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Supplement on Representation of Functions in Different Coordinates 

Though you may believe you understand the basics of vectors, matrices, bases, and coordinates relative to a 
basis, there are some subtle aspects that warrant additional explanation. For example, if your concept of a vector 
in Rn is “an ordered n-tuple” or some similar definition, then this doesn’t really hold up objectively. 

If you were to change units, for example, the components of the vector might be completely different but still 
represent the same vector. In physics, the acceleration due to Earth’s gravity is a vector pointing downward, but 
is it 32 ft/sec2 or 9.8 m/sec2? The numerical value of the downward component can be different things 
depending on what coordinates you choose. Nonetheless, the physics is still the physics. It doesn’t change just 
because you decide to use different units. 

The same ambiguity applies to the description of functions. If we have a function represented as 2( )y f x x= = , 
think about what happens if you change coordinates by letting 3x u= −  and 12y v= . The former is a shift in 

the horizontal axis, and the latter is a linear change of scale. Substituting, we get 212 ( 3)v u= −  or 
21

12 ( 3) ( )v u f u= − =  . In the new coordinates, the function has a different algebraic representation (formula), 

but it still describes the same parabola. There’s an interesting way to think about this in terms of the functions 

that determine the coordinate changes. If we write ( ) 3x h u u= = −  and ( ) 12y k v v= = , then 1f k f h−=   . 
This can be schematically understood via the following diagram (where the variables are appended for 
guidance): 
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A given function can, in fact, be represented in arbitrarily many different ways. We require only that the 
appropriate coordinate changes be understood and that the relationship between different representations be 

determined by a diagram such as the one above. If so, we’ll say that f  and f  are equivalent. 

This is somewhat simplified in the case where the coordinate change is the same in both the domain and range 

of a given function. If this change is given by a function h , we get the simpler relation 1f h f h−=    and the 
corresponding simplified schematic: 
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Let’s focus on how this plays out in the context of vectors and matrices. In our standard view of Rn we can 

think of a vector 
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. We refer to the numbers 

1 2{ , , , }nx x x  as the standard coordinates of the vector. We say that these are the coordinates of the vector 

relative to the standard basis 1{ , , }n= e eE  . 

We have shown that if 1{ , , }n= v vB   is a basis for Rn, then any vector x in Rn can be expressed uniquely as 

[ ]
1

1 1 1n n n

n

c
c c

c

 ↑ ↑  
   = + + = =
   
↓ ↓    

x v v v v S x
B

   . The matrix 1 n

 ↑ ↑
 =
 
↓ ↓  

S v v  is called the change of basis 
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matrix. It is necessarily invertible. The vector [ ]
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  gives the coordinates of x relative to the basis B. 

Note that [ ][ ]= =x x S xE B
 and [ ] 1−=x S x

B
. These tell us how to change coordinates. 

Example: In R2, the vectors 1

2
1
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v  and 2

1
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v  form a basis B for R2. If we write 
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then for a vector such as 
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x , we can calculate its coordinates relative to the basis B by 
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. You can verify that 13 11

1 23 3− =v v x . 

An n by n matrix A represents a linear function from Rn to Rn, and matrix multiplication corresponds to 
composition of linear functions, i.e. ( ) ( )=AB x A Bx . We can use the facts that [ ][ ]= =x x S xE B

 and 

[ ] 1−=x S x
B

 in conjunction with our earlier observations about coordinate changes to define not only the idea of 

the coordinates of a vector relative to a basis, but also the idea of the matrix of a linear function relative to a 

basis. Specifically, if we let { },nR E  represent nR  with the coordinates of vectors expressed in terms of the 

standard basis E, and let { },nR B  represent nR  with the coordinates of vectors expressed in terms of a different 

basis B, and if we use the notation [ ]A B  for the matrix representation of the linear function corresponding to 

matrix A but relative to the basis B, then we have the following schematic: 
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From this we observe that 1[ ] −=A S ASB . This is an extremely important result. 

[ ]A B  can also be calculated directly for a given basis 1{ , , }n= v vB   as 1[ ] [ ] [ ]n

 ↑ ↑
 =
 

↓ ↓  

A Av AvB B B . 

Example: Suppose we want to find the matrix A for the linear transformation T representing 
orthogonal projection in R2 onto the line (through the origin) that is rotated 30° from the horizontal. 

The vector 1
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v  is in the direction of this line, and the vector 2
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v  is perpendicular to 

this. Relative to this basis, we see that 1 1( )T =v v  and 2( )T =v 0 . The matrix of T relative to the 

basis 1 2{ , }= v vB  is therefore [ ] [ ] [ ]1 2
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is 
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S . Since 1[ ] −=A S ASB , it follows that: 
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