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Math S-21b – Lecture #13 Notes 

We continue with the discussion of eigenvalues, eigenvectors, and diagonalizability of matrices. We want to 

know, in particular what conditions will assure that a matrix can be diagonalized and what the obstructions are 

to this being possible. We’ll also look at some algebraic invariants of a linear transformation, namely its trace 

and determinant, and relate these to the eigenvalues of a matrix representing the transformation. We’ll also 

discuss what the presence of a complex conjugate pair of eigenvalues means in terms of invariant subspaces and 

how the transformation acts within such a subspace. 

Summary of results 

If A is an n n  matrix, we call a vector v an eigenvector of A if ( )T = =v Av v  for some scalar  . This scalar 

  is called the eigenvalue associated with the eigenvector. The existence of an eigenvector depends upon 

whether there are any solutions to the equation ( ) − =I A v 0 , and this is only possible if the matrix  −I A  is 

not invertible. A necessary and sufficient condition for this is that ( ) det( ) 0Ap  = − =I A . This will always be 

an nth degree polynomial in   called the characteristic polynomial of A. So  −I A  will have a nontrivial 

kernel if and only if   is a root of this characteristic polynomial. The eigenvalues are therefore the roots of the 

characteristic polynomial. The set of all eigenvalues of a matrix A is called the spectrum of A. By the 

Fundamental Theorem of Algebra, this can always be factored as a product of linear factors and irreducible 

quadratic factors. The linear factors yield real roots, and the irreducible quadratic factors yield (by the quadratic 

formula) complex conjugate pairs of roots. 

If an eigenvalue   occurs as a repeated root of the characteristic polynomial of A, we refer to the multiplicity 

of the root as the algebraic multiplicity (AM) of the eigenvalue. For any eigenvalue   of A, the subspace 

ker( ) −I A  is called the eigenspace of  , or E . The geometric multiplicity (GM) is dim[ker( )] −I A , i.e. 

the number of linearly independent eigenvectors associated with this eigenvalue. 

If, for an n n  matrix A, we are able to construct a basis 1{ , , }n= v vB  for all of n
R  consisting of 

eigenvectors, we call this an eigenbasis and say that the matrix is diagonalizable. If A is diagonalizable with 

eigenbasis 1{ , , }n= v vB  and 1 n
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If a matrix A is diagonalizable and we write   1−= =A S AS D
B

 for some change of basis matrix S, then 

1−=A SDS  and 
1 1 1 1( )( ) ( )t t− − − −= =A SDS SDS SDS SD S  where 
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t
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We proved that eigenvectors corresponding to distinct eigenvalues are linearly independent which yielded 

the corollary that if A is an n n  matrix with distinct, real eigenvalues, then A must be diagonalizable. This also 

means that for a matrix A to fail to be diagonalizable, its spectrum must contain either repeated eigenvalues, 

complex eigenvalues, or possibly both. 

It is possible for a matrix with repeated eigenvalues to still be diagonalizable. In the case where all of the 

eigenvalues of a matrix are real but with some multiplicity, as long as GM( ) AM( )i i =  for each eigenvalue 

i  (that is, the geometric and algebraic multiplicities are the same), the matrix will still be diagonalizable. 

So, the only obstructions to being able to diagonalize an n n  matrix are the existence of complex eigenvalues 

or having a repeated eigenvalue where its geometric multiplicity is strictly less than its algebraic multiplicity. 
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Example: Find the eigenvalues and eigenvectors for the matrix 

2 3 3

3 2 3

3 3 4

− − 
 = − −
 
− − 

A  and determine whether this 

matrix is diagonalizable. Find an expression for 
0

t
A x  with  initial vector 

0

6

1

2

 
 =
 
 

x . 

Solution: We first write 

2 3 3

3 2 3

3 3 4



 



+ − 
 − = + −
 

− 

I A . The characteristic polynomial is then: 

2 3 2( ) det( ) ( 2)( 2 1) 3(3 3) 3(3 3 ) 3 2 ( 1) ( 2) 0Ap           = − = + − + − − − − = − + = − + =I A  

This gives the eigenvalues 1 1 =  with algebraic multiplicity 2, and 2 2 = −  with algebraic multiplicity 1. 

Taking 1 1 = , we seek eigenvectors: 

3 3 3 0 1 1 1 0

3 3 3 0 0 0 0 0

3 3 3 0 0 0 0 0

− −   
   − →
   

−   

. Because this has rank 1, it’s kernel will 

have dimension 2, so the geometric multiplicity will be 2. For eigenvectors we can parameterize the kernel as 

1

2

3

x s t

x s

x t

= − + 
 

= 
 = 

, 

1 1

1 0
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s t
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   
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x , so the eigenspace is spanned by 

1 1

1 , 0

0 1
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. Taking 2 2 = − , we seek 

eigenvectors: 

0 3 3 0 1 0 1 0

3 0 3 0 0 1 1 0

3 3 6 0 0 0 0 0

− −   
   − → −
   
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. This has rank 2 and the geometric multiplicity is 1. For 

eigenvectors we can parameterize the kernel as 
1
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x , so the eigenspace is spanned by 

1
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Taken together, 

1 1 1

1 , 0 , 1

0 1 1

 −      
      =  
            

B  is a basis of eigenvectors, so the matrix is diagonalizable even though 

there was a repeated eigenvalue. If we let 

1 1 1

1 0 1

0 1 1

− 
 =
 
 

S , then we can calculate 1

1 0 1

1 1 2

1 1 1

−

− 
 = − −
 

− 

S  and 

1

1 0 0

0 1 0

0 0 2

−

 
 = =
 

− 

S AS D . We can then write 1−=A SDS  and 1t t −=A SD S , so 

1

0 0

1 1 ( 2) 1 5( 2)1 1 1 1 0 0 1 0 1 6 4

1 0 1 0 1 0 1 1 2 1 1 0 ( 2) 3 4 5( 2)

0 1 1 1 1 1 2 50 0 ( 2) 0 1 ( 2) 3 5( 2)

t t

t t t t

t t t

−

   − − + − − − −       
           = = − − = − − = − + −
           

−− − − + −               

A x SD S x . 

Proposition: If two matrices A and B are similar, i.e., if 1−=B S AS  for some invertible matrix S, then they 

have the same characteristic polynomial and thus the same eigenvalues with the same algebraic multiplicities. 

Proof: 1 1 1 1( ) det( ) det( ) det( ) det[ ( ) ]p     − − − −= − = − = − = −B I B I S AS S IS S AS S I A S  

1det( )det( )det( ) det( ) ( )p  −= − = − = AS I A S I A . 
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Proposition: If two matrices A and B are similar, then they have the same eigenvalues with the same algebraic 

multiplicities and the same geometric multiplicities. 

Proof: 
1 1 1 1( )   − − − −− = − = − = −I B I S AS S IS S AS S I A S . Therefore, if ker( ) −v I B , we’ll have 

( ) − =I B v 0 , so 
1( ) ( ) ker( )  − − =  − =   −S I A Sv 0 I A Sv 0 Sv I A . Similarly, any ker( ) −w I A  

will give 
1 ker( )−  −S w I B . Because S is invertible this correspondence is an isomorphism, so the subspaces 

must have the same dimension. Therefore, if   is an eigenvalue of A (and hence B), then its geometric 

multiplicity will be the same for both A and B. The eigenvectors, however, will not be the same. 

Trace and determinant 

If two matrices A and B are similar, we have already shown that det det=A B . A homework exercise also 

shows that trace trace =A B , where for an n n  matrix A its trace is the sum of its diagonal elements 
1

n

ii

i

a
=

 . In 

the case of a diagonalizable matrix, this means that its trace must be the sum of its eigenvalues, and its 

determinant must be the product of its eigenvalues. In fact, these statements are true generally: 

Theorem: If A is any n n  matrix with eigenvalues  1, , n  , including any repeated eigenvalues, then 

1tr( ) n = + +A  and 1det( ) n =A . 

Proof: This is easy to show for 2 2  matrices. The general case is left as an exercise. 

Complex eigenvalues 

If an n n  matrix A has any complex eigenvalues, we will not be able to produce any real eigenvectors. 

However, as in the case of real eigenvalues, the algebra can still formally proceed in the same manner. Our goal 

will be to produce basis vectors associated with any complex eigenvalues such that the matrix relative to this 

basis has a simple, if not diagonal, canonical form. To do this, we have to temporarily wander off into the world 

of complex numbers, complex eigenvalues, and complex eigenvectors. 

You should not attempt to visualize a vector whose components are complex numbers. This is merely an 

algebraically consistent extension of the idea of real vectors and real matrices where all the rules of linear 

algebra are still in effect. This temporary excursion will yield real vectors relative to which the matrix acts in an 

easy-to-describe fashion, namely as a rotation-dilation, i.e., it rotates vectors in a 2-dimensional (invariant) 

subspace and scales them by the modulus of the complex eigenvalue. 

Basics of complex numbers 

First, we need a few basic definitions associated with complex 

numbers. A complex number z x iy= + , where 2 1i = −  can be viewed 

in vector-like terms in the complex plane as shown in this diagram to 

the right. We define: 

modulus(z) = mod(z) = 2 2z x y= +  

argument(z) = arg(z) = ( )1tan
y
x −= .  

We add complex numbers by adding their respective real and 

imaginary parts, in much the same way as vector addition was defined. We multiply complex numbers via the 

distributive law and the fact that i2 = -1. For example: 

2(3 2 )( 1 4 ) 3 2 12 8 ( 3 8) ( 2 12) 5 14i i i i i i i+ − − = − − − − = − + + − − = −  

If we note that cosx z =  and siny z = , then we can write 

cos sin (cos sin ) iz x iy z i z z i z e    = + = + = + =  (polar form, using Euler’s Formula). A short 

calculation shows that when we multiply two complex numbers, we multiply their moduli and add their 

. z = x + iy



x = Re(z)

y = Im(z)
|z|

Re

Im
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arguments. Specifically, 1 2 1 2( )

1 2 1 2 1 2

i i i
z z z e z e z z e

   +
= = . You may want to try this out with some simple 

complex numbers to convince yourself of this fact. 

The complex conjugate of z x iy= +  is defined to be z x iy= − . In the complex plane, z and z  are reflections 

of each other across the real axis. It’s not hard to show that z z z z
1 2 1 2= .

 

The Fundamental Theorem of Algebra guarantees that, at least in theory, any polynomial of degree n can be 

factored into n linear factors and will therefore produce n roots, including multiplicity. Some roots may have 

multiplicity greater than 1 and some of the roots may be complex. It is also the case that for a polynomial with 

all real coefficients, any complex roots will necessarily occur in complex conjugate pairs   and   (this follows 

from the quadratic formula, resulting from an irreducible quadratic factor). 

Let A be a matrix which has a complex conjugate pair of eigenvalues   and  . We can proceed just as in the 

case of real eigenvalues and find a complex vector w such that ( ) − =I A w 0 . The components of such a vector 

w will have complex numbers for its components. If we write a ib = + , and decompose w into its real and 

imaginary vector components as i= +w u v  (where u and v and real vectors), we can calculate that: 

(1)   ( )( ) ( ) ( )i a ib i a b i b a= + = = + + = − + +Aw Au Av v u v u v u v  

If we define the vector ˆ i= −w u v  and use the easy-to-prove fact that for a matrix A with all real entries we’ll 

have ˆ ˆ Aw = Aw = w = w , we see that ˆ i= −w u v  will also be an eigenvector with eigenvalue  , and: 

(2)   ˆ ˆ ( )( ) ( ) ( )i a ib i a b i b a= − = = − − = − − +Aw Aw = Au Av w u v u v u v  

The true value of this excursion into the world of complex numbers and complex vectors is seen when we add 

and subtract equations (1) and (2). We get: 

2 2( )a b= −Au u v  

2 2 ( )i i b a= +Av u v  

After cancellation of the factors of 2 and 2i in the respective equations and rearranging, we get: 

a b= +Av v u  

b a= − +Au v u  

Note that we are now back in the “real world”: all vectors and scalars in the above equations are real. If we use 

the two vectors v and u as basis vectors associated with the two complex conjugate eigenvalues, grouped 

together in the full basis 1{ , , }n= v vB , we’ll produce a 2 2  (Jordan) block in the matrix  A
B

 of the form: 

2 2 2 2
2 2

2 2 2 2

cos sin

sin cos

a b
a b a b a b

a b
b a b a

a b a b



 
 

 

− 
− −    + +

= + = =       
 + + 

R  

where R  is the rotation matrix corresponding to the angle arg( ) = . 

In other words, the Jordan block associated with the basis vectors  ,v u  is a rotation-dilation matrix where the 

angle of rotation is the same as the argument of the complex eigenvalue and where the scaling factor is just the 

modulus (magnitude) of the complex eigenvalue. Again, the very nature of the complex eigenvalues tells us 

much about the way the matrix acts, at least if we choose the right basis with which to view things. 

Example: Consider the matrix 
0 1

1 0

− 
=   

A . You’ll recognize this as the matrix corresponding to 

counterclockwise rotation in the plane through an angle of 90. The characteristic polynomial is 
2 1 0 + = , with 
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complex eigenvalues i =  . Note that with i = + , we have arg( ) 90 =   and modulus( ) 1 = = . The 

preceding discussion says that this matrix is similar to a rotation-dilation matrix which does no scaling, and 

which rotates by an angle of 90. But this should come as no surprise at all. The given matrix is already in the 

form of exactly this rotation-dilation matrix, i.e., Jordan form. 

Example: Consider the matrix 
2 1

3 2

− 
=   

A . We have 
2 1

3 2






− 
− =  − − 

I A , and the characteristic 

polynomial is 2 4 7 0 − + = . This yield the two eigenvalues 2 3i = +  and 2 3i = − .  

If we substitute 2 3i = +  into 
2 1

3 2






− 
− =  − − 

I A , we get that if 



 

=   
w  is to be an eigenvector, we 

must have 
3 1 0

03 3

i

i





     
=     −     

. This means that ( 3) 0i  + = . (The second equation is redundant, even 

though this might not immediately appear to be the case.) One choice for   and   is 1 = , 3i = − . This 

gives us the complex eigenvector 
1 01

03 3
i i

i

    
= = + = +    − −    

w u v . Using  
0 1

, ,
03

    
= =     −    

v uB  as a 

basis, and calling 
0 1

3 0

 
=  − 

S , we have that   1 2 3 cos sin
7

sin cos3 2
R

 


 
−

 − − 
= = = =     

A S AS
B

 where 

R  is the rotation matrix corresponding to the angle 1arg( ) tan ( 3 2) 40.89  −= =   . 

If we have need to consider the powers t
A  for any positive integer power t, we’ll have that   1−=A S A S

B
 and 

 ( ) 1 1 1
t t tt

t t  − − −= = =A S A S S R S SR S
B

. In other words, except for the change of basis, t
A  corresponds 

to rotation through the angle t  and scaling by the factor 
t

 . 

 

We’ll look at a few more detailed examples next time. We’ll also take up the discussion of the Spectral 

Theorem. 

 

Notes by Robert Winters 


