Math S-21b – Lecture #9 Notes

The main topics in this lecture are orthogonal projection, the Gram-Schmidt orthogonalization process, QR factorization, isometries and orthogonal transformations, least-squares approximate solutions and applications to data-fitting.

Some previous results:

1) Suppose
$$V = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$$
. Let $\mathbf{A} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{v}_1 & \cdots & \mathbf{v}_k \\ \downarrow & & \downarrow \end{bmatrix}$. This is an $n \times k$ matrix with $V = \text{im}(\mathbf{A})$ and

 $V^{\perp} = (\operatorname{im} \mathbf{A})^{\perp} = \operatorname{ker}(\mathbf{A}^{\mathrm{T}}).$ 2) Suppose $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is an orthonormal (ON) basis for a subspace $V \subseteq \mathbf{R}^n$. Then for any $\mathbf{x} \in \mathbf{R}^n$,

$$\underline{\operatorname{Proj}_{V} \mathbf{x} = (\mathbf{x} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + (\mathbf{x} \cdot \mathbf{u}_{2})\mathbf{u}_{2} + \dots + (\mathbf{x} \cdot \mathbf{u}_{k})\mathbf{u}_{k}}. \text{ If we write } \mathbf{B} = \begin{vmatrix} \uparrow & \uparrow \\ \mathbf{u}_{1} & \cdots & \mathbf{u}_{k} \\ \downarrow & \downarrow \end{vmatrix}, \text{ then } \boxed{\operatorname{Proj}_{V} = \mathbf{B}\mathbf{B}^{\mathrm{T}}} \text{ is the } \begin{vmatrix} \uparrow & \uparrow \\ \downarrow & \downarrow \end{vmatrix}}.$$

matrix for orthogonal projection onto *V*, and $\boxed{\operatorname{Ref}_{V} = 2\mathbf{B}\mathbf{B}^{\mathrm{T}} - \mathbf{I}}$ is the matrix for reflection through this subspace.

3) If $V = \mathbf{R}^n$ and $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthonormal basis for all of \mathbf{R}^n , then $\mathbf{B} = \begin{vmatrix} \uparrow & \uparrow \\ \mathbf{u}_1 & \cdots & \mathbf{u}_n \\ \downarrow & \downarrow \end{vmatrix}$ will be an $n \times n$

matrix with ON columns (hence invertible), and $\operatorname{Proj}_{V} = \mathbf{BB}^{T} = \mathbf{I}$. Therefore <u>in this special case</u> we'll have $\mathbf{B}^{-1} = \mathbf{B}^{T}$. Such a matrix is called an **orthogonal matrix**.

4) If
$$\mathbf{B} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u}_1 & \cdots & \mathbf{u}_k \\ \downarrow & \downarrow \end{bmatrix}$$
 is any $n \times k$ matrix with orthonormal columns, then $\mathbf{B}^{\mathrm{T}}\mathbf{B} = \mathbf{I}_k$. In the special case where

B is an $n \times n$ matrix with orthonormal columns, this gives $\mathbf{B}^{\mathrm{T}} \mathbf{B} = \mathbf{I}_{n}$.

Transpose Facts

The following relations hold wherever the expressions are defined:

(1) $(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$

(2) $(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}}$

(3) If **A** is an invertible $n \times n$ matrix, then \mathbf{A}^{T} is also invertible and $(\mathbf{A}^{\mathrm{T}})^{-1} = (\mathbf{A}^{-1})^{\mathrm{T}}$

The proofs are somewhat routine. For example, to establish (1), if **A** is an $m \times n$ matrix and **B** is a $n \times p$ matrix,

then the (i, j) of **AB** will be $\sum_{k=1}^{n} a_{ik} b_{kj}$. This will then be the (j, i) entry of $(\mathbf{AB})^{\mathrm{T}}$. On the other hand, the (j, k) entry of \mathbf{B}^{T} will be b_{kj} and the (k, i) entry of \mathbf{A}^{T} will be a_{ik} , so the (j, i) entry of $\mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$ will be $\sum_{k=1}^{n} b_{kj} a_{ik} = \sum_{k=1}^{n} a_{ik} b_{kj}$ which coincides with the (j, i) entry of $(\mathbf{AB})^{\mathrm{T}}$. Therefore $(\mathbf{AB})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$.

Corollary: The matrix **A** for any orthogonal projection or reflection is always symmetric, i.e. $\mathbf{A}^{T} = \mathbf{A}$. **Proof**: Using the previous results, any projection matrix can be expressed as $\mathbf{A} = \mathbf{B}\mathbf{B}^{T}$ and $\mathbf{A}^{T} = (\mathbf{B}\mathbf{B}^{T})^{T} = \mathbf{B}\mathbf{B}^{T} = \mathbf{A}$, so the matrix is symmetric. Similarly, $\operatorname{Ref}_{V} = 2\mathbf{B}\mathbf{B}^{T} - \mathbf{I}$ and

 $(2\mathbf{B}\mathbf{B}^{\mathrm{T}} - \mathbf{I})^{\mathrm{T}} = 2(\mathbf{B}\mathbf{B}^{\mathrm{T}})^{\mathrm{T}} - \mathbf{I}^{\mathrm{T}} = 2\mathbf{B}\mathbf{B}^{\mathrm{T}} - \mathbf{I}$, so this matrix is also symmetric.

Gram-Schmidt Orthogonalization Process

Suppose we begin with a basis $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ for a *k*-dimensional subspace $V \subseteq \mathbb{R}^n$. We would like to construct an orthonormal basis for this same subspace. The Gram-Schmidt orthogonalization process sequentially constructs such a basis. It should be emphasized that the resulting ON basis is very much dependent on the ordering of the original basis. We proceed as follows:

(1) Start with \mathbf{v}_1 and normalize it by scaling, i.e. $\mathbf{u}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$. For reasons that will soon become clear, we write $r_{11} = \|\mathbf{v}_1\|$. We can also solve for $\mathbf{v}_1 = r_{11}\mathbf{u}_1$. Let $V_1 = \operatorname{Span}\{\mathbf{v}_1\} = \operatorname{Span}\{\mathbf{u}_1\}$.

(2) Next, we take the second basis vector \mathbf{v}_2 , find its projection onto the subspace V_1 , subtract this from the original to get a vector orthogonal to the first, then scale this to get a unit vector. We can calculate the projection as $\operatorname{Proj}_{V_1}(\mathbf{v}_2) = (\mathbf{v}_2 \cdot \mathbf{u}_1)\mathbf{u}_1$, so we take $\mathbf{u}_2 = \frac{\mathbf{v}_2 - \operatorname{Proj}_{V_1}(\mathbf{v}_2)}{\|\mathbf{v}_2 - \operatorname{Proj}_{V_1}(\mathbf{v}_2)\|}$. Note that $r_{22} = \|\mathbf{v}_2 - \operatorname{Proj}_{V_1}(\mathbf{v}_2)\|$ is

the perpendicular height of the parallelogram determined by the vectors $\{\mathbf{v}_1, \mathbf{v}_2\}$ and the area of this parallelogram is therefore $(base)(\perp height) = r_{11}r_{22}$. We can also solve for $\mathbf{v}_2 = (\mathbf{v}_2 \cdot \mathbf{u}_1)\mathbf{u}_1 + r_{22}\mathbf{u}_2$. Let $V_2 = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\} = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$.

(3) If k > 2, we continue with the third basis vector \mathbf{v}_3 . We find its projection onto the subspace V_2 , subtract this from the original to get a vector orthogonal to V_2 , then scale this to get a unit vector. We can calculate the projection as $\operatorname{Proj}_{V_2}(\mathbf{v}_3) = (\mathbf{v}_3 \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{v}_3 \cdot \mathbf{u}_2)\mathbf{u}_2$, so we take $\mathbf{u}_3 = \frac{\mathbf{v}_3 - \operatorname{Proj}_{V_2}(\mathbf{v}_3)}{\|\mathbf{v}_3 - \operatorname{Proj}_{V_2}(\mathbf{v}_3)\|}$. Note that

 $r_{33} = \|\mathbf{v}_3 - \operatorname{Proj}_{V_2}(\mathbf{v}_3)\| \text{ is the perpendicular height of the parallelepiped determined by the vectors} \\ \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \text{ and the volume of this parallelepiped is therefore } (area of base)(\perp height) = r_{11}r_{22}r_{33}. \text{ We can} \\ \text{also solve for } \mathbf{v}_3 = (\mathbf{v}_3 \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{v}_3 \cdot \mathbf{u}_2)\mathbf{u}_2 + r_{33}\mathbf{u}_3. \text{ Let } V_3 = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}.$

We continue in this same manner until we exhaust our finite list of basis vectors. The last orthonormal vector

will be $\mathbf{u}_{k} = \frac{\mathbf{v}_{k} - \operatorname{Proj}_{V_{k-1}}(\mathbf{v}_{k})}{\|\mathbf{v}_{k} - \operatorname{Proj}_{V_{k-1}}(\mathbf{v}_{k})\|}$ and if we write $r_{kk} = \|\mathbf{v}_{k} - \operatorname{Proj}_{V_{k-1}}(\mathbf{v}_{k})\|$ we can define the k-volume of the k-

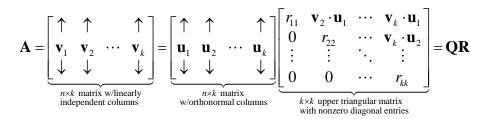
dimensional parallelepiped determined by the vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ as $r_{11}r_{22}\cdots r_{kk}$. We can also solve for $\mathbf{v}_k = (\mathbf{v}_k \cdot \mathbf{u}_1)\mathbf{u}_1 + \dots + (\mathbf{v}_k \cdot \mathbf{u}_{k-1})\mathbf{u}_{k-1} + r_{kk}\mathbf{u}_k$. We then have $V = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\} = \text{Span}\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$, and this completes the orthogonalization process.

QR factorization

If we assemble the equations from the above process as

$$\begin{cases} \mathbf{v}_{1} = r_{11}\mathbf{u}_{1} \\ \mathbf{v}_{2} = (\mathbf{v}_{2} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + r_{22}\mathbf{u}_{2} \\ \mathbf{v}_{3} = (\mathbf{v}_{3} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + (\mathbf{v}_{3} \cdot \mathbf{u}_{2})\mathbf{u}_{2} + r_{33}\mathbf{u}_{3} \\ \vdots \\ \mathbf{v}_{k} = (\mathbf{v}_{k} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + \dots + (\mathbf{v}_{k} \cdot \mathbf{u}_{k-1})\mathbf{u}_{k-1} + r_{kk}\mathbf{u}_{k} \end{cases}$$
we can

express this as a product of matrices as follows:



The columns of the matrix **A** are the original basis vectors; the columns of the matrix **Q** are those of the Gram-Schmidt basis; and the entries of the matrix **R** capture all of the geometric aspects of the original basis, i.e. lengths, areas, etc. and the non-orthogonality of the original vectors. Note that the <u>k-volume</u> is just the product of the diagonal entries of **R**, i.e. $r_{11}r_{22}\cdots r_{kk}$.

Example: In \mathbf{R}^4 , let $\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 0\\2\\1\\-1 \end{bmatrix}$, and let $V = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. These vector form a basis

for *V*, but not an orthonormal basis. Using the Gram-Schmidt process, we have $r_{11} = \|\mathbf{v}_1\| = 2$, so $\mathbf{u}_1 = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. We

next calculate $\mathbf{v}_{2} - \operatorname{Proj}_{V_{1}}(\mathbf{v}_{2}) = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix} - \begin{pmatrix} 1\\2\\1\\0\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\0\\0\\1\\1 \end{bmatrix} - \frac{1}{4}(2)\begin{bmatrix} 1\\1\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\0\\0\\1\\1\\1 \end{bmatrix} - \begin{bmatrix} 1/2\\1/2\\1/2\\1/2\\1/2 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 1\\-1\\-1\\1\\1\\1 \end{bmatrix} \cdot$ Its magnitude is $r_{22} = \|\mathbf{v}_{2} - \operatorname{Proj}_{V_{1}}(\mathbf{v}_{2})\| = 1$, so $\mathbf{u}_{2} = \frac{1}{2}\begin{bmatrix} 1\\-1\\-1\\1\\1\\1 \end{bmatrix} \cdot$ We next calculate $\mathbf{v}_{3} - \operatorname{Proj}_{V_{2}}(\mathbf{v}_{3}) = \mathbf{v}_{3} - (\mathbf{v}_{3} \cdot \mathbf{u}_{1})\mathbf{u}_{1} - (\mathbf{v}_{3} \cdot \mathbf{u}_{2})\mathbf{u}_{2} = \begin{bmatrix} 0\\2\\1\\-1\\-1 \end{bmatrix} - \frac{1}{2}\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} + \begin{bmatrix} 1\\-1\\-1\\1\\1 \end{bmatrix} = \begin{bmatrix} 1/2\\1/2\\-1/2\\-1/2 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 1\\1\\-1\\-1\\-1 \end{bmatrix}, \text{ and}$ $r_{33} = \|\mathbf{v}_{3} - \operatorname{Proj}_{V_{2}}(\mathbf{v}_{3})\| = 1$, so $\mathbf{u}_{3} = \frac{1}{2}\begin{bmatrix} 1\\-1\\-1\\-1\\-1 \end{bmatrix}.$

The 3-volume of the parallelepiped determined by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is $r_{11}r_{22}r_{33} = (2)(1)(1) = 2$.

The corresponding QR-factorization is
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{QR}$$

Isometries and orthogonal transformations

Given two spaces V and W where there's a notion of distance (metric spaces), an isometry is a transformation $T: V \rightarrow W$ that preserves distances. Familiar examples include rotations and reflections, but also "isometric embeddings" such as the transformation that places \mathbf{R}^2 in \mathbf{R}^3 as either the *xy*-plane, *xz*-plane, *yz*-plane, or any other plane such that distances are preserved. In the case of linear transformations, we are more specific:

Definition: A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is called an **orthogonal transformation** if it preserves norms, i.e. $||T(\mathbf{x})|| = ||\mathbf{x}||$ for all \mathbf{x} . Its matrix is called an **orthogonal matrix**.

Proposition: If a linear transformation $T : \mathbf{R}^n \to \mathbf{R}^m$ preserves norm, then $\ker(T) = \{\mathbf{0}\}$. **Proof**: If $T(\mathbf{x}) = \mathbf{0}$, then $||T(\mathbf{x})|| = ||\mathbf{x}|| = ||\mathbf{0}|| = 0$, so $\mathbf{x} = \mathbf{0}$.

Corollary: If $T : \mathbf{R}^n \to \mathbf{R}^n$ is an orthogonal transformation, it must be invertible.

Proposition: If $T : \mathbf{R}^n \to \mathbf{R}^n$ is an orthogonal transformation, then T preserves dot products: $T(\mathbf{x}) \cdot T(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$.

Proof: By linearity, $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$, so $||T(\mathbf{x} + \mathbf{y})|| = ||T(\mathbf{x}) + T(\mathbf{y})||$ and $||T(\mathbf{x} + \mathbf{y})||^2 = ||T(\mathbf{x}) + T(\mathbf{y})||^2$. Since *T* is an orthogonal transformation, $||T(\mathbf{x} + \mathbf{y})||^2 = ||\mathbf{x} + \mathbf{y}||^2 = (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y}) = \mathbf{x} \cdot \mathbf{x} + \mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{x} + \mathbf{y} \cdot \mathbf{y} = ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2\mathbf{x} \cdot \mathbf{y}$. Similarly, $||T(\mathbf{x}) + T(\mathbf{y})||^2 = ||T(\mathbf{x})||^2 + ||T(\mathbf{y})||^2 + 2T(\mathbf{x}) \cdot T(\mathbf{y}) = ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2T(\mathbf{x}) \cdot T(\mathbf{y})$. Comparing both sides we see that $T(\mathbf{x}) \cdot T(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$.

Proposition: If $T : \mathbf{R}^n \to \mathbf{R}^n$ is an orthogonal transformation, then T preserves angles. That is, if θ_1 is the angle between two nonzero vectors \mathbf{x} and \mathbf{y} , and if θ_2 is the angle between $T(\mathbf{x})$ and $T(\mathbf{y})$, then $\theta_2 = \pm \theta_1$. **Proof**: We know that $\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta_1$ and $T(\mathbf{x}) \cdot T(\mathbf{y}) = \|T(\mathbf{x})\| \|T(\mathbf{y})\| \cos \theta_2 = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta_2$, and $T(\mathbf{x}) \cdot T(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$. Therefore $\cos \theta_1 = \cos \theta_2$, so $\theta_2 = \pm \theta_1$.

Matrix of an orthogonal transformation

Because the standard basis $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is an orthonormal basis of \mathbf{R}^n and since orthogonal transformations preserve length and angle, it follows that $\{T(\mathbf{e}_1), T(\mathbf{e}_2), \dots, T(\mathbf{e}_n)\}$ must also be an orthonormal basis of \mathbf{R}^n . This includes rotations and reflections. The matrix of an orthogonal transformation must therefore

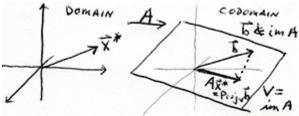
be
$$\mathbf{A} = \begin{bmatrix} \uparrow & \uparrow \\ [T(\mathbf{e}_1)]_{\mathcal{E}} & \cdots & [T(\mathbf{e}_n)]_{\mathcal{E}} \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{A}\mathbf{e}_1 & \cdots & \mathbf{A}\mathbf{e}_n \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u}_1 & \cdots & \mathbf{u}_n \\ \downarrow & \downarrow \end{bmatrix}$$
, i.e. it must have orthonormal columns. It

must also be the case that $\mathbf{A}^{\mathrm{T}}\mathbf{A} = \begin{bmatrix} \leftarrow \mathbf{u}_{1} \rightarrow \\ \vdots \\ \leftarrow \mathbf{u}_{n} \rightarrow \end{bmatrix} \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{1} \cdot \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \cdot \mathbf{u}_{n} \\ \vdots & \ddots & \vdots \\ \mathbf{u}_{n} \cdot \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \cdot \mathbf{u}_{n} \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} = \mathbf{I}_{n}$, so an

orthogonal matrix has the special property that $\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{-1}$, and any matrix that satisfies this property must be the matrix of an orthogonal transformation. Geometrically, these are all (compositions of) rotations and reflections.

Least-Squares approximate solutions

Situation: We would like to solve a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ where \mathbf{A} is an $m \times n$ matrix, but we find that the system is <u>inconsistent</u>. This means that $\mathbf{b} \notin \operatorname{im} \mathbf{A}$, but this suggests the possibility that we might seek a vector \mathbf{x}^* such that $\mathbf{A}\mathbf{x}^*$ is as close to the subspace im \mathbf{A} as possible. Orthogonal projection is a natural choice, so we seek \mathbf{x}^* such that $\mathbf{A}\mathbf{x}^* = \operatorname{Proj}_V \mathbf{b}$ where $V = \operatorname{im} \mathbf{A}$. This means that we want $\mathbf{b} - \mathbf{A}\mathbf{x}^* \in (\operatorname{im} \mathbf{A})^{\perp} = V^{\perp}$. We



where $V = \operatorname{im} \mathbf{A}$. This means that we want $\mathbf{b} - \mathbf{A}\mathbf{x}^* \in (\operatorname{im} \mathbf{A})^{\perp} = V^{\perp}$. We have already shown that $(\operatorname{im} \mathbf{A})^{\perp} = \ker(\mathbf{A}^{\mathrm{T}})$, so we want $\mathbf{b} - \mathbf{A}\mathbf{x}^* \in \ker(\mathbf{A}^{\mathrm{T}})$, i.e. $\mathbf{A}^{\mathrm{T}}(\mathbf{b} - \mathbf{A}\mathbf{x}^*) = \mathbf{0}$ or $\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x}^* = \mathbf{A}^{\mathrm{T}}\mathbf{b}$. This is known as the **normal equation** (or normal equations). A solution \mathbf{x}^* is called a **least-squares approximate solution**.

The name "least-squares solution" comes from an alternate way that it can be derived using multivariable calculus methods in the special case where we're trying to find the line that best fits a given data set. That method involves minimizing the sum of the square deviations between values predicted by a best-fit line (also called a regression line) and actual values provided by the data set.

<u>The normal equation is easy to remember</u>. If the original system is $\mathbf{A}\mathbf{x} = \mathbf{b}$, then you just have to apply the matrix \mathbf{A}^{T} to both sides of the equation to get $\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$. This system will always be consistent. If \mathbf{A} is an $m \times n$ matrix, then $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ will be an $n \times n$ (square) matrix. It will also be symmetric since $(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}}\mathbf{A}$.

In the case where ker($\mathbf{A}^{T}\mathbf{A}$) = {0}, the matrix $\mathbf{A}^{T}\mathbf{A}$ will be invertible and there will be a <u>unique</u> least-squares solution $\mathbf{x}^{*} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{b}$. Many students memorize this formula and apply it blindly, but it is often simplest to solve the consistent system $\mathbf{A}^{T}\mathbf{A}\mathbf{x} = \mathbf{A}^{T}\mathbf{b}$ using row reduction to find the least-squares solution.

There is a simple way to determine when the normal equation will yield a unique least-squares solution. This is based on the following lemma:

Lemma: For any matrix **A**, it is the case that $ker(\mathbf{A}^{T}\mathbf{A}) = ker \mathbf{A}$.

Proof: If $\mathbf{x} \in \ker \mathbf{A}$, then $\mathbf{A}\mathbf{x} = \mathbf{0}$. So $\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{0} = \mathbf{0}$ which means that $\mathbf{x} \in \ker(\mathbf{A}^{\mathsf{T}}\mathbf{A})$. So

ker $\mathbf{A} \subseteq \text{ker}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$. On the other hand, if $\mathbf{x} \in \text{ker}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$, then $\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{0}$. But this means that

 $Ax \in \ker(A^T) = (\operatorname{im} A)^{\perp}$. But it's obvious that $Ax \in \operatorname{im} A$, so we have $Ax \in (\operatorname{im} A)^{\perp} \cap (\operatorname{im} A) = \{0\}$. Therefore Ax = 0, and therefore $x \in \ker A$. So $\ker(A^TA) \subseteq \ker A$. Therefore $\ker(A^TA) = \ker A$.

We also know that for any matrix **A**, ker $\mathbf{A} = \{\mathbf{0}\}$ if and only if the columns of **A** are linearly independent. If we combine this fact and the previous results, we see that the matrix $\mathbf{A}^{T}\mathbf{A}$ will be invertible and there will be a unique least-squares approximate solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ if and only if the columns of **A** are linearly independent.

There's an unexpected benefit provided by the least-squares solution. If V is any subspace with basis

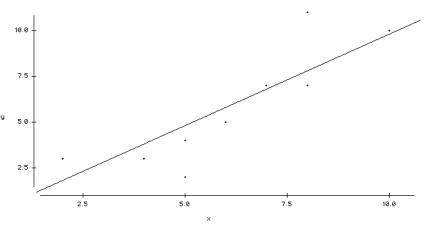
 $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$, if we let $\mathbf{A} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{v}_1 & \cdots & \mathbf{v}_k \\ \downarrow & \downarrow \end{bmatrix}$, then $V = \operatorname{im} \mathbf{A}$ and \mathbf{A} will have linearly independent columns. So for

any $\mathbf{b} \in \mathbf{R}^n$, $\operatorname{Proj}_V \mathbf{b} = \mathbf{A}\mathbf{x}^* = \mathbf{A}(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$. Therefore $\mathbf{A}(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}$ will be the matrix for orthogonal projection onto the subspace *V*. This is significant in that our previous method required the use of the Gram-Schmidt process to produce an orthonormal basis for the subspace *V*. This alternative method only requires that $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ be a basis. It is perhaps worth noting that if $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ had been an orthonormal basis, then we would have $\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{I}_k$ and $\mathbf{A}(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}} = \mathbf{A}\mathbf{A}^{\mathrm{T}}$ which coincides with our previous method.

Data fitting

It is common that data occurs in the form of ordered pairs (or ordered *n*-tuples). If we plot the data, the resulting graph is called a scatterplot. If the scatterplot suggests a roughly straight-line relationship, it is reasonable to ask which straight line might best fit the given data.

Suppose the data is $\{(x_i, y_i)\}_{i=1}^N$. We can use our least-squares method by *assuming*



the absurd, namely that all of the data fits a straight with equation y = mx + b perfectly. If this is the case, then we get the system of linear equations:

$$\begin{cases} mx_1 + b = y_1 \\ mx_2 + b = y_2 \\ \vdots \\ mx_N + b = y_N \end{cases} \implies \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_N & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \implies \mathbf{Ac} = \mathbf{y}$$

This is, of course, a hopelessly inconsistent linear system, but we can find a least-squares approximate solution

by solving
$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{c} = \mathbf{A}^{\mathrm{T}}\mathbf{y}$$
. We can calculate $\mathbf{A}^{\mathrm{T}}\mathbf{A} = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \\ 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_N & 1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} x_i & N \end{bmatrix}$ and
 $\mathbf{A}^{\mathrm{T}}\mathbf{y} = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \\ 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_i y_i \\ \sum_{i=1}^{N} y_i \end{bmatrix}$, so the normal equations are $\begin{bmatrix} \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} x_i & N \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_i y_i \\ \sum_{i=1}^{N} y_i \end{bmatrix}$.

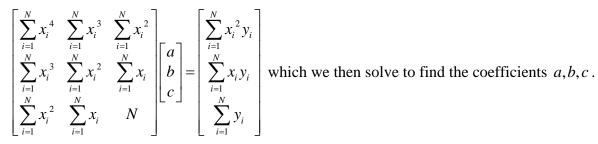
These can then be easily solved to find the slope *m* and the intercept *b* for the line of best fit.

Best quadratic?

It may be the case that the scatterplot suggests something other than a straight line relationship. If, for example, you suspect a quadratic relationship, start by writing this as $y = ax^2 + bx + c$. If we again assume the absurd possibility that all the data fits this quadratic perfectly, we get the system of linear equations:

$$\begin{cases} ax_1^2 + bx_1 + c = y_1 \\ ax_2^2 + bx_2 + c = y_2 \\ \vdots \\ ax_N^2 + bx_N + c = y_N \end{cases} \implies \begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ \vdots & \vdots & \vdots \\ x_N^2 & x_N & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \implies \mathbf{Ac} = \mathbf{y}$$

Once again, we solve the normal equation $\mathbf{A}^{T}\mathbf{A}\mathbf{c} = \mathbf{A}^{T}\mathbf{y}$ to get the least-squares approximate solution. This gives the system of equations:



Example: Given the 5 data points $\{(1,1), (2,1), (3,1), (4,3), (5,5)\}$ find (a) the line that best fits this data and (b) the quadratic that best fits this data.

Solution: (a) It's easiest to assemble the necessary information in a table (or spreadsheet):

	x	у	x^2	xy
	1	1	1	1
	2	1	4	2
	3	1	9	3
	4	3	16	12
	5	5	25	25
Σ	15	11	55	43

If the line we seek has equation y = mx + b, the resulting normal equation is: $\begin{vmatrix} 55 & 15 \\ 15 & 5 \end{vmatrix} \begin{vmatrix} m \\ b \end{vmatrix} = \begin{vmatrix} 43 \\ 11 \end{vmatrix}$.

We can easily solve this via row reduction or matrix inversion to get m = 1, b = -.8. So the line that best fits this data has equation y = x - .8.

(b) For the best-fitting quadratic we seek a parabola with equation $y = ax^2 + bx + c$. It's helpful to expand the previous table to get:

As previously described, the resulting normal equation becomes

 $\begin{vmatrix} 979 & 225 & 55 \\ 225 & 55 & 15 \\ 55 & 15 & 5 \\ c \end{vmatrix} = \begin{vmatrix} 187 \\ 43 \\ 11 \end{vmatrix}$. Solving this with matrix inversion

gives $\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \frac{1}{70} \begin{bmatrix} 5 & -30 & 35 \\ -30 & 187 & -231 \\ 35 & -231 & 322 \end{bmatrix} \begin{bmatrix} 187 \\ 43 \\ 11 \end{bmatrix} = \frac{1}{70} \begin{bmatrix} 30 \\ -110 \\ 154 \end{bmatrix}$. So

 $a = \frac{3}{7}, b = -\frac{11}{7}, c = \frac{11}{5}$ and the best-fitting quadratic has equation $y = \frac{3}{7}x^2 - \frac{11}{7}x + \frac{11}{5}$.

x^4 $x^2 y$ x^3 x^2 xy v х Σ

More general least-squares methods

If a scatterplot suggests a relationship of the form $y = ax^p$ for some unknowns *a* and *p*, we can use logs to rewrite this as $\ln y = \ln a + p \ln x$. If we let $Y = \ln y$, $A = \ln a$, and $X = \ln x$, the relationship is then Y = A + pX and we can use least-squares with the adjusted data to find *A* and *p*, and then exponentiate to find *a* and *p*.

These same methods work if we have data in the form $\{(x_i, y_i, z_i)\}_{i=1}^N$ and we're seeking the *plane* of best fit, or if we are trying to find the constants that provide a best fit for a relationship such as $z = ax^p y^q$ (in which case we would first take the log of both sides to get a relationship that yields a system of linear equations.

Notes by Robert Winters