Supplement on systems of linear differential equations — Evolution matrices

Situation: You want to solve a system of first-order linear differential equations of the form % AX where A

is an n x n real matrix. How is this most efficiently accomplished?

The tool at the heart of these methods is diagonalization or, in the case where a matrix cannot be
diagonalized, finding an appropriate change of basis relative to which the underlying linear transformation has
the simplest possible matrix representation, i.e. Jordan Canonical Form. A second useful formalism is the use of
“evolution matrices.”

Suppose S is a change of basis matrix corresponding to either diagonalization or reduction to Jordan
Canonical Form. We will have S'AS = B in this case, where B is diagonal or otherwise in simplest form. We

dx

r =SBS™x. Multiplying on the left by S™ and using the basic

then calculate A = SBS™, and substitution gives
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T X for any (constant) matrix M, we have S dx _d(S %) _ =B(S™X).
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If we write u=S"x=[x]_, where 8 is the new, preferred basis, then in these new coordinates the system

du
dt

The diagonalizable case

becomes —==Bu, but now the system will be much more straightforward to solve.

In the case where B is a diagonal matrix with the eigenvalues of A on the diagonal, the system is just
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If we use the shorthand notation [e®]= Exp(tB) = , sometimes referred to as the (time-
O ein'[

varying) evolution matrix for the simplified system, we can succinctly write the solution as u(t) =[e®Ju(0) . To
revert back to the original coordinates, we write X = Su, so x(t) = Su(t) = S[e®Ju(0) = S[e®]S"x(0) . If we
denote the evolution matrix for the system in its original coordinates as [e”]= Exp(tA) where x(t) =[e"]x(0),
then the previous calculation gives the simple relation [e”]=S[e®]S™.

In other words, the evolution matrices for the solution are in the same relationship as the matrices A and B,
namely A = SBS™. This pattern is very easy to remember, and this same pattern will again be the case where B
is not diagonal but where the corresponding evolution matrix is still relatively easy to calculate.

A=SBS" = [e"]=5[e®]S™, and the solution of the original system will be x(t) =[e"]x(0).



The complex eigenvalue case

Suppose we want to solve a system of the form dx _ Ax where A is an 2 x 2 real matrix with a complex

dt
conjugate pair of eigenvalues A =a+ib and A =a—ib. There are several reasonable ways to proceed, but they
all come down to determining the evolution matrix [e”] so that we can solve for x(t) =[e"*]x(0).

First, put the system into (real) normal form.

Use the complex eigenvalue A =a+ib to find a complex eigenvector v =x+iy . If we change to the basis

a
b

matrix. Noting, as before, that A=SBS™ = [e”]=5[e®]S™, we need only to determine [e®].

{y. x} then, using the change of basis matrix S=[y x], we’ll get STAS =B :{ _ab} , a rotation-dilation

Second, find the evolution matrix for the (real) normal form.

cosbt —sinbt
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trajectory that spirals out in the case where Re(4) =a >0 (look to the original vector field to see whether it’s
clockwise or counterclockwise), or a trajectory that spirals inward toward O in the case where Re(4)=a<0.

In fact, [e®]=¢e [ } , @ time-varying rotation matrix with exponential scaling. This yields a

To derive this expression for [e®], make another coordinate change with complex eigenvectors starting

a

with B = [b

_ab} . We know this has the same eigenvalues of A, namely A =a+ib and A=a—ib. Use

A =a+ib to get the complex eigenvector w = [_ﬂ . The eigenvalue A =a—ib will then give eigenvector

W = [ﬂ Using the (complex) change of basis matrix P :[ 0 a-ib
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It follows that:
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These calculations enable us to write down a closed form expression for the solution of this linear system,
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namely x(t) =[e”]x(0) where [e"]=S[e"]S " =e S[sinbt cosht

is the ability to qualitatively describe the trajectories for this system by knowing only the real part of the
eigenvalues of the matrix A and the direction of the corresponding vector field (clockwise vs.
counterclockwise).

}Sl. However, the more important result

Repeated eigenvalues (with geometric multiplicity less than the algebraic multiplicity)

Suppose we want to solve a system of the form dx _ Ax where A is a non-diagonalizable 2 x 2 real matrix

dt
with a repeated eigenvalue 4. We’ve seen that in this case, we can always find a change of basis matrix S such

e A1
that S AS—B—[O :

to finding [e®]. This is perhaps most easily done by explicitly solving the corresponding differential equations.

] As in the previous two cases, A=SBS™" = [e”]=S[e®]S™" and it comes down
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In the new coordinates, this system translates into Eju . The second equation is easily solved to get
72 _ ﬂuz
dt

u,(t) =e™u,(0) . We can guess a solution for the first equation of the form u, (t) = cte” +c,e™ . Differentiating
this and substituting into the first equation, we get c, (e + Ate™) +c,1e” = A(cte™ +c,e™)+e™u,(0).
Comparing like terms, we conclude that ¢, =u, (0). Substituting t = 0, we further conclude that u,(0) =c, .
Putting these results together, we get u, (t) = u, (0)te” +u,(0)e™ =e*u,(0) +te*u,(0) . We therefore have that
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So, [e®] :{ 0 } in this case and the solution is given by x(t) =S[e®]S™" = S{ 0

An alternate method of deriving this result may be found in the homework exercises.

Similar calculations enable us to deal with cases such as a repeated eigenvalue where the geometric
multiplicity is 1 and the algebraic multiplicity is 3 (or even worse).

Finally, an actual system may exhibit several of these qualities — one or more complex pairs of eigenvalues,
repeated eigenvalues, and distinct real eigenvalues. The Jordan Canonical Form of the matrix for such a system
can be analyzed block by block and each of the above solutions applied within each block to determine the

evolution matrix for the entire system.

Exercise:
a) Find the general solution for the following system of differential equations:

%—?:2@—4& +3X
% =2X, —2X; + 2X,
dx,

at e

dx,

Ea

% =—3X, +2X;

b) Find the solution in the case where x(0) = (5, 4, 3, 2, 1).



