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Math S-21b – Lecture #18 Notes 

Linear Differential Operators 

Higher order linear ordinary differential equations with constant coefficients 

In general, an nth order linear ordinary differential equation is a differential equation of the form 
1

11 1 0( ) ( ) ( ) ( ) ( )
n n

n nn
d x d x dx
dt dtdt

p t p t p t x t q t
−

−−+ + + + = , where 1 1 0( ), , ( ), ( ), ( )np t p t p t q t−  are functions of the 

independent variable t. We solve this by (1) finding an expression for all homogeneous solutions ( )hx t , 

(2) using some productive method to find one particular solution ( )px t  to the inhomogeneous equation, and 

then (3) adding these to get the general solution ( ) ( ) ( )h px t x t x t= + . If we are solving an initial value problem, 

we would then use the initial conditions to determine any unknown constants in the expression for ( )x t . 

One case of special interest is the case where all of the coefficient functions ( )i ip t a=  are constant. In this case 

the differential equation simplifies to 
1

11 1 0 ( ) ( )
n n

n nn
d x d x dx
dt dtdt

a a a x t q t
−

−−+ + + + = . 

A linear ODE of the form ( ) ( 1)

1 1 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n

nx t p t x t p t x t p t x t q t−

−
+ + + + =  where 

1 1 0( ), , ( ), ( ), ( )np t p t p t q t−  are functions of the independent variable t can be expressed in the form 

( ( )) ( )T x t g t=  where T is a linear operator of the form 
1

11 1 0( ) ( ) ( )
n n

n nn
d d d
dt dtdt

T p t p t p t
−

−−= + + + +  . The last 

term refers to multiplication by 0 ( )p t . A useful way of formulating such an ODE is to thing of the left-hand-

side as corresponding to “the system” and the inhomogeneity ( )q t  on the right-hand-side as corresponding to 

the “input signal” or, more simply, the “input.” The general solution of the ODE is then referred to as the 

“output signal” or “response.” Some motivating examples are in order. 

Differential operators 

We have previously defined a linear differential operator as a transformation which acts linearly (preserves 

scaling and addition) and that takes functions to other functions, i.e. 1 1 1 2 1 1 1 2( ) ( ) ( )T c f c f c T f c T f+ = + . There are 

many such operators, but some basic operators are of special interest to us as building blocks for more general 

linear differential operators. In particular: 

(1) Df f =  acts linearly. That is,  1 1 2 2 1 1 2 2( ) ( ) ( ) ( )d
dt

c f t c f t c f t c f t + = + . 

(2)  ( ) ( ) ( ) ( )h tM f t h t f t=  , i.e. multiplication by the function ( )h t  also acts linearly. [This is just the 

Distributive Law. 

(3) The “shift-by-a” operator defined by  ( ) ( ) ( )aL f t f t a= −  also acts linearly. This is also called a “time 

shift” if the independent variable t represents time. 

(4) The Identity operator ( )I f f=  is a linear operator. 

It’s routine to prove the following facts: 

Fact 1: Any composition of linear operators is also a linear operator. 

Fact 2: Any linear combination of linear operators is also a linear operator. 

These facts enable us to express a linear ODE with constant coefficients in a simple and useful way. For 

example, in the case of a mass-spring-dashpot system with ODE ( )mx cx kx f t+ + = , we can write this as 
2[ ] ( ) ( )mD cD kI x t f t+ + =  and, if we let 2L mD cD kI= + +  we could write simply [ ( )] ( )L x t f t= . The linear 

operator L represents the system, and the function f represents the input signal. For any linear ODE with 

constant coefficients of the form 
1

11 1 0 ( ) ( )
n n

n nn
d x d x dx
dt dtdt

a a a x t q t
−

−−+ + + + = , we can express this simply as 
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1

1 1 0 ( ) ( )n n

nD a D a D a I x t q t−

−
 + + + + =   and as 1

1 1 0 ( ) 0n n

nD a D a D a I x t−

−
 + + + + =   for a homogeneous 

system. The fact that the “system” 1

1 1 0

n n

nD a D a D a I−

−+ + + +  is independent of t is why we refer to such an 

operator as a Linear, Time-Invariant (LTI) operator. 

Characteristic polynomial, exponential solutions 

Given the operator 1

1 1 0

n n

nD a D a D a I−

−+ + + +  and the fact that [ ]rt rtD e re= , 
2 2[ ]rt rtD e r e= , etc., it follows 

that 1 1 1

1 1 0 1 1 0 1 1 0( )n n rt n rt n rt rt rt n n rt

n n nD a D a D a I e r e a r e a re a e r a r a r a e− − −

− − −
 + + + + = + + + + = + + + +  . 

We define 1

1 1 0( ) n n

np r r a r a r a−

−= + + + +  as the characteristic polynomial. We can also formally write 

1

1 1 0( ) n n

np D D a D a D a I−

−= + + + + , and write simply  ( ) ( )rt rtp D e p r e= . [This can be interpreted as saying 

that the function rte  is an eigenfunction of the operator ( )p D  with eigenvalue ( )p r .] In the case of a 

homogeneous system, this means we would have  ( ) ( ) 0rt rtp D e p r e= =  for all t, and this is only possible 

when ( ) 0p r = , i.e. when r is a root of the characteristic polynomial (called a characteristic root). According to 

the Fundamental Theorem of Algebra, we should be able to fact ( )p r  into a product of linear and irreducible 

quadratic factors and produce n roots, possible with multiplicity, and possibly including complex conjugate 

pairs. 

In other words, if we seek exponential solutions of the form rte  for the homogeneous equation 
1

11 1 0 ( ) 0
n n

n nn
d x d x dx
dt dtdt

a a a x t
−

−−+ + + + = , we calculate rtdx
dt

re= , 
2

2

2 rtd x
dt

r e= , …, 
n

n

n rtd x
dt

r e= , and substitution 

gives 1 2 1 2

1 2 1 0 1 2 1 0( ) 0n rt n rt rt rt rt n n rt

n nr e a r e a r e a re a e r a r a r a r a e− −

− −+ + + + + = + + + + + = . This yields a 

solution only when the characteristic polynomial 1 2

1 2 1 0( ) 0n n

np r r a r a r a r a−

−= + + + + + = . So, for any root ir  

of the characteristic polynomial, ir t
e  will be a homogeneous solution. As long as there are no repeated roots, and 

since we can use the quadratic formula to produce a complex conjugate pair of roots for each irreducible 

quadratic factor, we will be able to produce n distinct roots and a corresponding set of exponential solutions 

 1 2, , , nr tr t r t
e e e . In the case of repeated roots, this will yield fewer solutions of this form. 

By linearity, any function of the form 1 2

1 2( ) nr tr t r t

h nx t c e c e c e= + + +  will solve the homogeneous equation. 

Question: Does this yield all solutions? 

A second order example should explain why the answer is YES. Suppose we wish to solve the ODE 

3 2 0x x x− + = . Any exponential solution rte  would give 
2( ) 3 2 ( 2)( 1) 0p r r r r r= − + = − − = . Its characteristic 

roots are 1 2r =  and 2 1r = , and these yield solutions 2te  and te . Why are ALL homogeneous solutions of the 

form 2

1 2( ) t tx t c e c e= + ? 

If we write the differential equation in terms of linear differential operators with d
dt

D = , we might write this as 

   2 ( ) 0D I D I x t− − = , i.e. as a composition of two 1st order linear differential operators. If we let 

  ( ) ( )D I x t y t− = , this gives two 1st order equations: ( )dx
dt

x y t− =  and 2 0
dy

dt
y− = . The latter equation is 

easily solved to give all solutions 2

1( ) ty t c e=  where 1c  is a constant. We then substitute this into the former 

equation to get 2

1

tdx
dt

x c e− = . This is an inhomogeneous equation with integrating factor te− . Multiplication 

by this gives 
1( )t t t tdx d

dt dt
e xe xe c e− − −− = = , so 

1 2

t txe c e c− = + . Finally, multiplying both sides by te  gives 

2

1 2( ) t tx t c e c e= + . 
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This approach can be generalized to the nth order case as long as the characteristic polynomial can be factored 

into distinct linear factors. (We write the differential equation as a composition of n 1st order linear operators 

and iterate the above process.) This even works in the case of complex roots as long as they are not repeated. 

The more difficult case is when there are repeated roots of the characteristic polynomial, but, as we’ll soon see, 

this case also yields a relatively simple solution. 

In Linear Algebra terms, we say that  1 2, , , nr tr t r t
e e e  span all solutions in the above case. It is a valid question 

to ask whether all of these solutions are necessary, i.e. if we could span all solutions with a subset of these 

exponential solutions. In Linear Algebra terms, we would ask: Are these solutions are linearly independent? 

In other words, is it possible to express any of these solutions as a linear combination of the other solutions? 

Definition: A set of functions  1 2, , , nf f f  is called linearly independent if the equation 

1 1 2 2( ) ( ) ( ) 0n nc f t c f t c f t+ + + =  (for all t) implies that 1 2 0nc c c= = = = . 

When seeking solutions to an nth order linear differential equation, we actually want more than this. In 

order to guarantee unique solutions to any well-posed initial value problem with initial conditions given for the 

function and its derivatives up to order ( 1)n− , we would also want that: 

 

1 1 0 2 2 0 0 0

1 1 0 2 2 0 0 0
1 2

( 1) ( 1) ( 1) ( 1)

1 1 0 2 2 0 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
unique , , ,

( ) ( ) ( ) ( )

n n

n n
n

n n n n

n n

c f t c f t c f t x t

c f t c f t c f t x t
c c c

c f t c f t c f t x t− − − −

+ + + = 
    + + + =

 
 
 + + + = 

 

In terms of matrices, we can express this as: 

1 0 2 0 0 01 1

02 21 0 2 0 0

( 1)( 1) ( 1) ( 1)
01 0 2 0 0

( ) ( ) ( ) ( )

( )( ) ( ) ( )
unique 

( )( ) ( ) ( )

n

n

nn n n
n nn

f t f t f t x tc c

x tc cf t f t f t

c cx tf t f t f t
−− − −

      
        
  =     
      
           

 

Two fundamental results in linear algebra say that this will only be the case when the above matrix is invertible, 

and this will only be the case when its determinant is never equal to 0. 

Definition: 

1 2 1 2

1 2 1 2

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

1 2 1 2

det

n n

n n

n n n n n n

n n

f f f f f f

f f f f f f

f f f f f f− − − − − −

 
      
  =
 
 
 

 is called the Wronskian determinant. 

Corollary: If the Wronskian determinant is never 0, the given ODE will yield unique solutions in the form 

1 1 2 2( ) ( ) ( ) ( )h n nx t c f t c f t c f t= + + +  for any given initial conditions given for the function and its derivatives up 

to order ( 1)n− . 

Though not routinely used to ensure a linearly independent set of solutions (there are arguments with less 

tedious calculations that can be made), the Wronskian is one tool for ensuring that a set of solutions to a 

homogeneous linear ODE is valid for uniquely expressing all homogeneous solutions. 

Example #1 (diffusion): Suppose a closed container has an initial interior temperature of 32°F at 10am and that 

the outside temperature (also in °F) rises steadily according to ( ) 60 6y t t= +  where time t is measured in hours. 
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According to Newton’s Law of Cooling, ( )dx
dt

k y x= −  where k is known as the coupling constant. If 1
3

k = , 

(a) how will the interior temperature vary in time, and (b) at what time will the interior temperature reach 60°F? 

Solution: The temperature will be governed by 1
3
( )dx

dt
y x= −  or 1 1 1

3 3 3
( ) (60 6 ) 20 2dx

dt
x y t t t+ = = + = + , so the 

inhomogeneous ODE is 1
3

20 2dx
dt

x t+ = + . 

(1) The homogeneous equation 1
3

0dx
dt

x+ =  easily yields the solutions of the form 
1
3( )
t

hx t ce
−

= . It’s worth 

noting that over time any such homogeneous solution will tend toward 0 and become negligible. For this 

reason we often refer to this as a transient. In the short term it may be relevant, but in the long term it is not. 

(2) We can use the Method of Undetermined Coefficients to find a particular solution. The nature of the 

inhomogeneity ( ) 20 2q t t= +  suggests that we seek a solution of the form ( )px t A Bt= + . We have 

( )pdx

dt
t B= , so we must have 1 1 1

3 3 3
( ) ( ) 20 2B A Bt B A Bt t+ + = + + = + , so 1

3
20B A+ =  and 1

3
2B = . This 

gives 6B =  and 42A= , so ( ) 42 6px t t= + . Once the transients have become negligible, this is all that will 

remain. For this reason we might refer to this as the “steady state” solution. 

(3) The general solution is 
1
3( ) ( ) ( ) 42 6
t

h px t x t x t ce t
−

= + = + + . If we substitute the initial condition (0) 32x = , 

we have (0) 42 32x c= + = , so 10c = −  and 
1
3( ) 42 6 10
t

x t t e
−

= + − . Note that eventually the interior 

temperature will be rising at the same rate as the outside temperature but always 18°F cooler. 

The interior temperature will reach 60°F at a time T when 
1
342 6 10 60
T

T e
−

+ − =  or 
1
36 10 18
T

T e
−

− = . This 

cannot be solved algebraically, but it’s easy to get a numerical solution using a graphing calculator and the 

trace function. It gives a time 3.33 3 hrs, 20 minT   , i.e. about 1:20pm. 

Example #2 (exponential input): Solve the initial value problem 
2

2 3 2 , (0) 4, (0) 2td x dx
dt dt

x e x x+ + = = = . 

Solution: This ODE is of the type we might expect from a mass-spring system, though the external driving 

force is not especially realistic (relentlessly exponential in a single direction). It is nonetheless good for 

illustrating the methods, and the exponential input will be very relevant in the days and weeks to come. For 

simplicity, let’s write the ODE as 3 2 tx x x e + + = . 

(1) For the homogeneous solutions, look for exponential solutions rtx e=  to the equation 3 2 0x x x + + = . This 

gives 
2 23 2 ( 3 2) 0rt rt rt rtr e re e r r e+ + = + + = , so 

2 3 2 ( 1)( 2) 0 1, 2r r r r r r+ + = + + =  = − = − . Individual 

homogeneous solutions are 
1( ) tx t e−=  and 2

2( ) tx t e−= . By linearity any solution 2

1 2( ) t t

hx t c e c e− −= +  will 

satisfy the homogeneous ODE. We previously showed that these give all homogeneous solutions (by 

thinking of a 2nd order homogenous linear operator as a composition of two 1st order linear operators). 

Note that, in this case, the homogeneous solutions are transient, i.e., they rapidly decay in time. 

(2) The Method of Undetermined Coefficients provides the simplest way to find a particular solution in this 

case. The obvious choice is to try a solution of the form tx Ae= . This gives ,t tx Ae x Ae = = , and we get 

that 1
6

3 2 6t t t t tAe Ae Ae Ae e A+ + = =  = , so our particular solution is 1
6

( ) t

px t e= . 

(3) Our general solution is then 
2

1 2
1
6

( ) t t tx t c e c e e− −= + + . We compute 2

1 2
1
6

( ) 2t t tx t c e c e e− − = − − + , and the 

initial conditions give 
1 2 1 2

1 2

1 2 1 2

231
6 6 19 17

2 31 11
6 6

(0) 4
,

(0) 2 2 2

x c c c c
c c

x c c c c

  = + + = + =   
  = = −   

 = − − + = − − =      

. 
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So, the unique solution to the initial value problem is 219 17 1
2 3 6

( ) t t t

steady statetransient

x t e e e− −

−

= − + . 

Example #3 (sinusoidal input): Find the general solution to the ODE 2 cos3dx
dt

x t+ =  

Solution: As with all 1st order linear equations, solving using an integrating factor is always an option, though 

it could lead to some difficult integration. In this example, the integrating factor is 2te  which gives 
2 2 2 22 ( ) cos3t t t tdx d

dt dt
e e x e x e t+ = = . Integration gives 2 2( ) cos3t te x t e t C= +  and 2 2( ) cos3t tx t e e t C−  = +

  . 

The integration can be done using integration by parts (twice) and some additional algebra. 

If we solve this using linearity: 

(1) 2 0dx
dt

x+ =  gives the homogeneous solutions 2( ) t

hx t ce−=  

(2) For a particular solution, try cos3 sin3x a t b t= + . We calculate 3 cos3 3 sin3x b t a t = − , and substitution 

gives 2 (2 3 )cos3 ( 3 2 )sin3 cos3x x a b t a b t t + = + + − + = , so 

2
131

13 3
13

2 3 1 2 3 1 2 3 1

3 2 0 3 2 0 3 2 0

a b a a

a b b b

 + = −             
 =  = =               − + = −                

, so 32
13 13

( ) cos3 sin3px t t t= +  or 

1
13

( ) (2cos3 3sin3 )px t t t= + . 

(3) The general solution is therefore 2 1
13

( ) (2cos3 3sin 3 )t

transient
steady state

x t ce t t−

−

= + + . 

A little trigonometry 

Any expression of the form cos sina t b t +  actually represents a single sinusoidal curve with frequency   

and an appropriate translation (phase shift), i.e. a function of the form 0cos( )A t − . We can see this quickly 

using the sum of angle formula for cosine: 

0 0 0cos( ) cos cos sin sin cos sinA t A t A t a t b t       − = + = +  

We must therefore have 0

0

cos

sin

A a

A b





= 
 = 

. 

This is most easily understood with a right triangle as shown. 

From this we see that 2 2A a b= +  and 
0tan b

a = . 

 
a 

b 

0

a 

A 

 

In our example with 1
13

( ) (2cos3 3sin3 )px t t t= + we would get 
2 2 131 1

13 13 13
2 3A = + = =  and 

0
3
2

tan = . This 

gives 0 56.31    or 0 0.9828  radians. The period of the oscillation would be 2 2
3

 
 = . 

Example #4: Solve the initial value problem 5 4 3sin2x x x t+ + =  with initial conditions (0) 3x = , (0) 2x = . 

Solution: We first solve the homogeneous equation 5 4 0x x x+ + = . Its characteristic polynomial is 
2( ) 5 4 ( 4)( 1)p r r r r r= + + = + +  and this yields two distinct roots 4r =−  and 1r =− . The corresponding 

exponential solutions are 4te−  and te− . We can check that these are, in fact, linearly independent by calculating 

the Wronskian determinant: 
4

5 5 5

4
4 3 0

4

t t
t t t

t t

e e
e e e

e e

− −
− − −

− −
= − + = 

− −
. From our previous arguments, we know 

that all homogeneous solutions are of the form 4

1 2( ) t t

hx t c e c e− −= + . 
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Next, we seek a particular solution. There are at least two good ways to do this. We could do “complex 

replacement” and simultaneously solve 5 4 3cos2x x x t+ + =  and 5 4 3sin 2y y y t+ + =  by solving the 

inhomogeneous equation 25 4 3 itz z z e+ + =  and then taking the “imaginary” part. It’s perhaps easier to solve 

using undetermined coefficients. 

If we let cos2 sin2x a t b t= + , we get 

cos 2 sin 2

2 cos 2 2 sin 2 5 4 (10 )cos 2 ( 10 )sin 2

4 cos 2 4 sin 2

x a t b t

x b t a t x x x b t a t

x a t b t

= + 
 

= −  + + = + − 
 = − − 

 

We must therefore have 10 0b =  and 10 3a− = , so 3
10

a = −  and 0b = . So 3
10

( ) cos 2px t t= − . 

The general solution is therefore 4

1 2
3

10
( ) cos2t tx t c e c e t− −= + − , and we have 4

1 2
3
5

( ) 4 cos2t tx t c e c e t− −= − − + . 

If we substitute the initial conditions (0) 3x = , (0) 2x = , we have: 

533 33 33
1 2 1 2 301 110 10 10

76
2 21 2 1 2 15

(0) 3 1 1

4 1(0) 4 2 4 2 2

x c c c c c c

c cx c c c c

−= + − = + =           
  =  =          − −= − − = − − =            

. 

We certainly don’t have to use matrices to solve these two equations, but it’s worth noting that the nonvanishing 

of the Wronskian determinant is precisely why there is a unique solution for these constants. The unique 

solution to this initial value problem is therefore 
453 76

30 15
3

10
( ) cos 2t tx t e e t− −= − + − . 

Note: In this example, the exponential terms are transients (they decay quickly) and the “steady state” solution 

is the particular solution that we calculated. 

Mass-Spring-Dashpot systems 

Of particular interest to us (for a variety of reasons) are mass-spring-dashpot systems in which a spring is 

governed by Hooke’s Law but also subject to friction that is proportional to the velocity. The simplest case is 

where this system is confined with the spring attached to one fixed wall, the dashpot on the other side of the 

mass attached to another fixed wall, and the mass moving relative to its equilibrium position. In this case, we 

would express the force acting on the mass as F kx cv= − −  where v x=  and F ma mx= = . This gives the 

system 0mx cx kx+ + =  or 0c k
m mx x x+ + = . 

We could also imagine a system that is “driven” by moving either the fixed end of the spring or by moving the 

fixed end of the dashpot. If we incorporate this additional acceleration, the resulting system would be governed 

by an inhomogeneous ODE of the form ( )c k
m mx x x q t+ + = . 

Note: We get similar equations in the case of an electric circuit with inductance (L), resistance (R), and 

capacitance (C), i.e. and LRC circuit. 

Spring only case 

The simplest case is a pure spring with no friction and no external driving force. In this case, the differential 

equation governing the motion would be simply 0k
mx x+ = . In anticipation of what will follow, it’s useful to 

let 2 k
m =  or k

m = . This gives the differential equation 2 0x x+ = . Its characteristic polynomial is 

2 2( ) 0p r r r i = + =  =  . So all solutions to this homogeneous equation can be expressed as the span of 

 ,i t i te e − , i.e. in the form 
1 2( ) i t i tx t c e c e −= +  where 1 2,c c  are complex constants. We would, of course, prefer 

to express solutions as real-valued functions. Using Euler’s Formula, we could rewrite the solutions as 

1 2 1 2 1 2( ) (cos sin ) (cos sin ) ( )cos ( )sinx t c t i t c t i t c c t i c c t     = + + − = + + −  and then hope that any given 

initial condition will produce real coefficients (they will). Another way to look at this is to note that since 
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cos sini te t i t  = +  and cos sini te t i t  − = − , and we can solve for 
2

cos
i t i te et
 


−+=  and 

2
sin

i t i te e
i

t
 


−−= . 

So    Span , Span cos ,sini t i te e t t   − = . That is, all solutions must be of the form ( ) cos sinx t a t b t = + . 

We also have the option of expressing this as ( ) cos( )x t A t = −  where 2 2A a b= +  and tan b
a = . 

Note: If we felt the urge to inquire whether the set  ,i t i te e −  or the set  cos ,sint t   were linearly 

independent solutions, the corresponding Wronskians would give either 2 0
i t i t

i t i t

e e
i

i e i e

 

 


 

−

−
= − 

−
 or 

2 2cos sin
(cos sin ) 0

sin cos

t t
t t

t t

 
   

   
= + = 

−
. They both provide a linearly independent spanning set for 

the solutions, i.e. a basis for the solutions (in linear algebra terms). 

If the ODE is not homogeneous but is in the simple form  ( ) ( ) rtp D x t ae=  for some (possibly complex) 

numbers a and r, we can use the method of undetermined coefficients to produce a particular solution. That is, if 

we let ( ) rtx t Ae= , this will be a particular solution if: 

  1 1

1 1 0 1 1 0( ) ( ) ( )rt n n rt n n rt rt rt

n np D Ae D a D a D a I Ae A r a r a r a e Ap r e ae− −

− −
 = + + + + = + + + + = =   

Cancellation of the exponential factors and division by ( )p r  gives 
( )
a

p r
A = , so ( )

( )

rt

p

aex t
p r

= . This gives: 

Exponential Response Formula (ERF): Suppose the ODE  ( ) ( ) rtp D x t ae=  has characteristic polynomial 

( )p s  and that r is not a characteristic root, then a particular solution will be ( )
( )

rt

p

aex t
p r

= . 

This result can make easy work of solving constant coefficient linear ODE’s in this form. 

Example #5: Solve the ODE 33 2 5 tx x x e+ + =  with (0) 2x = , (0) 3x = . 

Solution: The characteristic polynomial is 
2( ) 3 2 ( 2)( 1)p s s s s s= + + = + + . This gives roots 1 2s = − , 2 1s = − , 

and the homogeneous solutions are of the form 2

1 2( ) t t

hx t c e c e− −= + . If we use the Exponential Response 

Formula, we calculate (3) 9 9 2 20p = + + = , so a particular solution is 
3 3

31
4

5 5
( )

(3) 20

t t
t

p

e e
x t e

p
= = = . The general 

solution is therefore 2 3

1 2
1
4

( ) t t tx t c e c e e− −= + + . Differentiation gives 2 3

1 2
3
4

( ) 2 t t tx t c e c e e− −= − − + . Evaluating 

these at 0t =  gives 
1 2

1 2

1 2

1
4 23

43
4

(0) 2
4,

(0) 2 3

x c c
c c

x c c

 = + + = 
 = − = 

= − − + =  

, so 
2 323 1

4 4
( ) 4 t t tx t e e e− −= − + + . 

Complex roots 

In the case where the characteristic polynomial yields a complex conjugate pair of roots, a ib = +  and 

a ib = + , we formally have solutions 
( ) (cos sin )t a ib t at ibt ate e e e e bt i bt += = = +  and 

( ) (cos sin )t a ib t at ibt ate e e e e bt i bt − −= = = − . Though we could express any solutions in Span{ , }t te e   in the form 

1 2( ) t tx t c e c e = +  where 1c  and 2c  would necessarily have to be complex constants, these solutions can also be 

characterized as being in Span{ cos , sin )at ate bt e bt , i.e. they must be of the form 1 2( ) cos sinat atx t c e bt c e bt= +  

with real constants 1c  and 2c . 
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Repeated roots 

Suppose we have a 2nd order (homogeneous) linear ODE with characteristic polynomial 
2( ) ( )p r r a= −  that 

yields the repeated root r a=  (in this case with multiplicity 2). We know that one solution is ate , but this does 

not span all homogeneous solutions. Note that in the case the ODE can be expressed as 
2 2 2( 2 ) ( ) ( ) ( ) ( )[( ) ( )] 0D aD a I x t D aI x t D aI D aI x t+ + = − = − − = . If we give the name ( ) ( ) ( )y t D aI x t= − , then 

the ODE becomes ( ) ( ) 0
dy

dt
D aI y t ay− = − =  or simply 

dy

dt
ay= . This easily yields all solutions of the form 

1( ) aty t c e= . Therefore 
1( ) ( ) atdx

dt
D aI x t ax c e− = − = . This is now an inhomogeneous 1st order ODE that can be 

solved by multiplying both sides by the integrating factor ate− . This gives 

1 1( )at at at at atdx d
dt dt

e ae x e x c e e c− − − −− = = = . Integrating both sides gives 
1 2( )ate x t c t c− = +  where 2c  is another 

arbitrary constant. Multiplying both sides by ate  then gives 
1 2( )at at ate x t c te c e= + . That is, all solutions are in 

Span{ , }at ate te . 

This can be generalized to the case of higher multiplicities to give solutions in 
2Span{ , , , , }at at at k ate te t e t e  

where k is one less than the multiplicity. 

Example #6: Solve the 3rd order homogeneous ODE 5 8 4 0x x x x+ + + =  with initial conditions (0) 2x = , 

(0) 3x = , (0) 1x = . 

Solution: We’ll solve this two ways – first using the operator approach, and second using reduction of order 

and matrix methods. 

Via Operators: We can express this ODE as 
3 2( 5 8 4 ) ( ) 0D D D I x t+ + + = . This gives the characteristic 

polynomial 
3 2 2( ) 5 8 4 ( 1)( 2) 0p r r r r r r= + + + = + + = . The characteristic roots are 1 1r = −  (with multiplicity 1) 

and 2 2r = −  (with multiplicity 2). All solutions are therefore in 
2 2Span{ , , }t t te e te− − −

 and must be of the form 

2 2

1 2 3( ) t t tx t c e c e c te− − −= + + . Differentiation gives: 

2 2

1 2 3 1 2
2 2 2

1 2 3 3 1 2 3

2 2 2
1 2 31 2 3 3

( ) (0) 2

( ) 2 2 (0) 2 3

(0) 4 4 1( ) 4 4 4

t t t

t t t t

t t t t

x t c e c e c te x c c

x t c e c e c e c te x c c c

x c c cx t c e c e c e c te

− − −

− − − −

− − − −

= + + = + =

= − − + −  = − − + =

= + − == + − +

 

These equations can then be solved using either row reduction or matrix inversion to get 1 21c = , 2 19c = − , and 

3 14c = − . So the unique solution to this initial value problem is 
2 2( ) 21 19 14t t tx t e e te− − −= − − . 

Via Reduction of Order and Matrix Methods: If we write dx
dt

x y= =  and 
2

2

dyd x
dtdt

x z= = =  and solve for 

dz
dt

x= , we get 

4 8 5

dx
dt
dy

dt
dz
dt

y

z

x y z

 =
  

= 
 

= − − −
  

 or d
dt
=x Ax  with 

0 1 0
0 0 1
4 8 5

 
=  
 − − − 

A  and 
2

(0) 3
1

 
=  
  

x . 

This gives 
1 0

0 1
4 8 5


 



− 
− = − 

 = 

I A . Its characteristic polynomial is 
3 2 2( ) 5 8 4 ( 1)( 2)p      = + + + = + +  

which yields the two eigenvalues 1 1 = −  (with algebraic and geometric multiplicity 1) and 2 2 = −  (with 

algebraic multiplicity 2 but geometric multiplicity 1). The first of these eigenvalues gives the eigenvector 

1

1
1

1

 
= − 
  

v . The other eigenvalue gives the eigenvector 2

1
2

4

 
= − 
  

v  and generalized eigenvector 3

1
1

0

 
= − 
  

v . 
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Taking these vectors as a basis, we have the change-of-basis matrix 
1 1 1
1 2 1

1 4 0

 
= − − − 
  

S  and 1
4 4 1
1 1 0
2 3 1

−
 

= − − 
 − − − 

S . 

We know that 1
1 0 0

0 2 1
0 0 2

−
− 

= = − 
 − 

S AS B  and 1−=A SBS  and 
1[ ] [ ]t te e −=A B

S S  where 2 2

2

0 0
[ ] 0

0 0

t

t t t

t

e
e e te

e

−

− −

−

 
 =
 
 

B .  

1 2 2

2

2 2 2

2 2

2 2

0 01 1 1 4 4 1 2
( ) [ ] (0) [ ] (0) 1 2 1 0 1 1 0 3

1 4 0 2 3 1 10 0

( 1) 21 21 5
2 ( 2 1) 5

144 4

t

t t t t

t

t t t t t

t t t

t t t

e
t e e e te

e

e e t e e e
e e t e

e e te

−

− − −

−

− − − − −

− − −

− − −

      
 = = = = − − − − −     
      − − −      

 + − 
 = − − − − − = 
   −  

A B
x x S S x S

214( 1) tt e− − +
 
 
 

 

We’re only interested in ( )x t , so the solution is 2 2 2 2( ) 21 5 14( 1) 21 19 14t t t t t tx t e e t e e e te− − − − − −= − − + = − − . 

Suffice to say that in the case the Operator Method is much simpler. 

 

Notes by Robert Winters 


