Supplement on systems of linear differential equations - Evolution matrices

Situation: You want to solve a system of first-order linear differential equations of the form $\frac{d \mathbf{x}}{d t}=\mathbf{A x}$ where \mathbf{A} is an $n \times n$ real matrix. How is this most efficiently accomplished?

The tool at the heart of these methods is diagonalization or, in the case where a matrix cannot be diagonalized, finding an appropriate change of basis relative to which the underlying linear transformation has the simplest possible matrix representation, i.e. Jordan Canonical Form. A second useful formalism is the use of "evolution matrices."

Suppose \mathbf{S} is a change of basis matrix corresponding to either diagonalization or reduction to Jordan Canonical Form. We will have $\mathbf{S}^{-1} \mathbf{A S}=\mathbf{B}$ in this case, where \mathbf{B} is diagonal or otherwise in simplest form. We then calculate $\mathbf{A}=\mathbf{S B S}^{-1}$, and substitution gives $\frac{d \mathbf{x}}{d t}=\mathbf{S B S}^{-1} \mathbf{x}$. Multiplying on the left by \mathbf{S}^{-1} and using the basic calculus fact that $\frac{d}{d t}(\mathbf{M x})=\mathbf{M} \frac{d \mathbf{x}}{d t}$ for any (constant) matrix \mathbf{M}, we have $\mathbf{S}^{-1} \frac{d \mathbf{x}}{d t}=\frac{d\left(\mathbf{S}^{-1} \mathbf{x}\right)}{d t}=\mathbf{B}\left(\mathbf{S}^{-1} \mathbf{x}\right)$.

If we write $\mathbf{u}=\mathbf{S}^{-1} \mathbf{x}=[\mathbf{x}]_{\mathscr{B}}$, where \mathfrak{B} is the new, preferred basis, then in these new coordinates the system becomes $\frac{d \mathbf{u}}{d t}=\mathbf{B u}$, but now the system will be much more straightforward to solve.

The diagonalizable case

In the case where \mathbf{B} is a diagonal matrix with the eigenvalues of \mathbf{A} on the diagonal, the system is just

This has the solution $\left\{\begin{array}{c}u_{1}(t)=e^{\lambda_{1} t} u_{1}(0) \\ \vdots \\ u_{n}(t)=e^{\lambda_{n} t} u_{n}(0)\end{array}\right\}$ or $\left[\begin{array}{c}u_{1}(t) \\ \vdots \\ u_{n}(t)\end{array}\right]=\left[\begin{array}{ccc}e^{\lambda_{1} t} & & 0 \\ & \ddots & \\ 0 & & e^{\lambda_{n} t}\end{array}\right]\left[\begin{array}{c}u_{1}(0) \\ \vdots \\ u_{n}(0)\end{array}\right]$.
If we use the shorthand notation $\left[e^{t \mathbf{B}}\right]=\operatorname{Exp}(t \mathbf{B})=\left[\begin{array}{lll}e^{\lambda_{1} t} & & 0 \\ & \ddots & \\ 0 & & e^{\lambda_{n} t}\end{array}\right]$, sometimes referred to as the (timevarying) evolution matrix for the simplified system, we can succinctly write the solution as $\mathbf{u}(t)=\left[e^{t \mathbf{B}}\right] \mathbf{u}(0)$. To revert back to the original coordinates, we write $\mathbf{x}=\mathbf{S u}$, so $\mathbf{x}(t)=\mathbf{S u}(t)=\mathbf{S}\left[e^{t \mathbf{B}}\right] \mathbf{u}(0)=\mathbf{S}\left[e^{t \mathbf{B}}\right] \mathbf{S}^{-1} \mathbf{x}(0)$. If we denote the evolution matrix for the system in its original coordinates as $\left[e^{t \mathbf{A}}\right]=\operatorname{Exp}(t \mathbf{A})$ where $\mathbf{x}(t)=\left[e^{t \mathbf{A}}\right] \mathbf{x}(0)$, then the previous calculation gives the simple relation $\left[e^{t \mathbf{A}}\right]=\mathbf{S}\left[e^{t \mathbf{B}}\right] \mathbf{S}^{-1}$.

In other words, the evolution matrices for the solution are in the same relationship as the matrices \mathbf{A} and \mathbf{B}, namely $\mathbf{A}=\mathbf{S B S}^{-1}$. This pattern is very easy to remember, and this same pattern will again be the case where \mathbf{B} is not diagonal but where the corresponding evolution matrix is still relatively easy to calculate.
$\mathbf{A}=\mathbf{S B S}^{-1} \Rightarrow\left[e^{t \mathbf{A}}\right]=\mathbf{S}\left[e^{t \mathbf{B}}\right] \mathbf{S}^{-1}$, and the solution of the original system will be $\mathbf{x}(t)=\left[e^{t \mathbf{A}}\right] \mathbf{x}(0)$.

The complex eigenvalue case

Suppose we want to solve a system of the form $\frac{d \mathbf{x}}{d t}=\mathbf{A x}$ where \mathbf{A} is an 2×2 real matrix with a complex conjugate pair of eigenvalues $\lambda=a+i b$ and $\lambda=a-i b$. There are several reasonable ways to proceed, but they all come down to determining the evolution matrix $\left[e^{t \mathrm{~A}}\right]$ so that we can solve for $\mathbf{x}(t)=\left[e^{t \mathrm{~A}}\right] \mathbf{x}(0)$.

First, put the system into (real) normal form.
Use the complex eigenvalue $\lambda=a+i b$ to find a complex eigenvector $\mathbf{v}=\mathbf{x}+i \mathbf{y}$. If we change to the basis $\{\mathbf{y}, \mathbf{x}\}$ then, using the change of basis matrix $\mathbf{S}=\left[\begin{array}{ll}\mathbf{y} & \mathbf{x}\end{array}\right]$, we'll get $\mathbf{S}^{-1} \mathbf{A S}=\mathbf{B}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$, a rotation-dilation matrix. Noting, as before, that $\mathbf{A}=\mathbf{S B S}^{-1} \Rightarrow\left[e^{\mathbf{t} \mathbf{A}}\right]=\mathbf{S}\left[e^{\mathbf{t B}}\right] \mathbf{S}^{-1}$, we need only to determine $\left[e^{\mathbf{t B}}\right]$.

Second, find the evolution matrix for the (real) normal form.
In fact, $\left[e^{t \mathbb{B}}\right]=e^{a t}\left[\begin{array}{cc}\cos b t & -\sin b t \\ \sin b t & \cos b t\end{array}\right]$, a time-varying rotation matrix with exponential scaling. This yields a trajectory that spirals out in the case where $\operatorname{Re}(\lambda)=a>0$ (look to the original vector field to see whether it's clockwise or counterclockwise), or a trajectory that spirals inward toward $\mathbf{0}$ in the case where $\operatorname{Re}(\lambda)=a<0$.

To derive this expression for $\left[e^{t \mathbf{B}}\right]$, make another coordinate change with complex eigenvectors starting with $\mathbf{B}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$. We know this has the same eigenvalues of \mathbf{A}, namely $\lambda=a+i b$ and $\lambda=a-i b$. Use $\lambda=a+i b$ to get the complex eigenvector $\mathbf{w}=\left[\begin{array}{c}1 \\ -i\end{array}\right]$. The eigenvalue $\lambda=a-i b$ will then give eigenvector $\widehat{\mathbf{w}}=\left[\begin{array}{l}1 \\ i\end{array}\right]$. Using the (complex) change of basis matrix $\mathbf{P}=\left[\begin{array}{cc}1 & 1 \\ -i & i\end{array}\right]$, we have that $\mathbf{P}^{-1} \mathbf{B P}=\mathbf{D}=\left[\begin{array}{cc}a+i b & 0 \\ 0 & a-i b\end{array}\right]$. It follows that:

$$
\left[e^{i \mathbf{B}}\right]=\mathbf{P}\left[e^{(\mathbf{D}}\right] \mathbf{P}^{-1}=\left[\begin{array}{cc}
1 & 1 \\
-i & i
\end{array}\right]\left[\begin{array}{cc}
e^{(a+i b) t} & 0 \\
0 & e^{(a-i b) t}
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right]=e^{a t}\left[\begin{array}{cc}
\frac{e^{i b t}+e^{-i b t}}{2} & -\frac{e^{i b t}-e^{-i b t}}{2 i} \\
\frac{e^{i b t}-e^{-i b t}}{2 i} & \frac{e^{i b t}+e^{-i b t}}{2}
\end{array}\right]=e^{a t}\left[\begin{array}{cc}
\cos b t & -\sin b t \\
\sin b t & \cos b t
\end{array}\right]
$$

These calculations enable us to write down a closed form expression for the solution of this linear system, namely $\mathbf{x}(t)=\left[e^{t \mathbf{A}}\right] \mathbf{x}(0)$ where $\left[e^{t \mathrm{~A}}\right]=\mathbf{S}\left[e^{t \mathbf{B}}\right] \mathbf{S}^{-1}=e^{a t} \mathbf{S}\left[\begin{array}{cc}\cos b t & -\sin b t \\ \sin b t & \cos b t\end{array}\right] \mathbf{S}^{-1}$. However, the more important result is the ability to qualitatively describe the trajectories for this system by knowing only the real part of the eigenvalues of the matrix \mathbf{A} and the direction of the corresponding vector field (clockwise vs. counterclockwise).

Repeated eigenvalues (with geometric multiplicity less than the algebraic multiplicity)
Suppose we want to solve a system of the form $\frac{d \mathbf{x}}{d t}=\mathbf{A x}$ where \mathbf{A} is a non-diagonalizable 2×2 real matrix with a repeated eigenvalue λ. We've seen that in this case, we can always find a change of basis matrix \mathbf{S} such that $\mathbf{S}^{-1} \mathbf{A S}=\mathbf{B}=\left[\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right]$. As in the previous two cases, $\mathbf{A}=\mathbf{S B S}^{-1} \Rightarrow\left[e^{t \mathbf{A}}\right]=\mathbf{S}\left[e^{t \mathbf{B}}\right] \mathbf{S}^{-1}$ and it comes down to finding $\left[e^{t \mathbf{B}}\right]$. This is perhaps most easily done by explicitly solving the corresponding differential equations.

In the new coordinates, this system translates into $\left\{\begin{array}{c}\frac{d u_{1}}{d t}=\lambda u_{1}+u_{2} \\ \frac{d u_{2}}{d t}=\lambda u_{2}\end{array}\right\}$. The second equation is easily solved to get $u_{2}(t)=e^{\lambda t} u_{2}(0)$. We can guess a solution for the first equation of the form $u_{1}(t)=c_{1} t e^{\lambda t}+c_{2} e^{\lambda t}$. Differentiating this and substituting into the first equation, we get $c_{1}\left(e^{\lambda t}+\lambda t e^{\lambda t}\right)+c_{2} \lambda e^{\lambda t}=\lambda\left(c_{1} t e^{\lambda t}+c_{2} e^{\lambda t}\right)+e^{\lambda t} u_{2}(0)$.
Comparing like terms, we conclude that $c_{1}=u_{2}(0)$. Substituting $t=0$, we further conclude that $u_{1}(0)=c_{2}$. Putting these results together, we get $u_{1}(t)=u_{2}(0) t e^{\lambda t}+u_{1}(0) e^{\lambda t}=e^{\lambda t} u_{1}(0)+t e^{\lambda t} u_{2}(0)$. We therefore have that

$$
\mathbf{u}(t)=\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
e^{\lambda t} u_{1}(0)+t e^{\lambda t} u_{2}(0) \\
e^{\lambda t} u_{2}(0)
\end{array}\right]=\left[\begin{array}{cc}
e^{\lambda t} & t e^{\lambda t} \\
0 & e^{\lambda t}
\end{array}\right]\left[\begin{array}{l}
u_{1}(0) \\
u_{2}(0)
\end{array}\right]=\left[\begin{array}{cc}
e^{\lambda t} & t e^{\lambda t} \\
0 & e^{\lambda t}
\end{array}\right] \mathbf{u}(0)
$$

So, $\left[e^{t \mathbf{B}}\right]=\left[\begin{array}{cc}e^{\lambda t} & t e^{\lambda t} \\ 0 & e^{\lambda t}\end{array}\right]$ in this case and the solution is given by $\mathbf{x}(t)=\mathbf{S}\left[e^{t \mathbf{B}}\right] \mathbf{S}^{-1}=\mathbf{S}\left[\begin{array}{cc}e^{\lambda t} & t e^{\lambda t} \\ 0 & e^{\lambda t}\end{array}\right] \mathbf{S}^{-1} \mathbf{x}(0)$.
An alternate method of deriving this result may be found in the homework exercises.

Similar calculations enable us to deal with cases such as a repeated eigenvalue where the geometric multiplicity is 1 and the algebraic multiplicity is 3 (or even worse).

Finally, an actual system may exhibit several of these qualities - one or more complex pairs of eigenvalues, repeated eigenvalues, and distinct real eigenvalues. The Jordan Canonical Form of the matrix for such a system can be analyzed block by block and each of the above solutions applied within each block to determine the evolution matrix for the entire system.

Exercise:

a) Find the general solution for the following system of differential equations:

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=2 x_{1}-4 x_{4}+3 x_{5} \\
\frac{d x_{2}}{d t}=2 x_{2}-2 x_{3}+2 x_{4} \\
\frac{d x_{3}}{d t}=x_{2}-x_{4} \\
\frac{d x_{4}}{d t}=-x_{4} \\
\frac{d x_{5}}{d t}=-3 x_{4}+2 x_{5}
\end{array}\right\}
$$

b) Find the solution in the case where $\mathbf{x}(0)=(5,4,3,2,1)$.

