Math S-21b — Lecture #9 Notes

The main topics in this lecture are orthogonal projection, the Gram-Schmidt orthogonalization process, QR
factorization, isometries and orthogonal transformations, least-squares approximate solutions and applications
to data-fitting.

Some previous results:

) )
1) Suppose V =Span{v,,---,v, }. Let A=| v, - v, |. Thisisan nxk matrix with V =im(A) and
J \2

V*=(@{imA)" =ker(AT)|.

2) Suppose B = {ul,m,uk} is an orthonormal (ON) basis for a subspace V < R". Then for any xe R",

T 0
Proj, x = (X-u,)u, +(X-U,)u, +---+(X-u)u,|. If we write B=|u, --- u, |, then |Proj, =BB"| is the
2 \J
matrix for orthogonal projection onto V, and |Ref, = 2BB" —1| is the matrix for reflection through this
subspace.
0 1
3)If V=R" and B={u,,---,u,} is an orthonormal basis for all of R", then B=|u, --- u, | willbean nxn

\ \

matrix with ON columns (hence invertible), and Proj, =BB" = 1. Therefore in this special case we’ll have
B =B". Such a matrix is called an orthogonal matrix.

0 T
4)I1f B=|u, --- u, | isany nxk matrix with orthonormal columns, then B'B = I, . In the special case where
\J 2

B isan nxn matrix with orthonormal columns, this gives B'/B =1 .

Transpose Facts

The following relations hold wherever the expressions are defined:

(1) (AB)" =B"A"

(2 (A+B)' =A"T+B"

(3) If Ais an invertible nxn matrix, then A" is also invertible and (A")™" =(A™)"

The proofs are somewhat routine. For example, to establish (1), if A isan mxn matrix and B isa nx p matrix,
then the (i, j) of AB will be zn:aikbkj . This will then be the (j,i) entry of (AB)" . On the other hand, the
(J,k) entry of B" will be b, k<3:11r1d the (k,i) entry of AT will be a,, sothe (j,i) entry of BTAT will be
ibkjaik = ia,.kbkj which coincides with the (j,i) entry of (AB)". Therefore (AB)" =B'A".
ket ket

Corollary: The matrix A for any orthogonal projection or reflection is always symmetric, i.e. A" = A,
Proof: Using the previous results, any projection matrix can be expressed as A=BB'" and
AT =(BB")" =BB'" = A, so the matrix is symmetric. Similarly, Ref, =2BB" -1 and
(2BB"—-1)" =2(BB")" —1" =2BB" -1, so this matrix is also symmetric.
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Gram-Schmidt Orthogonalization Process
Suppose we begin with a basis B = {vl,~--, vk} for a k-dimensional subspace V < R". We would like to
construct an orthonormal basis for this same subspace. The Gram-Schmidt orthogonalization process

sequentially constructs such a basis. It should be emphasized that the resulting ON basis is very much
dependent on the ordering of the original basis. We proceed as follows:

(1) Start with v, and normalize it by scaling, i.e. u, = ” ” . For reasons that will soon become clear, we write
1

I, =||v,|. We can also solve for v, =r,u,. Let V, =Span{v,} =Span{u,}.

(2) Next, we take the second basis vector v,, find its projection onto the subspace V,, subtract this from the

original to get a vector orthogonal to the first, then scale this to geta unit vector. We can calculate the
—Proj, (v,

projection as Proj, (v,)=(V,-u,)u,, sowe take u, = Note that r,, —Hv —Proj,, (v H is

Hv2 — PI’OJV H
the perpendicular height of the parallelogram determined by the vectors { 1,v2} and the area of this
parallelogram is therefore (base)(L height) = r,,r,, . We can also solve for v, =(v,-u,)u, +r,u, . Let
V, =Span{v,,v,} =Span{u,,u, } .

(3) If k > 2, we continue with the third basis vector v,. We find its projection onto the subspace V,, subtract

this from the original to get a vector orthogonal to V,, then scale this to get a unit vector. We can calculate

—Proj
b, ( Note that

the projection as Proj, (v,)=(V;-u,)u; +(V;-U,)u,, S0 we take u, = H > H
v, —Proj, (

I = Hv3 —Proj,, (vg)H is the perpendicular height of the parallelepiped determined by the vectors
{vl,vz,v3} and the volume of this parallelepiped is therefore (area of base)(L height) =r,r,,r,;. We can
also solve for v, =(v,-u,)u, +(V,-U,)u, +ryu,. Let V, =Span{v,,v,,v,} =Span{u,,u,,u,} .

We continue in this same manner until we exhaust our finite list of basis vectors. The last orthonormal vector

—Projv“( ‘)
Hvk Prolv vk H

will be u, = and if we write r, = H « —Proj, (v, )H we can define the k-volume of the k-

dimensional parallelepiped determined by the vectors {v,,v,,---,v, } as ,,f, K, . We can also solve for
Ve =(Vy -u)u, +---+(V, -U, Uy, + U, . We then have V =Span{v,,---, v, } =Span{u,,---,u, } , and this
completes the orthogonalization process.

QR factorization

v, =1,U
v, ( “U; U, + U,
Vo =(vs

If we assemble the equations from the above process as ‘U )Uy +(Vy-U, U, + LUy we can

Vi :(Vk 'ul)ul +"'+(Vk 'uk—l)uk—l+ MUy

express this as a product of matrices as follows:
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o AT e Vet o Vel

0 r -V -u
= e = e 22 k 2 |
A=V, V, Vi |[=| U Uy U || - S . 7 [=QR
| | lo 0 - 1
nxk matrix w/linearly nxk matrix - -
independent columns wi/orthonormal columns kxk upper triangular matrix

with nonzero diagonal entries

The columns of the matrix A are the original basis vectors; the columns of the matrix Q are those of the Gram-
Schmidt basis; and the entries of the matrix R capture all of the geometric aspects of the original basis, i.e.
lengths, areas, etc. and the non-orthogonality of the original vectors. Note that the k-volume is just the product
of the diagonal entries of R, i.e. ;1,1 .

1 1 0
Example: In R*, let v, = % , V, = 8 ,and v, = % ,and let V =Span{v,,v,,v,} . These vector form a basis
1 1 -1
1
for V, but not an orthonormal basis. Using the Gram-Schmidt process, we have r,, =|v,[|=2, so u, _% % . We
1
1 1 1/2 1/2 1
0 1 2 2 -1

next calculate v, —Proj, (v,)=|q || 2

e el
ROoOOR

1
0
0 __(2)
1

N
Rroor

_|-Y2)_1 -1}
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[EEN

1
1|1|_
2|17
1
Its magnitude is T, :Hv2 —Proj, (vz)‘—l SO u, = { . We next calculate

0l [1]1 1] [y2 1
v, —Proj, (vy) =V, —(V,-uy)u, —(V;-U, )u, = i -3 1 + _]/]/22 =3 _11 , and
T T O A O V-3 I
1
r33=Hv3—ProjV2(v3)H=1,so u, =% _11 .
-1
The 3-volume of the parallelepiped determined by {v,,v,,v,} is 1, = (2)O)D) =2,
11 0] [¥2 y2 127, , ,
The corresponding QR-factorization is A = 1 8 i = z; :z; _1/]/22 8 (1) —12 =QR.
11 -1] |y2 y2 -12

Isometries and orthogonal transformations

Given two spaces V and W where there’s a notion of distance (metric spaces), an isometry is a transformation
T:V —>W that preserves distances. Familiar examples include rotations and reflections, but also “isometric
embeddings” such as the transformation that places R” in R® as either the xy-plane, xz-plane, yz-plane, or any
other plane such that distances are preserved. In the case of linear transformations, we are more specific:

Definition: A linear transformation T : R" — R" is called an orthogonal transformation if it preserves norms,
i.e. [T =|x| for all x. Its matrix is called an orthogonal matrix.

3 revised July 11, 2022



Proposition: If a linear transformation T :R" — R™ preserves norm, then ker(T) ={0}.
Proof: If T(x) =0, then |[T (x)||=|x|=]0] =0, s0 x=0.

Corollary: If T:R" — R" is an orthogonal transformation, it must be invertible.

Proposition: If T:R" — R" is an orthogonal transformation, then T preserves dot products: T(X)-T(y) =x-y
forall x,y e R".

Proof: By linearity, T(x+Y) =T (X)+T(y), so [T(x+y)|=[T()+T(y)| and ||T(x+y)||2 :||T(x)+T(y)||2.
Since T is an orthogonal transformation,

||T(x+y)||2 =||x+y||2 =(X+Y)-(X+Y) =X-X+X-Y+Y-X+Y-y :||x||2 +||y||2 +2X-y . Similarly,

IT(x) +T(y)||2 =|T (x)||2 +|T (y)||2 +2T(X)-T(y) = ||x||2 +||y||2 +2T(x)-T(y) . Comparing both sides we see that
T(X)-T(y)=x-y.

Proposition: If T:R" — R" is an orthogonal transformation, then T preserves angles. That is, if 6, is the angle
between two nonzero vectors x and y, and if 6, is the angle between T(x) and T(y), then 6, =16, .

Proof: We know that x-y =||x]||ly|cosg, and T (x)-T (y) =|T (X)|||T (y)|cos &, =|x||ly|cos 6, and
T(X)-T(y)=X-y. Therefore cosé, =cosé,,so 6, =16, .

Matrix of an orthogonal transformation

Because the standard basis & = {el,ez,...,en} is an orthonormal basis of R" and since orthogonal
transformations preserve length and angle, it follows that {T (e,),T(e,),...,T(e,)} must also be an orthonormal
basis of R". This includes rotations and reflections. The matrix of an orthogonal transformation must therefore

T T ) T T T
be A=|[T(e)], -~ [T(e)]. |=| Ae, --- Ae, |=|u, --- u, |,ie. it musthave orthonormal columns. It
J l J \ \ J
«u 7" T Tu-u, - u-u ] 10
must also be the case that A"A = : u, - u, = ot =l 0 =1, s0an
«— u, > N u,-u, -+ u,-u, 0 -1

orthogonal matrix has the special property that A" = A™, and any matrix that satisfies this property must be the
matrix of an orthogonal transformation. Geometrically, these are all (compositions of) rotations and reflections.

Least-Squares approximate solutions

Situation: We would like to solve a linear system Ax=b J
where A is an mxn matrix, but we find that the system is [ Pomaw . GGl
inconsistent. This means that b im A, but this suggests the -
possibility that we might seek a vector x” such that Ax”" is as
close to the subspace im A as possible. Orthogonal projection

is a natural choice, so we seek x" such that |Ax" = Proj,b

where V =im A. This means that we want b — Ax" e (im A)" =V*. We have already shown that
(imA)*" =ker(AT), so we want b—Ax" e ker(A") ,i.e. AT (b—Ax*) =0 or |[ATAX" = ATb|. This is known as

the normal equation (or normal equations). A solution X" is called a least-squares approximate solution.
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The name “least-squares solution” comes from an alternate way that it can be derived using multivariable
calculus methods in the special case where we’re trying to find the line that best fits a given data set. That
method involves minimizing the sum of the square deviations between values predicted by a best-fit line (also
called a regression line) and actual values provided by the data set.

The normal equation is easy to remember. If the original system is Ax =D, then you just have to apply the
matrix A" to both sides of the equation to get A"Ax=A"b. This system will always be consistent. If A is an
mxn matrix, then ATA will be an nxn (square) matrix. It will also be symmetric since (ATA)" = ATA.

In the case where ker(A'A)={0}, the matrix ATA will be invertible and there will be a unique least-squares
solution x* = (ATA)"ATb. Many students memorize this formula and apply it blindly, but it is often simplest
to solve the consistent system ATAx = A'b using row reduction to find the least-squares solution.

There is a simple way to determine when the normal equation will yield a unique least-squares solution. This is
based on the following lemma:

Lemma: For any matrix A, it is the case that ker(ATA) =ker A.

Proof: If xeker A, then Ax=0.So ATAx=A"0=0 which means that x € ker(ATA) . So

ker A  ker(ATA) . On the other hand, if x € ker(ATA), then ATAx =0. But this means that

Ax e ker(A") = (im A)". But it’s obvious that AXeim A, so we have Ax e (im A)" N (im A) ={0}. Therefore
Ax =0, and therefore x e ker A. So ker(ATA) c ker A . Therefore ker(ATA) =ker A.

We also know that for any matrix A, ker A ={0} if and only if the columns of A are linearly independent. If we

combine this fact and the previous results, we see that the matrix ATA will be invertible and there will be a
unique least-squares approximate solution to Ax =b if and only if the columns of A are linearly independent.

There’s an unexpected benefit provided by the least-squares solution. If V is any subspace with basis

) )
{vl,---,vk}, ifwelet A=|v, --- v, [,then V =im A and A will have linearly independent columns. So for
J J

any beR", Proj,b=Ax"=A(ATA)"A'b. Therefore A(ATA)"AT will be the matrix for orthogonal
projection onto the subspace V. This is significant in that our previous method required the use of the Gram-
Schmidt process to produce an orthonormal basis for the subspace V. This alternative method only requires that
{vl,---,vk} be a basis. It is perhaps worth noting that if {vl,---,vk} had been an orthonormal basis, then we

would have ATA=1,_and A(ATA)'AT = AIAT = AA" which coincides with our previous method.

Data fitting

It is common that data occurs in the form

of ordered pairs (or ordered n-tuples). If

we plot the data, the resulting graph is

called a scatterplot. If the scatterplot

suggests a roughly straight-line

relationship, it is reasonable to ask which ¥
straight line might best fit the given data.
Suppose the data is {(x;, yi)}iN:l. We can

use our least-squares method by assuming
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the absurd, namely that all of the data fits a straight with equation y =mx-+b perfectly. If this is the case, then

we get the system of linear equations:

mx, +b =1y, % 1 Y1
mx, +b =y, L% [m}: Y,

: o b :
mxy +b =y, Xy 1 Y

= Ac=y

This is, of course, a hopelessly inconsistent linear system, but we can find a least-squares approximate solution

X 1
by solving ATAc=ATy. We can calculate ATA=D1 Xf XlN} X:2 1 =
Xy 1

N

DX
i=1
N

Y1 NX__
}y_z_;'y'

, S0 the normal equations are

N ) N
PRI
i=1 i=1

N

2%

i=1
N

2 HE

N

N

and

N

2%V,
|=1N .

ZYi

- N
Yy .Z=1: Yi

These can then be easily solved to find the slope m and the intercept b for the line of best fit.

L i=l

Best quadratic?
It may be the case that the scatterplot suggests something other than a straight line relationship. If, for example,

you suspect a quadratic relationship, start by writing this as y = ax* +bx+c. If we again assume the absurd
possibility that all the data fits this quadratic perfectly, we get the system of linear equations:

ax? oy +o =y, 5% g [

ax22+bx.2+C=y2 ng X, 1 ble| Y2 | — Ac=y
: : N c :

ax,’ +bx, +c=y, Xy' Xy 1 In

Once again, we solve the normal equation ATAc= Ay to get the least-squares approximate solution. This
gives the system of equations:

N

X DXy,

i=1
a N

i 2%V,
i

N 2

L =l

which we then solve to find the coefficients a,b,c.

Example: Given the 5 data points {(1,1),(2,1),(3,2),(4,3),(5,5)} x|y [ x[xy
find (a) the line that best fits this data and (b) the quadratic that 111111
best fits this data. 211141 2
Solution: (a) It’s easiest to assemble the necessary information 311]19]3
in a table (or spreadsheet): 4 13116112
5| 5]25] 25

> |15]11 |55 ]| 43
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: : : .. |55 15|m 43
If the line we seek has equation y =mx+Db, the resulting normal equation is: {15 c }{ b} = LJ.

We can easily solve this via row reduction or matrix inversion to get m=1, b =-.8. So the line that best fits

this data has equation .

(b) For the best-fitting quadratic we seek a parabola with

equation y = ax® +bx+c. It’s helpful to expand the previous x | Y| x| xy| x| x*|xy
table to get: 11111 1 1 1
As previously described, the resulting normal equation becomes 2111412 8 | 16 4
. 3193|278 9
979 225 55| a| |[187
225 55 15| b|=| 43 |. Solving this with matrix inversion 41311612 1 64 | 256 48
55 15 5 1 ' 5|5 [25]25[125]625| 125
L ¢ > | 15]11 |55 43 | 225|979 | 187
al 4 5 -30 35 ||187 1 30
gives | b |=—|-30 187 -231|| 43 |=—|-110|.So
c|] M35 —231 322 | 11| 70| 154

a= % b= —171 ,C= 1—51 and the best-fitting quadratic has

equation |y =3x* - x+ 4|,

More general least-squares methods
If a scatterplot suggests a relationship of the form y =ax” for some unknowns a and p, we can use logs to

rewrite thisas Iny=Ina+ pInx.Ifwelet Y =Iny, A=Ina, and X =Inx, the relationship is then
Y = A+ pX and we can use least-squares with the adjusted data to find A and p, and then exponentiate to find a
and p.

These same methods work if we have data in the form {(xi, Vi, zi)}iN= , and we’re seeking the plane of best fit, or

if we are trying to find the constants that provide a best fit for a relationship such as z =ax"y? (in which case
we would first take the log of both sides to get a relationship that yields a system of linear equations.

Notes by Robert Winters
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