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Math S-21b – Lecture #2 Notes 

Today’s lecture focuses on the vector and matrix formulations for a system of linear equations, linear 
transformations defined by matrices, the meaning of the columns of a matrix, and how to find matrices for 
several important geometrically defined linear transformations. 

Vector form of a system of linear equations 

Any system of m linear equations in n unknowns is of the form 
11 1 1 1

1 1

n n

m mn n m

a x a x b

a x a x b

    
 
    


  


. If we choose to 

represent vectors in Rm as columns and use only the definitions of scalar multiplication of a vector and vector 

addition, i.e. 
1 1

m m

x tx
t

x tx

   
   
   
   
   and 

1 1 1 1

m m m m

x y x y

x y x y

     
      
          
   , we can express these linear equations in the form: 

11 1 1

1

1

n

n

m mn m

a a b
x x

a a b

     
       
     
     
      (vector form of the linear system} 

If we denote the column vectors as 
11 1

1

1

, ,
n

n

m mn

a a

a a

   
    
   
   

v v    and 
1

m

b

b

 
 
 
 

b  , we can then rewrite this more 

succinctly as 1 1 n nx x  v v b . This can be understood geometrically. What this says is that this system will 

have a solution (or many solutions) if the vector b on the right-hand-side can be expressed as a linear 
combination of the vectors 1{ , , }nv v , i.e. the vector b can be “built” out of these vectors by appropriate 

scaling and vector addition. 

Example: The linear system 
3 4
2 3
x y
x y
  

   
 can be written in vector form as 

3 1 4
2 1 3

x y                
. With 1

3
2
    

v  (in red) and 2

1
1

    
v  (in blue), and 

4
3
    

b  (in black), we want to know what x and y must be so that 

1 2x y v v b . Visually, we might guess that this can be done with x between 

perhaps 1 and 1.5, and y a small negative number. We solve for these values 
using row reduction methods: 

3 1 4 1 2 1 1 2 1 1 2 1 1 0 1.4
2 1 3 2 1 3 0 5 1 0 1 0.2 0 1 0.2
                                  

 

So 1.4x   and 0.2y   , and this agrees with our expectations. 

Example #2: If we write the system 
3 2 2 4
4 4 3
x y z
x y z
   

    
 in vector form, we have 

3 2 2 4
4 4 1 3

x y z
                       

. If 

we write 1

3
4
    

v  (in red) and 2

2
4
    

v  (in blue) and 3

2
1
    

v  (in green), and 
4
3
    

b  (in black), we are then 

seeking values for , ,x y z  so that 1 2 3x y z b  v v v . There are (infinitely) many ways to do this. 
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This agrees with what we found when we solved a similar system last 
week using row reduction: 

11
101 11

2 10 7
2071

4 20

2
1 03 2 2 4

4 4 1 3 0 1
4

t

x t
y t
z t



  
                      R

 

Every choice of t gives a different way to construct the vector b out of 
these three spanning vectors (see picture at right). 

Example #3: The system 
3 2 5

7
2 1

x y
x y
x y

      
   

 can be written in vector form 

as 
3 2 5
1 1 7

2 1 1
x y
     
       
     
     

. Writing 1

3
1

2

 
  
 
 

v , 2

2
1
1

 
 
 
 

v , and 
5
7
1

 
 
 
 

b  as vectors in R3, 

there is some doubt as to whether it’s possible to do this, and this agrees with the fact 
that we previously found this system to be inconsistent. This situation is illustrated in the 
diagram at right (where the axes have been rotated for a better view). The red and blue 
vectors, v1 and v2, span a plane, and the third vector, b, does not lie in this plane. We will 
soon express this by saying 1 2span{ , }b v v . 

Matrix form of a linear system 
If we take the vector form above and assemble the vectors  1, , nv v  side-by-side to form an m n  matrix 

11 1

1

1

n

n

m mn

a a

a a

    
    
   
     

A v v


   


, and if we write 
1

n

x

x

 
 
 
 

x  , we can define the product of this matrix and the 

vector as 
1

1 1 1n n n

n

x
x x

x

    
      
   
     

Ax v v v v   . Using this definition, we can express the linear system 

11 1 1 1

1 1

n n

m mn n m

a x a x b

a x a x b

    
 
    





 simply as Ax b . This is called the matrix form of the linear system. 

This can also be understood in terms of (linear) functions. Note that if we write ( )T x Ax , we have the input 

vector nx R  and the output vector ( ) mT   x Ax b R . We can therefore understand such a system of linear 

equations in terms of the function : n mT R R . We also sometimes represent this by writing either: 
Tn mR R      or     n mAR R      or     n m   Ax R Ax b R  

A function defined in this manner is called a linear transformation. 

Definition: A function : n mT R R  is called a linear transformation if for all vectors 1 2, nv v R  and for all 

scalars 1 2,c c R , T satisfies the linearity property 1 1 2 2 1 1 2 2( ) ( ) ( )T c c c T c T  v v v v . This can also be 

expressed more geometrically by saying that T preserves vector addition, i.e. 1 2 1 2( ) ( ) ( )T T T  v v v v , and  

T preserves scalar multiplication, i.e. ( ) ( )T c cTv v . 

We call the input space nR  the domain (as expected), and we refer to the output space mR  as the codomain. 
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Note 1: One thing worth mentioning here is that this notion of a linear function may not entirely agree with 
previous usage of the term “linear” as seen in calculus courses and before. Specifically, any function of the form 

( )L x ax b   is first-order, but it is not linear unless b = 0. Note that ( ) ( ) ( ) ( )L x y a x y b L x L y      . 
Also, preservation of scalar multiplication means that it would have to be the case that (0) 0L b  , so in order 
to be linear it must be the case that ( )L x ax  (the graph of this line would have to pass through the origin). In 
particular, not that a function like ( ) 2 3f x x   is not a linear function! 

More generally, a linear function 1: nT R R  would have to be of the form 1 1 1( , , )n n nT x x c x c x    , i.e. a 

pure first-order expression without constant term. For a linear function : n mT R R , all m (output) components 
of the value of this function would have to be of this form. 

Note 2: In the case of a function defined by ( )T x Ax  for an m n  matrix A, the linearity property simply 

becomes the distributive law: 1 1 2 2 1 1 2 2( ) ( ) ( )c c c c  A x x A x A x . 

Proposition: ( )T x Ax  (for an m n  matrix A) is a linear transformation. 

Proof: If we write the matrix A in terms of its columns, 1 n

  
 
 
   

A v v  and let 
1

n

x

x

 
 
 
 

x  , 
1

n

y

y

 
 
 
 

y  and let 

,  R , then 
1 1 1 1 1 1

n n n n n n

x y x y x y

x y x y x y

   
   

   

         
              
                  

x y       using basic facts about scaling and 

adding vectors. Using our definition of the product of a matrix and a vector, we have: 

1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n n n

n n

n n n n n n n n

n n n n

x y
T x y x y

x y

x y x y x x y y

x x y y T T

 
       

 

       
     

    
           
        

          
         

x y A x y v v v v

v v v v v v v v

v v v v Ax Ay x y

  

  
 

 

As you can see, the linearity property ultimately flows from the distributive law for vector addition. 

Important Note: We began by looking at systems of linear equations and introduced matrices initially as a 
convenient way of keeping track of the manipulation of equations en route to a solution of the system. A matrix 
was effectively just “a box of numbers”. We now have a very different and extremely important new view of a 
matrix as a linear function. This functional view of an m n  matrix as a linear function from nR  to mR  will 
be with us from now on. 

Meaning of the columns of a matrix 
Now that we are able to think of a matrix as a function, it’s possible to provide a simple interpretation of the 
columns of a matrix that will allow us to construct matrices based on information about how they act on vectors. 

In nR  we introduce the standard or elementary basis vectors 1

1
0

0

 
 

  
 
  

e  , 2

0
1

0

 
 

  
 
  

e  , …, 

0
0

1

n

 
 

  
 
  

e  . You have 

probably seen these vectors before under different names. For example, in R2, we have 1

1
0
    

e i  and 

2

0
1
    

e j , and we can write any vector in R2 as 
1 0
0 1

x
x y x y

y
                   

x i j . 
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Similarly, in R3, we have 1

1
0
0

 
  
 
 

e i , 2

0
1
0

 
  
 
 

e j , and 3

0
0
1

 
  
 
 

e k , and we can write any vector in R3 as 

1 0 0
0 1 0
0 0 1

x
y x y z x y z
z

       
             
       
       

x i j k . 

This same decomposition can be done in nR  as 
1

1 1 n n

n

x
x x

x

 
    
 
 

x e e  . Using our definition of the product 

of a matrix and a vector, we see that: 

1 1 1 2 1

2 1 1 2 2

1

1
0

1 0 0 {1st column of the matrix }

0

0
1

0 1 0 {2nd column of the matrix }

0

0
0

1

n n

n n

n n

                      
                      

  
 
 
    

Ae v v v v v v A

Ae v v v v v v A

Ae v v

 

 



  1 20 0 1 { th column of the matrix }n n n


 

      
 
 

v v v v A

 

In other words, the columns of a matrix tell us how the corresponding linear function acts on the basic vectors 

 1, , ne e  and, quite significantly, these completely determine the matrix. In fact, for any vector 

1 1 n nx x  x e e , we have 1 1 1 1 1 1( )n n n n n nx x x x x x        Ax A e e Ae Ae v v   . 

We can now begin writing down some important examples of matrices. 

Identity in nR : The identity function : n nId R R  is simply ( )Id x x . This is clearly linear (it preserves 
everything, including scaling and addition of vectors) and we have all we need to determine its corresponding 
n n  (square) matrix, denoted by nI  (often just as I), and called the n n  Identity matrix. 

1 1

2 2
1

( ) {1st column of the matrix}
1 0( ) {2nd column of the matrix}

0 1
( ) { th column of the matrix}

n n

n n

Id

Id

Id n

 
           
   
     

 

e e

e e
I e e

e e

 
   

 
 

This matrix has 0’s everywhere except on the main diagonal, and all of the diagonal entries are equal to 1. 

Dilation (scaling) in nR : This is a transformation of the form ( )T rx x  for some fixed scalar r. We have: 

1 1

2 2
1

( ) {1st column of the matrix}
0( ) {2nd column of the matrix}

0
( ) { th column of the matrix}

n

n n

T r
rT r

r r
r

T r n

 
           
   
     

 

e e

e e
A e e

e e

 
   

 
. 

This also yields another diagonal matrix, once again with equal entries on the main diagonal. 
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Counterclockwise rotation in 2R : The transformation that rotates any vector in 2R  counterclockwise through 
a fixed angle   is, in fact, a linear transformation (think about it in terms of preserving vector addition and 
scalar multiplication). We can determine its 2 2  (square) matrix by drawing a picture and using basic 
trigonometry. (It’s best to draw the angle relatively small to most easily see things.) We see that rotation of the 

basic vectors 1e  and 2e  give: 1

cos
sin




    
e  and 2

sin
cos




    
e , so its matrix is 

cos sin
sin cos

 
 

    
R . 

Rotation-dilation in 2R : If we combine counterclockwise rotation through a fixed angle   and scaling by a 

fixed scalar r, we have  1

cos
sin

r
r




    
e  and 2

sin
cos
r

r



    
e , so its matrix is 

cos sin
sin cos

r r
r r

 
 

    
A . If we let 

cosa r   and sinb r   w see that any matrix of the form 
a b
b a

    
A  will represent a rotation-dilation 

where the scaling is by 2 2r a b   and the angle of rotation is determined by tan b a   (in the appropriate 
quadrant as determined by the signs of the entries). 

For example, the matrix 
2 3

3 2
     

A  represents a rotation-dilation with scalar 13r   with angle of rotation 

determined by tan 3 2    in the 2nd quadrant. This gives 123.69   . 

Notes by Robert Winters 


