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Math S-21b – Lecture #5 Notes 

Today’s main topics are coordinates of a vector relative to a basis for a subspace and, once we understand 
coordinates, the matrix of a linear transformation relative to a basis. 

Coordinates relative to a basis 
Perhaps the single most important thing about having a basis for a subspace is that there is only one way to 
express any vector in the subspace in terms of the given basis. This brings us to the definition of coordinates. 
But first, we have to prove the following proposition: 

Proposition: Suppose nV ⊆ R  is a subspace (which could be all of nR  or any proper subspace) and let 

{ }1 2, , , k= v v vB  be a basis for V (hence dim( )V k= ). Then any vector V∈x  can be uniquely expressed as 

1 1 2 2 k kc c c= + + +x v v v  for some scalars { }1, , kc c . The scalars are called the coordinates of x relative to 

the basis { }1 2, , , k= v v vB . 

In terms of matrices, we have [ ]
1

1 k

k

c

c

 ↑ ↑  
   = =
   
↓ ↓    

x v v S x 

B
. This says simply that the system of linear 

equations [ ] =S x x
B

 must yield a unique solution [ ]x
B

, and we refer to this as the coordinate vector for x 

relative to the basis B . 

Proof: Suppose there were two different ways to express a vector V∈x  in terms of the basis 

{ }1 2, , , k= v v vB . We could then write 1 1 2 2 1 1 2 2k k k kc c c d d d= + + + = + + +x v v v v v v  . But we can then 

transpose to rewrite this as 1 1 1 2 2 2( ) ( ) ( )k k kc d c d c d− + − + + − =v v v 0 . Because { }1 2, , , k= v v vB  is a basis, 

these vectors must be linearly independent. Therefore 1 1 2 2( ) ( ) ( ) 0k kc d c d c d− = − = = − = , so 

1 1 2 2, , , k kc d c d c d= = = . That is, there is only one way to express any vector in terms of a basis. 

Example 1: The plane in 3R  passing through the origin with normal vector 
1

1
4

− 
 =
 
 

n  is a subspace with 

{ }1 2

2 1
, 2 , 1

1 0

        = = −         

v vB  as a basis. (There are infinitely many such choices for a basis. All you have to do is 

choose two nonparallel vectors in the plane, each of which must be perpendicular to n. The dot product of each 

of them with n must be 0.) You can easily verify that the vector 
1
7

2

 
 = −
 
 

x  is in this subspace. What are its 

coordinates relative to the basis { }1 2,= v vB , i.e. what is [ ]x
B

? 

Solution: Our definition above tells us that [ ] =S x x
B

 where 
2 1
2 1

1 0

 
 = −
 
 

S , so we solve this inhomogeneous 

system as 
2 1 1 1 0 2
2 1 7 0 1 3

1 0 2 0 0 0

   
   − − → −
   
   

. Therefore  [ ] 2
3

 =  − 
x

B
, i.e. 1 22 3= −x v v , and you can easily verify that 

this is the case. It’s worth noting that had we chosen V∉x , the system would have been inconsistent. 
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The method described above for finding the coordinates of a vector relative to a given basis is completely 
general and should always be used in the case of proper subspaces (not the whole space). However, in the 
special case where the subspace is the whole space, i.e. nV = R  with basis { }1 2, , , n= v v vB , we have another 

method available for finding coordinates and for relating the coordinates. 

Special case where nV = R  with basis { }1 2, , , n= v v vB : In this case, the “change of basis matrix” S is an 

n n×  matrix 1 n

 ↑ ↑
 =
 
↓ ↓  

S v v . It’s columns are linearly independent and its rank is n, so it’s invertible. [Note 

that this would not have been meaningful for a subspace with dimension k n< .] 
So we have [ ]=x S x

B
 and [ ] 1−=x S x

B
. 

Example 2: Let 1

1
1
2

 
 =
 
 

v , 2

3
2
1

 
 =
 − 

v , and 3

2
0
1

 
 =
 
 

v . You can easily show that these three vectors are linearly 

independent and therefore form a basis { }1 2 3, ,= v v vB  for 3R . Find the coordinates of the vector 
7
1
2

 
 =
 
 

x  

relative to this basis. 

Solution: You can solve this in (at least) two ways. First, we could use the general method for finding the 

coordinates of a vector relative to a basis: 
1 3 2 7 1 0 0 1 11
1 2 0 1 0 1 0 6 11
2 1 1 2 0 0 1 30 11

−   
   →
   −   

, so 1 2 3
6 301

11 11 11= − + +x v v v . 

You can plug in the components and check this, if you like. 

Alternatively, let 
1 3 2
1 2 0
2 1 1

 
 =
 − 

S  be the change of basis matrix. You can calculate its inverse by hand or by 

calculator to get 1 1
11

2 5 4
1 3 2
5 7 1

−
− 
 = −
 − 

S . So [ ] 1 1 1
11 11

2 5 4 7 1 1 11
1 3 2 1 6 6 11
5 7 1 2 30 30 11

−
− − −       
       = = − = =
       −       

x S x
B

. 

Matrix of a linear transformation relative to an alternate basis 
The fact that we can speak of the coordinates of a vector relative to a basis other than the standard basis allows 
us to think of the matrix of a linear transformation in a much richer (though possibly a little more abstract) way. 
Though we could develop this perspective more generally for any linear transformation : n mT →R R , we’ll 
specialize to the case where A is an n n×  (square) matrix representing a linear transformation : n nT →R R  by 

( )T =x Ax . Up to this point, we have only had standard coordinates and the standard basis { }1 2, , , n= e e eE   

and our understanding of the entries of a matrix was greatly restricted by this. Specifically, relative to the basis 

{ }1 2, , , n= e e eE   a matrix 
11 1

1

n

n nn

a a

a a

 
 =
 
 

A


  



 had the interpretation that: 

11

1 11 1 1

1

n n

n

a
a a

a

 
 = = +
 
 

Ae e e  ,    
12

2 12 1 2

2

n n

n

a
a a

a

 
 = = +
 
 

Ae e e  ,     …    ,
1

1 1

n

n n nn n

nn

a
a a

a

 
 = = +
 
 

Ae e e  . 
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In other words, the entries in each column tell us the coordinates of the image of each standard basis vector 

relative to the standard basis. We can write this as [ ] [ ]
11 1

1

1

n

n

n nn

a a

a a

 ↑ ↑ 
  = =   
   ↓ ↓ 

A Ae Ae
E E



   



. 

Expanding our viewpoint a bit, if we can do this all relative to the standard basis, why not do the same thing 
relative to an alternate basis { }1 2, , , n= v v vB  for nR ? 

Definition: The matrix of a linear transformation : n nT →R R  relative to the basis { }1 2, , , n= v v vB  is the 

matrix [ ] [ ] [ ]1( ) ( )nT T T

 ↑ ↑
 =  
 ↓ ↓ 

v v

B B B
. 

If the linear transformation T is represented by the matrix A relative to the standard basis { }1 2, , , n= e e eE  , we 

often simply write [ ] [ ] [ ]1 n

 ↑ ↑
 =  
 ↓ ↓ 

A Av Av
B B B

 . 

Example 3: Let’s take another look at a previous example where we had { }1 2

2 1
, 2 , 1

1 0

        = −         

v v  spanning a 

plane with normal vector 
1

1
4

− 
 =
 
 

n . Let’s let 3 =v n  and include this with the other two vectors to form a basis 

{ }1 2 3

2 1 1
, , 2 , 1 , 1

1 0 4

 −            = = −             

v v vB  for all of 3R . Now consider the linear transformation that reflects any 

vector x in 3R  through the plane spanned by the first two vectors. What is the matrix of this linear 
transformation relative to the basis { }1 2 3, ,= v v vB ? 

Solution: This is actually extremely easy, perhaps we should even say obvious. Observe that: 

[ ] [ ] [ ] [ ] [ ]
1 1 1 2 3

2 2 1 2 3 1 2 3

3 3 1 2 3

1 0 0 1 0 0
0 1 0 ( ) ( ) ( ) 0 1 0

0 0 10 0 1

T

T

T

T T T T

 → = + + ↑ ↑ ↑  
   → = + + ⇒ = = =   −→− = + −    ↓ ↓ ↓ 

v v v v v
v v v v v v v v A
v v v v v

B B B B B
 

The simplicity of this transformation is reflected (pardon the pun) by the simplicity of its matrix relation to a 
well-chosen basis. 

Relating matrices of a linear transformation relative to different bases 
Now that we’ve opened the door to the possibility of representing a linear transformation by different matrices 
corresponding to different bases, it’s important to know how to relate these matrices. Though we can reason 
through this algebraically, there’s a much more elegant approach that uses what is known as a commutative 
diagram. In this case, think of a linear transformation as some kind of action and think of the choice of basis as 
analogous to the choice of a language. For example, let’s say we choose to think of the standard basis 

{ }1 2, , , n= e e eE  as English and an alternative basis { }1 2, , , n= v v vB  as Bulgarian. 

In English, we might denote the action of the linear transformation as { } { }, ,n n→AR RE E . 
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In Bulgarian, we might denote the action of the linear transformation as { } [ ] { }, ,n n→AR RBB B . 

Note that the domain and codomain has been appended in each case by the chosen “language.” It’s best to think 
of the transformation as going from left to right in this formulation. Vectors in nR  are in each case expressed in 
coordinates relative to the specified basis. 

How do we relate vectors (either in the domain or the codomain) from one language to the other? This is where 
the relations [ ]=x S x

B
 and [ ] 1−=x S x

B
 come in. If we think of changing languages as moving up and down in 

the diagram with English on the top line and Bulgarian on the bottom line, we have: 

{ } { }

{ } { }

, ,

, ,

n n

n n 
 

→

↑ ↑

→

A

A

R R

S S

R RB

E E

B B

 

Note, in particular, which way the vertical arrows go based on the fact that [ ] [ ]= =x x S x
E B

. 

If we start with a Bulgarian vector, we can either (a) translate it into English and then apply the English version 
of the matrix, or (b) carry out the transformation in Bulgarian and then change the language to English. The 
results should be the same if the transformation has any objective meaning. 

Algebraically this gives [ ]=AS S A
B

, but we usually express this as either [ ] 1−=A S AS
B

 or [ ] 1−=A S A S
B

. 

Definition: Two n n×  matrices A and B are called similar if there is an invertible n n×  matrix S such that 
1−=B S AS . 

Said differently, two matrices are similar if they represent the same linear transformation relative to two 
different bases. 

There’s another way to see this algebraic relationship without a diagrammatic roadmap. If we interpret the 
columns of the change of basis matrix S as well as the definition of [ ]A

B
 we observe that: 

( )

( )

( ) [ ]

( ) [ ]
[ ]

11 1
1 11 11 1 1 1

1

1 1 1
n n n n n n n n

−− −

−

− − −

 = == =          ⇒ ⇒ ⇒ ⇒ =       
       = = = =       

S AS e AvS ASe S AvSe v ASe Av
S AS A

Se v ASe Av S ASe S Av S AS e Av

   

B

B

B

 

Example 4: Suppose we have the basis { }1 2 3

1 1 1
, , 1 , 2 , 2

1 1 3

 −            = =        − −      

v v vB  for 3R  and that a linear 

transformation is defined in terms of how it acts on these basis vectors with 
1 2

2 3

3 1 2

( ) 2
( )

( )

T
T

T

=  = − 
 = + 

v v
v v

v v v
. If we denote the 

matrix of this linear transformation relative to the standard basis by A and relative to the basis B  by [ ]A
B

, find 

the matrix A. 

Solution: There is no calculation necessary in determining the matrix [ ]A
B

. This is actually extremely easy, 

perhaps we should even say obvious. Observe that: 

[ ] [ ] [ ] [ ] [ ]
1 2

2 3 1 2 3

3 1 2

( ) 2 0 0 1
( ) ( ) ( ) ( ) 2 0 1

( ) 0 1 0

T
T T T T T

T

 ↑ ↑ ↑=        = − ⇒ = = =      = + −    ↓ ↓ ↓ 

v v
v v v v v A

v v v
B B B B B
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The simplicity of how this linear transformation is defined relative to the basis B  yields a correspondingly 
simple matrix [ ]A

B
 relative to this basis. To determine the matrix A relative to the standard basis, we use 

[ ] 1−=A S AS
B

 and solve for [ ] 1−=A S A S
B

. From the basis we have 
1 1 1
1 2 2
1 1 3

− 
 =
 − − 

S  and we can calculate 

1 1
14

8 2 4
5 4 1

1 2 3

−
− 

 = − −
 
 

S , so 1
14

1 1 1 0 0 1 8 2 4 11 14 4 7 9 14
1 2 2 2 0 1 5 4 1 45 14 3 7 5 14
1 1 3 0 1 0 1 2 3 3 14 10 7 5 14

− − − −       
       = − − = −
       − − − − −       

A . 

The moral is that if we choose to work only with the standard basis, and if a linear transformation does not act 
in a simple way relative to the standard basis, then its standard matrix will most likely not be very simple. 
Finding a basis relative to which a given linear transformation acts simply will be a central idea in the course in 
the coming weeks. 

Example 5: The basis B  in the above example is such that the 3rd basis vector is perpendicular (orthogonal) to 
the first two vectors. Suppose { }1 2span ,=V v v  is the plane spanned by the first two vectors. Find the matrix 

for orthogonal projection of any vector onto this plane. 

Solution: Relative to the given basis, we observe that 
1 1

2 2

3

( )
( )
( )

T
T
T

=  = 
 = 

v v
v v
v 0

. So [ ]
1 0 0
0 1 0
0 0 0

 
 =
 
 

A
B

. As in the previous 

case, we have [ ] 1 1 1
14 14

1 1 1 1 0 0 8 2 4 13 2 3
1 2 2 0 1 0 5 4 1 2 10 6
1 1 3 0 0 0 1 2 3 3 6 5

−
− − − −       

       = = − − = − −
       − − − −       

A S A S
B

. This matrix will have 

rank 2 because its image is 2-dimensional. Once again we see that the matrix is complicated relative to the 
standard basis but quite simple relative to a basis that is well-suited to the transformation. 

Notes by Robert Winters 


