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Supplement on systems of linear differential equations – Evolution matrices 

Situation: You want to solve a system of first-order linear differential equations of the form d
dt

x Ax  where A 

is an n  n real matrix. How is this most efficiently accomplished? 

The tool at the heart of these methods is diagonalization or, in the case where a matrix cannot be 
diagonalized, finding an appropriate change of basis relative to which the underlying linear transformation has 
the simplest possible matrix representation, i.e. Jordan Canonical Form. A second useful formalism is the use of 
“evolution matrices.” 

Suppose S is a change of basis matrix corresponding to either diagonalization or reduction to Jordan 
Canonical Form. We will have S-1AS = B in this case, where B is diagonal or otherwise in simplest form. We 

then calculate A = SBS-1, and substitution gives 1d
dt

x SBS x . Multiplying on the left by S-1 and using the basic 

calculus fact that ( )d d
dt dt

 xMx M  for any (constant) matrix M, we have 
1

1 1( ) ( )dd
dt dt


  S xxS B S x . 

If we write  1 u S x x
B

, where B is the new, preferred basis, then in these new coordinates the system 

becomes d
dt

u Bu , but now the system will be much more straightforward to solve. 

The diagonalizable case 

In the case where B is a diagonal matrix with the eigenvalues of A on the diagonal, the system is just 
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This has the solution 
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If we use the shorthand notation 

1 0
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B B  , sometimes referred to as the (time-

varying) evolution matrix for the simplified system, we can succinctly write the solution as ( ) [ ] (0)tt e Bu u . To 

revert back to the original coordinates, we write x Su , so 1( ) ( ) [ ] (0) [ ] (0)t tt t e e   B Bx Su S u S S x . If we 

denote the evolution matrix for the system in its original coordinates as [ ] ( )te Exp tA A  where ( ) [ ] (0)tt e Ax x , 

then the previous calculation gives the simple relation 1[ ] [ ]t te e A BS S . 

In other words, the evolution matrices for the solution are in the same relationship as the matrices A and B, 
namely A = SBS-1. This pattern is very easy to remember, and this same pattern will again be the case where B 
is not diagonal but where the corresponding evolution matrix is still relatively easy to calculate. 

1 1[ ] [ ]t te e   A BA SBS S S , and the solution of the original system will be ( ) [ ] (0)tt e Ax x . 
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The complex eigenvalue case 

Suppose we want to solve a system of the form d
dt

x Ax  where A is an 2  2 real matrix with a complex 

conjugate pair of eigenvalues a ib    and a ib   . There are several reasonable ways to proceed, but they 
all come down to determining the evolution matrix [ ]te A  so that we can solve for ( ) [ ] (0)tt e Ax x . 

First, put the system into (real) normal form. 

Use the complex eigenvalue a ib    to find a complex eigenvector i v x y . If we change to the basis 

{y, x} then, using the change of basis matrix  S y x , we’ll get 1 a b
b a

      
S AS B , a rotation-dilation 

matrix. Noting, as before, that 1 1[ ] [ ]t te e   A BA SBS S S , we need only to determine [ ]te B . 

Second, find the evolution matrix for the (real) normal form. 

In fact, 
cos sin

[ ]
sin cos

t at bt bt
e e

bt bt
    

B , a time-varying rotation matrix with exponential scaling. This yields a 

trajectory that spirals out in the case where Re( ) 0a    (look to the original vector field to see whether it’s 
clockwise or counterclockwise), or a trajectory that spirals inward toward 0 in the case where Re( ) 0a   . 

To derive this expression for [ ]te B , make another coordinate change with complex eigenvectors starting 

with 
a b
b a

    
B . We know this has the same eigenvalues of A, namely a ib    and a ib   . Use 

a ib    to get the complex eigenvector 
1
i

    
w . The eigenvalue a ib    will then give eigenvector 

1
i
    

w


. Using the (complex) change of basis matrix 
1 1
i i

    
P , we have that 1 0

0
a ib

a ib
      

P BP D . 

It follows that: 
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B DP P . 

These calculations enable us to write down a closed form expression for the solution of this linear system, 

namely ( ) [ ] (0)tt e Ax x  where 1 1cos sin
[ ] [ ]

sin cos
t t at bt bt

e e e
bt bt

      
A BS S S S . However, the more important result 

is the ability to qualitatively describe the trajectories for this system by knowing only the real part of the 
eigenvalues of the matrix A and the direction of the corresponding vector field (clockwise vs. 
counterclockwise). 

 

Repeated eigenvalues (with geometric multiplicity less than the algebraic multiplicity) 

Suppose we want to solve a system of the form d
dt

x Ax  where A is a non-diagonalizable 2  2 real matrix 

with a repeated eigenvalue  . We’ve seen that in this case, we can always find a change of basis matrix S such 

that 1 1
0



      

S AS B . As in the previous two cases, 1 1[ ] [ ]t te e   A BA SBS S S  and it comes down 

to finding [ ]te B . This is perhaps most easily done by explicitly solving the corresponding differential equations. 
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In the new coordinates, this system translates into 

1
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. The second equation is easily solved to get 

2 2( ) (0)tu t e u . We can guess a solution for the first equation of the form 1 1 2( ) t tu t c te c e   . Differentiating 

this and substituting into the first equation, we get 1 2 1 2 2( ) ( ) (0)t t t t t tc e te c e c te c e e u            . 

Comparing like terms, we conclude that 1 2 (0)c u . Substituting t = 0, we further conclude that 1 2(0)u c . 

Putting these results together, we get 1 2 1 1 2( ) (0) (0) (0) (0)t t t tu t u te u e e u te u       . We therefore have that 

1 1 2 1

2 22
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B  in this case and the solution is given by 1 1( ) [ ] (0)
0

t t
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Bx S S S S x . 

An alternate method of deriving this result may be found in the homework exercises. 

 

Similar calculations enable us to deal with cases such as a repeated eigenvalue where the geometric 
multiplicity is 1 and the algebraic multiplicity is 3 (or even worse). 

 

Finally, an actual system may exhibit several of these qualities – one or more complex pairs of eigenvalues, 
repeated eigenvalues, and distinct real eigenvalues. The Jordan Canonical Form of the matrix for such a system 
can be analyzed block by block and each of the above solutions applied within each block to determine the 
evolution matrix for the entire system. 

 

Exercise: 
a) Find the general solution for the following system of differential equations: 
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b) Find the solution in the case where x(0) = (5, 4, 3, 2, 1). 


