
revised June 28, 2021 1 

Math S-21b – Lecture #4 Notes 
In this lecture we define and study subspaces of Rn, the span of a collection of vectors, and what it means for a 
collection of vectors to be linearly independent. In particular, we’ll focus on the kernel and image of a linear 
transformation – subspaces of the domain and codomain, respectively – to motivate the definitions and methods. 
We’ll trim down a redundant spanning set for a given subspace to get a minimal spanning set or basis for a 
subspace, and we prove that the number of spanning vectors in any basis for a given subspace is always the 
same – the dimension of the subspace. We then define the rank and nullity of a matrix (and of the linear 
transformation that it represents). 

Subspaces of nR  
Definition: A subspace V of nR  is a subset that is closed under vector addition and scalar multiplication. That 
is, for any vectors 1 2, V∈v v  and scalars 1 2,c c , it must be the case that 1 1 2 2c c V+ ∈v v . This extends to all linear 
combinations of vectors in the subspace V. 

Proposition: The zero vector 0 must be in any subspace. 
Proof: If V∈v  is any vector, then 0 V= ∈v 0 . 

Note: Subspaces can be simply visualized as “flat things through the origin”. If V∈v  is any vector, the all 
scalar multiples of v must also be in V, i.e. a line passing through the origin. If 1 2, V∈v v  are nonparallel 
vectors, then all linear combinations of the form 1 1 2 2c c V+ ∈v v , i.e. a plane through the origin. In higher 
dimensions, we continue to understand subspaces of nR  to be lines, planes, and higher-dimensional “flat things 
through the origin”. We use the term “affine” to refer to parallel objects that do not pass through the origin. 

Span of a collection of vectors 
Definition: Given a collection of vectors { }1 2, , , n

k ∈v v v R , we define the span of these vectors to be the set 

of all linear combinations of these vectors, i.e. { } { }1 1 1 1Span , ,  where ,  are scalarsk k k kc c c c= + +v v v v   . 

By its definition, the span of any collection of vectors is automatically a subspace. That is, for appropriate 
scalars, ( ) ( )1 1 1 1 1 1 1( ) ( )k k k k k k kc c d d c d c dα β α β α β+ + + + + = + + + +v v v v v v   . 

Though we often define subspaces by conditions, we usually specify a subspace by producing a collection of 
vectors that span the subspace. For example, we describe a line through the origin as the span of a single vector, 
and a plane through the origin as the span of two nonparallel vectors. It’s important to note, however, that we 
could also describe a plane as the span of more than two vectors that all lie in that plane. Eliminating such 
redundancy will motivate the concept of a basis for a subspace. 

Image and kernel of a linear transformation 
Suppose A is an m n×  matrix that represents a linear transformation : n mT →R R  by ( )T =x Ax . Its domain is 

nR  and its codomain is mR . We define: 
{ }image( ) image( ) im( ) : codomain( )nT = = = ∈ ⊂A A Ax x R A  

{ }kernel( ) kernel( ) ker( ) : domain( )nT = = = ∈ = ⊂A A x R Ax 0 A  

Proposition: (1) im(A) is a subspace of the codomain mR ; and  
(2) ker(A) is a subspace of the domain nR . 

Proof: (1) Any two vectors in im(A) must be of the form 1 2,Ax Ax  for some vectors 1 2,x x  in the domain. 
Therefore ( )1 1 2 2 1 1 2 2 im( )c c c c+ = + ∈Ax Ax A x x A  by linearity. 

(2) If 1 2, ker( )∈x x A , then 1 =Ax 0  and 2 =Ax 0 . So ( )1 1 2 2 1 1 2 2 1 2c c c c c c+ = + = + =A x x Ax Ax 0 0 0 , so 

1 1 2 2 ker(c c+ ∈x x A) . 
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Special case of an n n×  (square) matrix A 
When A is a square matrix, the image and kernel give us a new way of characterizing when a matrix is 
invertible. 

Proposition: Let A be an n n×  (square) matrix. Then the following statements are equivalent: 
(1) A is invertible (4) rank( ) n=A  (full rank) 
(2) The system =Ax b  has a unique solution x for all n∈b R  (5) im( ) n=A R  
(3) rref ( ) n=A I  (6) { }ker( ) =A 0  (the zero subspace) 

The proof of the equivalence of these statements is left to your observations and knowledge of the definitions. 

Calculation of the image and kernel of an m n×  matrix A 
Proposition: The image of any matrix A is the span of its column vectors. 

Proof: If the matrix A is expressed in terms of its columns as 1 n

 ↑ ↑
 =
 
↓ ↓  

A v v , we know that: 

1 1=Ae v , 2 2=Ae v , …, n n=Ae v , so the column vectors are clearly all in the image of A. 

However, any vector x in the domain can be written as 
1

1 1 n n

n

x
x x

x

 
 = = + +
 
 

x e e  , so 

( )1 1 1 1 1 1n n n n n nx x x x x x= + + = + + = + +Ax A e e Ae Ae v v   , i.e. { }1im( ) span , , n=A v v . 
This is why the image of a matrix A is also referred to as the “column space” of A. 

Note: Though it’s true that { }1im( ) span , , n=A v v , it is not necessarily the case that all of these column 
vectors are necessary to span the image. There may be some redundancy. Eliminating this redundancy can be 
accomplished by understanding the kernel of the matrix. Indeed, every vector in the kernel of a matrix will give 
a linear interdependency of the columns of the matrix. 

Example #1: Determine the image and kernel of the matrix 
2 1 0
1 1 4
0 3 8

 
= − 
 − 

A  by providing a spanning set of 

vector for each of these subspaces. 

From the proposition above, we know that if 1

2
1
0

 
=  
  

v , 2

1
1

3

 
= − 
  

v , and 3

0
4
8

 
=  
 − 

v  are the columns of A, then 

{ }1 2 3im( ) span , ,=A v v v . That’s all there is to it. 

For the kernel, we solve the homogeneous system =Ax 0 . This is most easily done using row reduction: 

2 1 0 0 1 1 4 0 1 1 4 0 1 1 4 0 1 0 4 3 0
1 1 4 0 2 1 0 0 0 3 8 0 0 1 8 3 0 0 1 8 3 0
0 3 8 0 0 3 8 0 0 3 8 0 0 0 0 0 0 0 0 0

− − −         
− → → − → − → −         

         − − −         
 

If we let 3 3x t= , we get that 
1

2

3

4
8
3

t

x t
x t
x t

∈

= −  = 
=   R

 or 
4

8
3

t
− 

=  
  

x . This says simply that 
4

ker( ) span 8
3

 −   =   
    

A , so we 

have our spanning set. 
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Note that because 
4

8 ker( )
3

− 
∈ 

  
A , this means that 1 2 3 1 2 3

4 4
8 8 4 8 3
3 3

 − ↑ ↑ ↑ −   
 = = − + + =   
    ↓ ↓ ↓    

A v v v v v v 0 , so there’s 

a linear dependency among these vectors. In particular, this means that we can solve for any one of these 
vectors in terms of the remaining vectors. For example, 3 1 2

84
3 3= −v v v . This means that { }3 1 2span ,∈v v v , so 

we don’t need it in our spanning set for the image. We could, of course, have eliminated any one of these three 
vectors in this manner, but it’s good standard practice to solve for the later vectors in terms of its predecessors. 
There are no other linear interdependencies that can be used to eliminate redundancy, so this is the best we can 
do. That is, { }1 2im( ) span ,=A v v . 

Note, in particular, that we retained in our spanning set for the image exactly those column vectors of the 
original matrix A that eventually yielded Leading 1’s in the reduced row-echelon form of this matrix. We can 
always choose our spanning set for the image such that this is the case. In order to understand this better, we 
need one more very important definition. 

Definition: A set of vectors { }1 2, , , n
k ∈v v v R  is called linearly independent if given any linear combination 

of the form 1 1 k kc c+ + =v v 0 , this implies that 1 0kc c= = = . That is, there is no nontrivial way to combine 
these vectors to yield the zero vector. 

Note that this definition also means that it’s impossible to solve for any one of these vectors in terms of the 
others. This is the essential quality of linear independence – there is no redundancy among a linearly 
independent set of vectors. 

Test for linear independence 

Given a collection of vectors { }1 2, , , n
k ∈v v v R , if we write 1 k

 ↑ ↑
 =
 ↓ ↓ 

A v v , then the expression 

1 1 k kc c+ + =v v 0  can be expressed as =Ac 0  where 
1

k

c

c

 
=  
  

c


. So the statement that 1 1 k kc c+ + =v v 0  

implies that 1 0kc c= = =  can be restated very succinctly as =Ac 0  implies =c 0 . That is, a collection of 
vectors { }1 2, , , kv v v  will be linearly independent if and only if { }ker( ) =A 0 . 

In our example above, we found that for 1 2 3

 ↑ ↑ ↑
 =
 ↓ ↓ ↓ 

A v v v , 
4

ker( ) span 8
3

 −   =   
    

A . Therefore these column 

vectors were not linearly independent. 

Definition: Given a subspace V of nR , a collection of vectors { }1 2, , , k V∈v v v  is called a basis of V if 

{ }1 2Span , , , k V=v v v  and { }1 2, , , kv v v  are linearly independent. 

A basis is a minimal spanning set, and it’s important to note that any given subspace can have many different 
bases. 

Note: nR  is itself a subspace of nR  (the whole space). The standard basis { }1 2, , , n= e e eE  is familiar to us, 

but, in fact, any linearly independent collection of n vectors { }1 2, , , nv v v  in nR  would provide an alternate 
basis for nR . 
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Example #2: Determine bases for the image and kernel of the matrix 
1 1 1 1 1
1 1 0 2 2

1 1 2 0 3
2 2 1 3 4

− − 
− − =  − −
 − − 

A . 

We begin by noting that { }1 2 3 4 5im( ) span , , , ,=A v v v v v  where { }1 2 3 4 5, , , ,v v v v v  are the columns vectors of A. 

The kernel of A is found by row reduction: 
1 1 0 2 0 01 1 1 1 1 0

1 1 0 2 2 0 0 0 1 1 0 0
1 1 2 0 3 0 0 0 0 0 1 0
2 2 1 3 4 0 0 0 0 0 0 0

 −− − 
 − −  →   − −
  − −   

 where the 

Leading 1’s are highlighted. We must introduce two parameters s, t to describe all solutions, namely: 
1 1

2 2

3 3

4 4

5 5,

2 1 2 1 2
1 0 1 0

ker( ) Span ,0 1 0 1
0 1 0 1
0 0 0 00

s t

x s t x
x s x
x t x s t
x t x
x x

∈

= − −  −            
=                 = − ⇒ = = + ⇒ =       − −   

         =   
         =               R

x A  and these form a basis for the 

kernel. These two vectors also give that 1 2+ =v v 0  and 1 3 42− − + =v v v 0 , so we can solve for 2 1= −v v  and 

4 1 32= +v v v . Therefore { }1 3 5im( ) span , ,=A v v v  and these form a basis for the image. 

We can easily see that these vectors are now linearly independent because if we create a new matrix with just 

these vectors as its columns, our test for linear independence gives 
1 0 0 01 1 1 0

1 0 2 0 0 1 0 0
1 2 3 0 0 0 1 0
2 1 4 0 0 0 0 0

 − 
 −  →   −
  −   

. This 

follows exactly the same steps as the original matrix, only now the Leading 1’s occupy all columns (except the 
column corresponding to the right-hand-sides of the corresponding homogeneous linear equations). This 
example illustrates how the rank of a matrix coincides with the minimum number of vectors necessary to 
span the image of the matrix. 

Dimension of a subspace 
Intuitively, we would expect to have just one vector to form a basis for a line through the origin, and two 
vectors to form a basis for a plane through the origin. This is the subject of an important theorem: 

Theorem: Given any two bases for a subspace V of nR , the number of vectors in both bases must be the same. 
This uniquely determined integer is called the dimension of V (written dim( )V ). 

Proof: Suppose the subspace nV ⊆ R  has two bases { }1 2, , , pv v v  and { }1 2, , , qw w w . We need to show that 

p q= . Start by noting that because { }1 2, , , qw w w  is a basis, it spans V, so we can express each of the vectors 

in the first basis in terms of these vectors in the second basis, i.e. 
1 11 1 12 2 1

1 1 2 2

q q

p p p pq q

c c c

c c c

= + + + 
 
 
 = + + + 

v w w w

v w w w







. 

If we assemble each of these vectors as the columns of a matrix and use our definition of the product of a matrix 
and a vector, we can write these p vector equations as a single matrix equation: 

11 21 1

1 1

1 2

p

q p

q q pq

c c c

c c c

    ↑ ↑ ↑ ↑
     =    
    ↓ ↓ ↓ ↓    

AM N

w w v v
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Note that M is an n q×  matrix, A is an q p×  matrix, and N is an n p×  matrix. We can think of each of these 
matrices as representing linear transformations, p q n→ →A MR R R  and the composition p n→NR R  with 

=MA N . 

It’s easy to see that ker( ) ker( )⊆A N . If ker( )∈x A , then =Ax 0 . So ( ) ( )= = = =Nx MAx M Ax M 0 0 . 

Therefore ker( )∈x N . However, because { }1 2, , , pv v v  is a basis and these vectors form the columns of N, 

this matrix will have linearly independent columns. But this is the same as saying that { }ker( ) =N 0 . Therefore 

{ }ker( ) =A 0  as well. But this then tells us that the columns of A are linearly independent. So rank( ) p=A . If 
we interpret this in terms of the number of rows (q) and columns (p) of the matrix A and use the fact that the 
rank of a matrix can never be greater than the number of rows or the number of columns of the matrix, we get 
that { }rank( ) min ,p p q= ≤A . But this clearly implies that p q≤ . 

If we were to now repeat this entire argument with the roles of the two bases interchanged, we would similarly 
conclude that q p≤ . Therefore p q= . 

Now that the idea of dimension has meaning in the context of linear subspaces, a few definitions are in order: 

Definition: Given an m n×  matrix A, we define: rank( ) dim(im )=A A  and nullity( ) dim(ker )=A A . 

Note: This new definition for the rank of a matrix does not contradict our previous definition in terms of the 
number of Leading 1’s in the reduced row-echelon form of the matrix. As we saw in the example, a basis for the 
image of any matrix can be formed using only the columns of the matrix that ultimately produced Leading 1’s 
in its reduced row-echelon form, and the number of such basis vectors will then be the rank of the matrix. 

We might also note that the number of parameters necessary to describe all vectors in the kernel corresponds to 
those columns that do not yield Leading 1’s. This is also the number of vectors in a basis for the kernel (based 
on previous observations), so this corresponds to the nullity of the matrix. Any m n×  matrix A has n columns 
(corresponding to its domain being nR ). So if we combine all of these observations we get the following: 

Rank-Nullity Theorem: Given any m n×  matrix A, ( ) ( ) dim (domain ( ))rank nullity n+ = =A A A . 

We can also state this as dim(im( )) dim(ker( )) dim (domain ( ))n+ = =A A A . 

Though all of these facts apply for any matrix, the special case of an n n×  (square) matrix A allows us to state 
the following proposition (proof left as an exercise) summarizing what it means for a matrix to be invertible. 

Proposition: Let A be an n n×  (square) matrix. Then the following statements are equivalent: 
(1) A is invertible 
(2) The system =Ax b  has a unique solution x for all n∈b R  
(3) rref ( ) n=A I  
(4) rank( ) n=A  (full rank) 
(5) im( ) n=A R  
(6) { }ker( ) =A 0  (the zero subspace) 
(7) The columns of A are linearly independent. 
(8) The columns of A span nR . 
(9) The columns of A form a basis for nR . 

 
Notes by Robert Winters 


