = 90° and modulus()) = 1. The preceding discussion says that this matrix is
similar to arotation-dilation matrix which does no scaling and which rotates by an angle of 90°. But this should come as
no surprise at al. The given matrix is aready in the form of exactly this rotation-dilation matrix, i.e. Jordan form.

A-2 1

. : 2 -1
E le: h A= Weh I -A
xample: Consider the matrix [3 2} ehave A { 3 .2

} and the characteristic polynomial is

A2-4)+7=0. Thisyield thetwo eigenvaluesL =2 +iv/3 and L =2-i+/3.

If we substitute L into Al - A = [7‘_2 1 },weget that if v = [(ﬁﬂ isto be an eigenvector, we must have

-3 A-2
-3 i3
immediately appear to be the case.) One choicefora andBisa =1, =- V3. This gives us the complex eigenvector
[ I\/§:| H+ |__3§}=x+iy.Using’B:{y,x}asabasis, andcallingP:{_?/g a,wehavethat
(A, =P AP~ {ﬁg ‘f}ﬁ[?fg o |7,

where Ry is the rotation matrix corresponding to the angle 6 = arg().) = tan™( \/1_%/2) = 40.89°.
If we have need to consider the powers A", we' Il havethat A = P[A] P™and A" =P([A] )" P™.

{i V3 1 }[Oﬂ = [8 . Thismeansthat (i \/§)oc + B = 0. (The second equation is redundant, even though this might not

Since ([A]) " = (IMRe)" = \I" Re, we have that A" = P(JA|" Rne)P™. In other words, except for the change of basis,

A" corresponds to rotation through the angle n6 and scaling by the factor A" .
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Example: Consider thematrix A=|{1 0 O|. Thismatrix permutes the standard basis vectors (and hence the
010

coordinate axes) taking the x-axisto the y-axis, the y-axis to the z-axis, and the z-axis to the x-axis.

The characteristic polynomial for this matrix isA®- 1= (A - 1)(A® + A + 1) = 0. This gives the three eigenvalues
p=1 A= —+i @ ,and A = —%—i@ . These eigenvalues all have modulus = 1, one real eigenvalue and a complex

conjugate pair with arguments +120°. They are equally spaced on the unit circle in the complex plane.

1
The eigenvalue n = 1 givesthe eigenvector u =| 1|, whichis, in fact, the axis of rotation for this linear transformation.
1
Theeigenvaluek = —1 +i 2 gives
~1+i 0 -1 2 2 0
AM-A= -1 ~14if 0 and the eigenvector v = | —1-iy/3| = | -1| +i| /3| =x +iy.
0 1 1+ ~1+i4/3] |-1 V3

If weusethebasisB={u,y,x} andletP=[u y x], weget:

[A], =PAP

In this form, we see exactly the 120° rotation associated with this matrix. Furthermore, the vectors{y, x} are abasis
for the plane perpendicular to the axis of rotation, a plane that remains invariant under this transformation. Thisis much
like the subspace spanned by areal eigenvector, which isafixed direction. For atypical 3 by 3 matrix with one real
eigenvalue and a pair of complex conjugate eigenvalues, the invariant direction corresponding to the real eigenvalue need

not be perpendicular to the rotational plane associated with a complex conjugate pair of eigenvalues.



