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Math S-21b – Lecture #9 Notes 

The main topics in this lecture are orthogonal projection, the Gram-Schmidt orthogonalization process, QR 

factorization, isometries and orthogonal transformations, least-squares approximate solutions and applications 

to data-fitting. 

Some previous results: 

1) Suppose  1Span , , kV = v v . Let 1 k

  
 =
 
   

A v v . This is an n k  matrix with im( )V = A  and 

T(im ) ker( )V ⊥ ⊥= =A A . 

2) Suppose  1, , k= u uB  is an orthonormal (ON) basis for a subspace nV  R . Then for any nx R , 

1 1 2 2Proj ( ) ( ) ( )V k k=  +  + + x x u u x u u x u u . If we write 1 k

  
 =
 
   

B u u , then TProjV = BB  is the 

matrix for orthogonal projection onto V, and TRef 2V = −BB I  is the matrix for reflection through this 

subspace. 

3) If 
nV = R  and  1, , n= u uB  is an orthonormal basis for all of n

R , then 1 n

  
 =
 
   

B u u  will be an n n  

matrix with ON columns (hence invertible), and 
TProjV = =BB I . Therefore in this special case we’ll have 

1 T− =B B . Such a matrix is called an orthogonal matrix. 

4) If 1 k

  
 =
 
   

B u u  is any n k  matrix with orthonormal columns, then 
T

k=B B I . In the special case where 

B is an n n  matrix with orthonormal columns, this gives 
T

n=B B I . 

Transpose Facts 

The following relations hold wherever the expressions are defined: 

(1) 
T T T( ) =AB B A  

(2) 
T T T( )+ = +A B A B  

(3) If A is an invertible n n  matrix, then T
A  is also invertible and 

T 1 1 T( ) ( )− −=A A  

The proofs are somewhat routine. For example, to establish (1), if A is an m n  matrix and B is a n p  matrix, 

then the ( , )i j  of AB will be 
1

n

ik kj

k

a b
=

 . This will then be the ( , )j i  entry of 
T( )AB . On the other hand, the 

( , )j k  entry of T
B  will be 

kjb  and the ( , )k i  entry of T
A  will be ika , so the ( , )j i  entry of T T

B A  will be 

1 1

n n

kj ik ik kj

k k

b a a b
= =

=   which coincides with the ( , )j i  entry of 
T( )AB . Therefore 

T T T( ) =AB B A . 

Corollary: The matrix A for any orthogonal projection or reflection is always symmetric, i.e. T =A A . 

Proof: Using the previous results, any projection matrix can be expressed as T=A BB  and 
T T T T( )= = =A BB BB A , so the matrix is symmetric. Similarly, 

TRef 2V = −BB I  and 
T T T T T T(2 ) 2( ) 2− = − = −BB I BB I BB I , so this matrix is also symmetric. 
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Gram-Schmidt Orthogonalization Process 

Suppose we begin with a basis  1, , k= v vB  for a k-dimensional subspace nV  R . We would like to 

construct an orthonormal basis for this same subspace. The Gram-Schmidt orthogonalization process 

sequentially constructs such a basis. It should be emphasized that the resulting ON basis is very much 

dependent on the ordering of the original basis. We proceed as follows: 

(1) Start with 1v  and normalize it by scaling, i.e. 1
1

1

=
v

u
v

. For reasons that will soon become clear, we write 

11 1r = v . We can also solve for 1 11 1r=v u . Let    1 1 1Span SpanV = =v u . 

(2) Next, we take the second basis vector 2v , find its projection onto the subspace 1V , subtract this from the 

original to get a vector orthogonal to the first, then scale this to get a unit vector. We can calculate the 

projection as ( ) ( )
1 2 2 1 1ProjV = v v u u , so we take 

( )

( )
1

1

2 2

2

2 2

Proj

Proj

V

V

−
=

−

v v
u

v v
. Note that ( )

122 2 2ProjVr = −v v  is 

the perpendicular height of the parallelogram determined by the vectors  1 2,v v  and the area of this 

parallelogram is therefore 11 22( )( )base height r r⊥ = . We can also solve for ( )2 2 1 1 22 2r=  +v v u u u . Let 

   2 1 2 1 2Span , Span ,V = =v v u u . 

(3) If 2k  , we continue with the third basis vector 3v . We find its projection onto the subspace 2V , subtract 

this from the original to get a vector orthogonal to 2V , then scale this to get a unit vector. We can calculate 

the projection as ( ) ( ) ( )
2 3 3 1 1 3 2 2ProjV =  + v v u u v u u , so we take 

( )

( )
2

2

3 3

3

3 3

Proj

Proj

V

V

−
=

−

v v
u

v v
. Note that 

( )
233 3 3ProjVr = −v v  is the perpendicular height of the parallelepiped determined by the vectors 

 1 2 3, ,v v v  and the volume of this parallelepiped is therefore 11 22 33( )( )area of base height r r r⊥ = . We can 

also solve for ( ) ( )3 3 1 1 3 2 2 33 3r=  +  +v v u u v u u u . Let    3 1 2 3 1 2 3Span , , Span , ,V = =v v v u u u . 

We continue in this same manner until we exhaust our finite list of basis vectors. The last orthonormal vector 

will be 
( )

( )
1

1

Proj

Proj

k

k

k V k

k

k V k

−

−

−
=

−

v v
u

v v
 and if we write ( )

1
Proj

kkk k V kr
−

= −v v  we can define the k-volume of the k-

dimensional parallelepiped determined by the vectors  1 2, , , kv v v  as 11 22 kkr r r . We can also solve for 

( ) ( )1 1 1 1k k k k k kk kr− −=  + +  +v v u u v u u u . We then have    1 1Span , , Span , ,k kV = =v v u u , and this 

completes the orthogonalization process. 

QR factorization 

If we assemble the equations from the above process as 

( )
( ) ( )

( ) ( )

1 11 1

2 2 1 1 22 2

3 3 1 1 3 2 2 33 3

1 1 1 1k k k k k kk k

r

r

r

r− −

= 
 =  +
 

=  +  + 
 
 

=  + +  + 

v u

v v u u u

v v u u v u u u

v v u u v u u u

 we can 

express this as a product of matrices as follows: 
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11 2 1 1

22 2
1 2 1 2

 matrix w/linearly  matrix
 upper triangularindependent columns w/orthonormal columns

0

0 0

k

k
k k

kk
n k n k

k k

r

r

r
 



  
             = =  
   

               

v u v u

v u
A v v v u u u

 matrix
with nonzero diagonal entries

= QR  

The columns of the matrix A are the original basis vectors; the columns of the matrix Q are those of the Gram-

Schmidt basis; and the entries of the matrix R capture all of the geometric aspects of the original basis, i.e. 

lengths, areas, etc. and the non-orthogonality of the original vectors. Note that the k-volume is just the product 

of the diagonal entries of R, i.e. 11 22 kkr r r . 

Example: In 4
R , let 1

1
1
1
1

 
 =
 
  

v , 2

1
0
0
1

 
 =
 
  

v , and 3

0
2
1
1

 
 =
 
 − 

v , and let  1 2 3Span , ,V = v v v . These vector form a basis 

for V, but not an orthonormal basis. Using the Gram-Schmidt process, we have 
11 1 2r = =v , so 1

1
2

1
1
1
1

 
 =
 
  

u . We 

next calculate 
12 2

1 1 1 1
2 2 4 2

1 1 1 1 1 1 1 1 2 1 2 1
0 0 1 1 0 1 0 1 2 1 2 1

Proj ( ) (2)
0 0 1 1 0 1 0 1 2 1 2 1
1 1 1 1 1 1 1 1 2 1 2 1

V

                    
  − −                   − = −  = − = − = =                    − −
                                        

v v . 

Its magnitude is 
122 2 2Proj ( ) 1Vr = − =v v , so 2

1
2

1
1
1

1

 
− =
 −
  

u . We next calculate 

( ) ( )
23 3 3 3 1 1 3 2 2

1 1
2 2

0 1 1 1 2 1

2 1 1 1 2 1
Proj ( )

1 1 1 1 2 1

1 1 1 1 2 1

V

         
         −

− = −  −  = − + = =         
− − −         

− − −                  

v v v v u u v u u , and 

233 3 3Proj ( ) 1Vr = − =v v , so 3
1
2

1
1
1
1

 
 =
 −
 − 

u . 

The 3-volume of the parallelepiped determined by  1 2 3, ,v v v  is 11 22 33 (2)(1)(1) 2r r r = = . 

The corresponding QR-factorization is 

1 1 0 1 2 1 2 1 2
2 1 1

1 0 2 1 2 1 2 1 2
0 1 2

1 0 1 1 2 1 2 1 2
0 0 1

1 1 1 1 2 1 2 1 2

   
    −  = = − =   

− −       − −      

A QR . 

Isometries and orthogonal transformations 

Given two spaces V  and W  where there’s a notion of distance (metric spaces), an isometry is a transformation 

:T V W→  that preserves distances. Familiar examples include rotations and reflections, but also “isometric 

embeddings” such as the transformation that places 2
R  in 3

R  as either the xy-plane, xz-plane, yz-plane, or any 

other plane such that distances are preserved. In the case of linear transformations, we are more specific: 

Definition: A linear transformation : n nT →R R  is called an orthogonal transformation if it preserves norms, 

i.e. ( )T =x x  for all x. Its matrix is called an orthogonal matrix. 
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Proposition: If a linear transformation : n mT →R R  preserves norm, then ker( ) { }T = 0 . 

Proof: If ( )T =x 0 , then ( ) 0T = = =x x 0 , so =x 0 . 

Corollary: If : n nT →R R  is an orthogonal transformation, it must be invertible. 

Proposition: If : n nT →R R  is an orthogonal transformation, then T preserves dot products: ( ) ( )T T = x y x y  

for all , nx y R . 

Proof: By linearity, ( ) ( ) ( )T T T+ = +x y x y , so ( ) ( ) ( )T T T+ = +x y x y  and 
2 2

( ) ( ) ( )T T T+ = +x y x y . 

Since T is an orthogonal transformation, 
2 2 2 2

( ) ( ) ( ) 2T + = + = +  + =  +  +  +  = + + x y x y x y x y x x x y y x y y x y x y . Similarly, 

2 2 2 2 2
( ) ( ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( )T T T T T T T T+ = + +  = + + x y x y x y x y x y . Comparing both sides we see that 

( ) ( )T T = x y x y . 

Proposition: If : n nT →R R  is an orthogonal transformation, then T preserves angles. That is, if 1  is the angle 

between two nonzero vectors x and y, and if 2  is the angle between ( )T x  and ( )T y , then 2 1 =  . 

Proof: We know that 
1cos =x y x y  and 

2 2( ) ( ) ( ) ( ) cos cosT T T T   = =x y x y x y , and 

( ) ( )T T = x y x y . Therefore 1 2cos cos = , so 2 1 =  . 

Matrix of an orthogonal transformation 

Because the standard basis  1 2, , , n= e e eE  is an orthonormal basis of n
R  and since orthogonal 

transformations preserve length and angle, it follows that  1 2( ), ( ), , ( )nT T Te e e  must also be an orthonormal 

basis of n
R . This includes rotations and reflections. The matrix of an orthogonal transformation must therefore 

be    1 1 1( ) ( )n n nT T

         
     = = =
     

              

A e e Ae Ae u u
E E

, i.e. it must have orthonormal columns. It 

must also be the case that 
1 1 1 1

T

1

1

1 0

0 1

n

n n

n n n n

  →         
      = = = =
      

 →          

u u u u u

A A u u I

u u u u u

, so an 

orthogonal matrix has the special property that T 1−=A A , and any matrix that satisfies this property must be the 

matrix of an orthogonal transformation. Geometrically, these are all (compositions of) rotations and reflections. 

Least-Squares approximate solutions 

Situation: We would like to solve a linear system =Ax b  

where A is an m n  matrix, but we find that the system is 

inconsistent. This means that im b A , but this suggests the 

possibility that we might seek a vector 
x  such that 

Ax  is as 

close to the subspace im A  as possible. Orthogonal projection 

is a natural choice, so we seek 
x  such that ProjV

 =Ax b  

where im V = A . This means that we want (im ) V ⊥ ⊥−  =b Ax A . We have already shown that 

T(im ) ker( )⊥ =A A , so we want 
Tker( )− b Ax A , i.e. ( )T − =A b Ax 0  or T T =A Ax A b . This is known as 

the normal equation (or normal equations). A solution 
x  is called a least-squares approximate solution. 
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The name “least-squares solution” comes from an alternate way that it can be derived using multivariable 

calculus methods in the special case where we’re trying to find the line that best fits a given data set. That 

method involves minimizing the sum of the square deviations between values predicted by a best-fit line (also 

called a regression line) and actual values provided by the data set. 

The normal equation is easy to remember. If the original system is =Ax b , then you just have to apply the 

matrix T
A  to both sides of the equation to get 

T T=A Ax A b . This system will always be consistent. If A is an 

m n  matrix, then T
A A  will be an n n  (square) matrix. It will also be symmetric since 

T T T( ) =A A A A . 

In the case where 
Tker( ) { }=A A 0 , the matrix T

A A  will be invertible and there will be a unique least-squares 

solution 
T 1 T( ) −=x A A A b . Many students memorize this formula and apply it blindly, but it is often simplest 

to solve the consistent system 
T T=A Ax A b  using row reduction to find the least-squares solution. 

There is a simple way to determine when the normal equation will yield a unique least-squares solution. This is 

based on the following lemma: 

Lemma: For any matrix A, it is the case that 
Tker( ) ker=A A A . 

Proof: If kerx A , then =Ax 0 . So 
T T= =A Ax A 0 0  which means that 

Tker( )x A A . So 
Tker ker( )A A A . On the other hand, if 

Tker( )x A A , then 
T =A Ax 0 . But this means that 

Tker( ) (im )⊥ =Ax A A . But it’s obvious that im Ax A , so we have (im ) (im ) { }⊥  =Ax A A 0 . Therefore 

=Ax 0 , and therefore kerx A . So 
Tker( ) kerA A A . Therefore 

Tker( ) ker=A A A . 

We also know that for any matrix A, ker { }=A 0  if and only if the columns of A are linearly independent. If we 

combine this fact and the previous results, we see that the matrix T
A A  will be invertible and there will be a 

unique least-squares approximate solution to =Ax b  if and only if the columns of A are linearly independent. 

There’s an unexpected benefit provided by the least-squares solution. If V is any subspace with basis 

 1, , kv v , if we let 1 k

  
 =
 
   

A v v , then im V = A  and A will have linearly independent columns. So for 

any 
nb R , 

T 1 TProj ( )V

 −= =b Ax A A A A b . Therefore 
T 1 T( )−A A A A  will be the matrix for orthogonal 

projection onto the subspace V. This is significant in that our previous method required the use of the Gram-

Schmidt process to produce an orthonormal basis for the subspace V. This alternative method only requires that 

 1, , kv v  be a basis. It is perhaps worth noting that if  1, , kv v  had been an orthonormal basis, then we 

would have 
T

k=A A I  and 
T 1 T T T( )− = =A A A A AIA AA  which coincides with our previous method. 

Data fitting 

It is common that data occurs in the form 

of ordered pairs (or ordered n-tuples). If 

we plot the data, the resulting graph is 

called a scatterplot. If the scatterplot 

suggests a roughly straight-line 

relationship, it is reasonable to ask which 

straight line might best fit the given data. 

Suppose the data is  
1

( , )
N

i i i
x y

=
. We can 

use our least-squares method by assuming 
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the absurd, namely that all of the data fits a straight with equation y mx b= +  perfectly. If this is the case, then 

we get the system of linear equations: 

1 1 1 1

2 2 2 2

1

1

1N N N N

mx b y x y

mx b y x ym

b

mx b y x y

+ =     
     + =   

 =  =           
+ =          

Ac y  

This is, of course, a hopelessly inconsistent linear system, but we can find a least-squares approximate solution 

by solving 
T T=A Ac A y . We can calculate 

21

T 1 121 2

1

1

1

1 1 1

1

N N

i i

i iN

N

i
N i

x
x x

xx x x

x N
x

= =

=

  
   
 = =      
     

 


A A  and 

1

T 121 2

1

1 1 1

N

i i

iN

N

i
N i

y
x y

yx x x

y
y

=

=

  
   
 = =      
     




A y , so the normal equations are 

2

1 1 1

1 1

N N N

i i i i

i i i

N N

i i

i i

x x x y
m

b
x N y

= = =

= =

   
    
   =     
      

  

 
. 

These can then be easily solved to find the slope m and the intercept b for the line of best fit. 

Best quadratic? 

It may be the case that the scatterplot suggests something other than a straight line relationship. If, for example, 

you suspect a quadratic relationship, start by writing this as 
2y ax bx c= + + . If we again assume the absurd 

possibility that all the data fits this quadratic perfectly, we get the system of linear equations: 

2 2

1 1 1 1 1 1
2 2

22 2 2 2 2

2 2

1

1

1 NN N N N N

ax bx c y x x y
a

yax bx c y x x
b

c
yax bx c y x x

   + + =  
       + + =    =  =  
          + + =      

Ac y  

Once again, we solve the normal equation 
T T=A Ac A y  to get the least-squares approximate solution. This 

gives the system of equations: 

4 3 2 2

1 1 1 1

3 2

1 1 1 1

2

1 1 1

N N N N

i i i i i

i i i i

N N N N

i i i i i

i i i i

N N N

i i i

i i i

x x x x y

a

x x x b x y

c

x x N y

= = = =

= = = =

= = =

   
   
    
     =
    

    
   
      

   

   

  

 which we then solve to find the coefficients , ,a b c . 

Example: Given the 5 data points {(1,1),(2,1),(3,1),(4,3),(5,5)} 

find (a) the line that best fits this data and (b) the quadratic that 

best fits this data. 

Solution: (a) It’s easiest to assemble the necessary information 

in a table (or spreadsheet): 

 

 

 x  y  2x  xy  

 1 1 1 1 

 2 1 4 2 

 3 1 9 3 

 4 3 16 12 

 5 5 25 25 

  15 11 55 43 
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If the line we seek has equation y mx b= + , the resulting normal equation is: 
55 15 43

15 5 11

m

b

     
=     

     
. 

We can easily solve this via row reduction or matrix inversion to get 1m = , .8b = − . So the line that best fits 

this data has equation .8y x= − . 

(b) For the best-fitting quadratic we seek a parabola with 

equation 
2y ax bx c= + + . It’s helpful to expand the previous 

table to get: 

As previously described, the resulting normal equation becomes 

979 225 55 187

225 55 15 43

55 15 5 11

a

b

c

     
     =
     
     

. Solving this with matrix inversion 

gives 

5 30 35 187 30
1 1

30 187 231 43 110
70 70

35 231 322 11 154

a

b

c

−       
       = − − = −
       

−       

. So 

3 11 11
7 7 5, ,a b c= = − =  and the best-fitting quadratic has 

equation 23 11 11
7 7 5y x x= − + . 

 

 x  y  2x  xy  3x  
4x  

2x y  

 1 1 1 1 1 1 1 

 2 1 4 2 8 16 4 

 3 1 9 3 27 81 9 

 4 3 16 12 64 256 48 

 5 5 25 25 125 625 125 

  15 11 55 43 225 979 187 

More general least-squares methods 

If a scatterplot suggests a relationship of the form 
py ax=  for some unknowns a and p, we can use logs to 

rewrite this as ln ln lny a p x= + . If we let lnY y= , lnA a= , and lnX x= , the relationship is then 

Y A pX= +  and we can use least-squares with the adjusted data to find A and p, and then exponentiate to find a 

and p. 

These same methods work if we have data in the form  
1

( , , )
N

i i i i
x y z

=
 and we’re seeking the plane of best fit, or 

if we are trying to find the constants that provide a best fit for a relationship such as 
p qz ax y=  (in which case 

we would first take the log of both sides to get a relationship that yields a system of linear equations. 

Notes by Robert Winters 


