M ath S-21b - Lecture \#12 Notes

Today's lecture focuses on what might be called the structural analysis of linear transformations. W hat are the intrinsic properties of a linear transformation? A re there any fixed directions? The discussion centers on the eigenvalues and eigenvectors associated with an $n \times n$ matrix - the definitions, calculations, and applications.

Invariant directions, eigenvectors, and eigenvalues

Let \mathbf{A} be an $n \times n$ matrix representing a linear transformation $T_{A}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$. A re there any invariant directions for this linear transformation? That is, can we find a vector \mathbf{v} such that $T(\mathbf{v})$ is parallel to \mathbf{v} ? This is an example of an intrinsic property of the transformation - something that exists independent of what basis is used or the coordinates relative to that basis. For example, a rotation in \mathbf{R}^{3} has an axis of rotation regardless what basis is used to describe the rotation. For an orthogonal projection onto some subspace $V \subseteq \mathbf{R}^{n}$, vectors in V remain unchanged, and vectors in its orthogonal complement are sent to the zero vector. A gain, this has nothing to do with what basis is used to represent this linear transformation.
The question of whether we find a vector \mathbf{v} such that $T(\mathbf{v})$ is parallel to \mathbf{v} can be rephrased as whether there's a vector \mathbf{v} such that $\mathrm{T}(\mathbf{v})=\mathbf{A} \mathbf{v}=\lambda \mathbf{v}$ for some scalar λ. This leads to the following definition:

Definition: If \mathbf{A} is an $n \times n$ matrix, we call a vector \mathbf{v} an eigenvector of \mathbf{A} if $T(\mathbf{v})=\mathbf{A} \mathbf{v}=\lambda \mathbf{v}$ for some scalar λ. This scalar λ is called the eigenvalue associated with the eigenvector.

Finding the eigenvalues and eigenvectors

We can rewrite $\mathbf{A v}=\lambda \mathbf{v}$ as $\mathbf{A v}=\lambda \mathbf{l v}$ which is more conducive to using algebra. We can then write this as $\lambda \mathbf{I v}-\mathbf{A v}=\mathbf{0}$ or $(\lambda \mathbf{I}-\mathbf{A}) \mathbf{v}=\mathbf{0}$. In order for a vector \mathbf{v} to be an eigenvector, it must be in the kernel of $\lambda \mathbf{I}-\mathbf{A}$ for some appropriate choice of λ. This can only happen if this kernel is nontrivial which means that the matrix $\lambda \mathbf{I}$ - A would have to not be invertible, and we know from our discussion of determinants that a necessary and sufficient condition for a matrix to not be invertible is that its determinant must be equal to 0 . That is:

$$
\mathbf{v} \text { is an eigenvector of } \mathbf{A} \Leftrightarrow(\lambda \mathbf{I}-\mathbf{A}) \mathbf{v}=\mathbf{0} \Leftrightarrow \operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=0
$$

As we'll see, if \mathbf{A} is an $n \times n$ matrix $p_{A}(\lambda)=\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})$ will be an nth degree polynomial in λ called the characteristic polynomial of \mathbf{A}. So $\lambda \mathbf{I}-\mathbf{A}$ will have a nontrivial kernel if and only if λ is a root of this characteristic polynomial. The eigenvalues are therefore the roots of the characteristic polynomial.
Definition: The set of all eigenvalues of a matrix \mathbf{A} is called the spectrum of \mathbf{A}. Since the eigenvalues are the roots of an nth degree polynomial, the spectrum will consist of at most n values. These may be real numbers or complex numbers, possibly with repetition, and any complex eigenvalues must occur in complex conjugate pairs. [This follows from the Fundamental Theorem of Algebra - any polynomial with real coefficients can, in theory, always be factored into a product of linear factors an irreducible quadratic factors, and these irreducible quadratic factors will yield complex conjugate pairs (by the quadratic formula).]
If an eigenvalue λ occurs as a repeated root of the characteristic polynomial, we refer to the multiplicity of the root as the algebraic multiplicity of the eigenvalue.
Definition: If λ is an eigenvalue of \mathbf{A}, then $\operatorname{ker}(\lambda \mathbf{I}-\mathbf{A})$ will be a subspace called the eigenspace of λ, or E_{λ}. As with any subspace it must be closed under scaling and vector addition. This yields the following two corollaries:

Corollary 1: If \mathbf{v} is an eigenvector associated with an eigenvalue λ, then tv will also be an eigenvector for any scalar t.

Corollary 2: If \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors associated with the same eigenvalue λ, then $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$ will also be an eigenvector for any scalars $\mathrm{C}_{1}, \mathrm{C}_{2}$.

Definition: The geometric multiplicity of an eigenvalue λ of a matrix \mathbf{A} is $\operatorname{dim}[\operatorname{ker}(\lambda \mathbf{I}-\mathbf{A})]$, i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

Example: Find the eigenvalues and eigenvectors of the matrix $\mathbf{A}=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$.
Solution: We calculate $\lambda \mathbf{I}-\mathbf{A}=\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]-\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]=\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]-\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]=\left[\begin{array}{cc}\lambda-3 & -1 \\ -1 & \lambda-3\end{array}\right]$, so the characteristic polynomial is $p_{A}(\lambda)=\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=\operatorname{det}\left[\begin{array}{cc}\lambda-3 & -1 \\ -1 & \lambda-3\end{array}\right]=(\lambda-3)^{2}-1=\lambda^{2}-6 \lambda+8$. This is easily factored to give $\mathrm{p}_{\mathrm{A}}(\lambda)=(\lambda-4)(\lambda-2)=0$, so the eigenvalues are $\lambda_{1}=4$ and $\lambda_{2}=2$. How you order these doesn't matter, but you should keep the indexing consistent. For each eigenvalue, we next its eigenvectors, i.e. $\operatorname{ker}\left(\lambda_{1} \mathbf{I}-\mathbf{A}\right)$ for each eigenvalue λ_{i} :
$\lambda_{1}=4$ gives $\lambda \mathbf{I}-\mathbf{A}=\left[\begin{array}{cc}4-3 & -1 \\ -1 & 4-3\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$, so $\operatorname{ker}(\lambda \mathbf{I}-\mathbf{A})$ is found by row reduction
$\left[\begin{array}{cc|c}1 & -1 & 0 \\ -1 & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$. This gives $\left\{\begin{array}{l}x_{1}=t \\ x_{2}=t\end{array}\right\}$ or $\mathbf{x}=\mathrm{t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$, so if we let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, this spans the eigenspace E_{4}. $\lambda_{1}=2$ gives $\lambda \mathbf{I}-\mathbf{A}=\left[\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right]$, so $\operatorname{ker}(\lambda \mathbf{I}-\mathbf{A})$ is found by row reduction $\left[\begin{array}{ll|l}-1 & -1 & 0 \\ -1 & -1 & 0\end{array}\right] \rightarrow\left[\begin{array}{c|c}1 & 1 \\ 0 & 0 \\ 0\end{array}\right]$. This gives $\left\{\begin{array}{c}x_{1}=-t \\ x_{2}=t\end{array}\right\}$ or $\mathbf{x}=t\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, so if we let $\mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, this spans the eigenspace E_{2}.

In the example, we had two distinct, real eigenvalues which produced two linearly independent eigenvectors which may be used as a basis for \mathbf{R}^{2}, an eigenbasis. W hat is the matrix of this linear transformation relative to the special basis? The relations $\left\{\begin{array}{l}\mathbf{A} \mathbf{v}_{1}=4 \mathbf{v}_{1} \\ \mathbf{A} \mathbf{v}_{2}=2 \mathbf{v}_{2}\end{array}\right\} \Rightarrow[\mathbf{A}]_{\mathcal{B}}=\left[\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right]=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]=\mathbf{D}$, a diagonal matrix. If we write $\mathbf{S}=\left[\begin{array}{cc}\uparrow & \uparrow \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ \downarrow & \downarrow\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$, then $\mathbf{S}^{-1}=\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$, and $[\mathbf{A}]_{\mathcal{B}}=\mathbf{S}^{-1} \mathbf{A} \mathbf{S}=\mathbf{D}$. This will be the case for any matrix for which we can produce an entire basis consisting exclusively of eigenvectors. This motivates the following:

Definition: An $n \times n$ matrix \mathbf{A} is called diagonalizable if it is possible to find a basis for \mathbf{R}^{n} consisting of eigenvectors of \mathbf{A}.
If \mathbf{A} is diagonalizable with eigenbasis $\mathscr{B}=\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{\mathrm{n}}\right\}$ and if we write $\mathbf{S}=\left[\begin{array}{ccc}\uparrow & & \uparrow \\ \mathbf{v}_{1} & \cdots & \mathbf{v}_{\mathrm{n}} \\ \downarrow & & \downarrow\end{array}\right]$, then

$$
\left\{\begin{array}{c}
\mathbf{A} \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1} \\
\vdots \\
\mathbf{A} \mathbf{v}_{\mathrm{n}}=\lambda_{\mathrm{n}} \mathbf{v}_{\mathrm{n}}
\end{array}\right\} \Rightarrow[\mathbf{A}]_{\mathscr{B}}=\mathbf{S}^{-1} \mathbf{A} \mathbf{S}=\mathbf{D}=\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{\mathrm{n}}
\end{array}\right]
$$

Note: It is not always possible to diagonalize a matrix. We want to understand under what circumstances this will be possible.

Powers of a matrix: If a matrix \mathbf{A} is diagonalizable, we can write $[\mathbf{A}]_{\mathscr{B}}=\mathbf{S}^{-1} \mathbf{A S}=\mathbf{D}$ for some change of basis matrix \mathbf{S}. Therefore $\mathbf{A}=\mathbf{S D S}^{-1}$ and $\mathbf{A}^{\mathrm{t}}=\left(\mathbf{S D S}^{-1}\right)\left(\mathbf{S D S}^{-1}\right) \cdots\left(\mathbf{S D S}^{-1}\right)=\mathbf{S D}^{\mathrm{t}} \mathbf{S}^{-1}$ where, if $\mathbf{D}=\left[\begin{array}{lll}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{\mathrm{n}}\end{array}\right]$, we'll have $\boldsymbol{D}^{\mathrm{t}}=\left[\begin{array}{lll}\lambda_{1}^{\mathrm{t}} & & 0 \\ & \ddots & \\ 0 & & \lambda_{\mathrm{n}}^{\mathrm{t}}\end{array}\right]$.
Example: For the matrix $\mathbf{A}=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$, calculate \mathbf{A}^{t} for any (positive integer) t.
Solution: For this matrix we found that $\mathbf{S}^{-1} \mathbf{A S}=\mathbf{D}$ where $\mathbf{S}=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right], \mathbf{S}^{-1}=\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$, and $\mathbf{D}=\left[\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right]$. So $\mathbf{A}=\mathbf{S D S}^{-1}$ and $\mathbf{A}^{t}=\mathbf{S D}^{t} \mathbf{S}^{-1}=\frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}4^{t} & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}4^{t} & -2^{t} \\ 4^{t} & 2^{t}\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}4^{t}+2^{t} \\ 4^{t}-4^{t}-2^{t} \\ 4^{t}+2^{t}\end{array}\right]$.

Application: M arkov example

There are situations in which a fixed amount of some asset is distributed among a number of sites and where some iterated process simultaneously redistributes the amounts to other sites according to fixed percentages. For example, suppose you had a fixed number of beans distributed between two piles, A and B. A process simultaneously moves 50% of the beans in pile A to pile B (while retaining 50% in pile A) and moves 75% of the beans in pile B to pile A (while retaining 25% in pile B). We can describe the transition as follows:
If x_{A} is the number of beans in pile A and x_{B} is the number of beans in pile B, then the new values will be determined by $\left\{\begin{array}{l}\text { new } x_{A}=.5 x_{A}+.75 x_{B} \\ \text { new } x_{B}=.5 x_{A}+.25 x_{B}\end{array}\right\}$. That is, the new values are determined by applying the matrix $\mathbf{A}=\left[\begin{array}{ll}.5 & .75 \\ .5 & .25\end{array}\right]$. If we think of $\mathbf{x}_{0}=\left[\begin{array}{l}x_{A} \\ x_{B}\end{array}\right]$ as the initial distribution, then after one iteration we'll have $\mathbf{x}_{1}=\mathbf{A} \mathbf{x}_{0}$, after two iterations $\mathbf{x}_{2}=\mathbf{A} \mathbf{x}_{1}=\mathbf{A}^{2} \mathbf{x}_{0}$, and so on. A fter titerations the distribution will be given by $\mathbf{x}_{\mathrm{t}}=\mathbf{A}^{\mathrm{t}} \mathbf{x}_{0}$. The ability to calculate powers of a matrix using eigenvalues and eigenvectors greatly simplifies the analysis.
In this case, we have $\mathbf{A}=\left[\begin{array}{ll}.5 & .75 \\ .5 & .25\end{array}\right], \lambda \mathbf{I}-\mathbf{A}=\left[\begin{array}{cc}\lambda-.5 & -.75 \\ -.5 & \lambda-.25\end{array}\right]$, $\mathrm{P}_{\mathbf{A}}(\lambda)=\operatorname{det}[\lambda \mathbf{I}-\mathbf{A}]=\lambda^{2}-.75 \lambda-.25=(\lambda-1)(\lambda+.25)$ and the eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=-.25$.
These yield the eigenvectors $\mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
If we began with any configuration $\mathbf{x}_{0}=\left[\begin{array}{l}x_{A} \\ X_{B}\end{array}\right]$ and expressed this in terms of the basis of eigenvectors $\mathscr{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ as $\mathbf{x}_{0}=\mathrm{C}_{1} \mathbf{v}_{1}+\mathrm{C}_{2} \mathbf{v}_{2}$, then we would have $\mathbf{x}_{1}=\mathrm{C}_{1} \lambda_{1} \mathbf{v}_{1}+\mathrm{C}_{2} \lambda_{2} \mathbf{v}_{2}, \mathbf{x}_{2}=\mathrm{c}_{1} \lambda_{1}^{2} \mathbf{v}_{1}+\mathrm{C}_{2} \lambda_{2}^{2} \mathbf{v}_{2}$, etc. A fter t iterations we would get $\mathbf{x}_{\mathrm{t}}=\mathrm{c}_{1} \lambda_{1}^{\mathrm{t}} \mathbf{v}_{1}+\mathrm{c}_{2} \lambda_{2}^{\mathrm{t}} \mathbf{v}_{2}$. But with $\lambda_{1}=1$ and $\lambda_{2}=-.25$ we see that $\lambda_{1}^{\mathrm{t}}=1$ for all tand $\lambda_{2}{ }^{\mathrm{t}} \rightarrow 0$, so eventually $\mathbf{x}_{\mathrm{t}} \rightarrow \mathrm{C}_{1} \mathbf{v}_{1}$. In practical terms, this simply means that the number of beans in each pile will eventually be proportional to the components of the eigenvector $\mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$. For example, if we began with 1000 beans initially configured in any way, eventually we'll find the number of beans to be approaching 600 in pile A and 400 in pile B.

Example: Find the eigenvalues and eigenvectors of the matrix $\mathbf{A}=\left[\begin{array}{ccc}3 & 0 & -2 \\ -7 & 0 & 4 \\ 4 & 0 & -3\end{array}\right]$ and diagonalize this matrix, if possible, by finding a basis consisting of eigenvectors.
Solution: Before getting started, note that the column of 0 's means that $\mathbf{A e}=\mathbf{0}$, so \mathbf{e}_{2} is actually an eigenvectors with eigenvalue $\lambda=0$. Indeed, the kernel of any $n \times n$ matrix is just the eigenspace E_{0}.

$$
\lambda \mathbf{I}-\mathbf{A}=\left[\begin{array}{ccc}
\lambda-3 & 0 & 2 \\
7 & \lambda & -4 \\
-4 & 0 & \lambda+3
\end{array}\right] \text {, so } p_{\mathbf{A}}(\lambda)=\operatorname{det}[\lambda \mathbf{I}-\mathbf{A}]=(\lambda-3)\left(\lambda^{2}+3 \lambda\right)+2(4 \lambda)=\lambda^{3}-\lambda=\lambda(\lambda-1)(\lambda+1)=0 .
$$

This yields three distinct, real eigenvalues $\lambda_{1}=1, \lambda_{2}=0$ and $\lambda_{3}=-1$. (Order doesn't matter, but be consistent.)

$$
\begin{aligned}
& \lambda_{1}=1 \Rightarrow\left[\begin{array}{ccc|c}
-2 & 0 & 2 & 0 \\
7 & 1 & -4 & 0 \\
-4 & 0 & 4 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{c}
x_{1}=t \\
x_{2}=-3 t \\
x_{3}=t
\end{array}\right\} \Rightarrow t\left[\begin{array}{c}
1 \\
-3 \\
1
\end{array}\right] \Rightarrow \mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
1
\end{array}\right] \\
& \lambda_{2}=0 \Rightarrow\left[\begin{array}{ccc|c}
-3 & 0 & 2 & 0 \\
7 & 0 & -4 & 0 \\
-4 & 0 & 3 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=t \\
x_{3}=0
\end{array}\right\} \Rightarrow t\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \Rightarrow \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& \lambda_{3}=-1 \Rightarrow\left[\begin{array}{ccc|c}
-4 & 0 & 2 & 0 \\
7 & -1 & -4 & 0 \\
-4 & 0 & 2 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -\frac{1}{2} & 0 \\
0 & 1 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
x_{1}=t \\
x_{2}=-t \\
x_{3}=2 t
\end{array}\right\} \Rightarrow t\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \Rightarrow v_{3}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]
\end{aligned}
$$

Once again, we were fortunate to be able to produce a basis of eigenvectors $\mathscr{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
Theorem: Eigenvectors corresponding to distinct eigenvalues are linearly independent.
Proof: We prove this fact using an inductive argument in which each successive step uses the result of the previous step. For a finite set of eigenvalues, there will be a finite number of steps.
(1) If there is just one eigenvalue λ_{1}, then there must be a corresponding nonzero eigenvector \mathbf{v}_{1}. This is a linearly independent set.
(2) Suppose there are two distinct eigenvalues $\lambda_{1} \neq \lambda_{2}$ with corresponding eigenvectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. We want to show that these must necessarily be linearly independent. To this end, let $c_{1} \mathbf{v}_{1}+C_{2} \mathbf{v}_{2}=\mathbf{0}$. If we multiply by the matrix \mathbf{A}, we get $\mathbf{A}\left(\mathrm{C}_{1} \mathbf{v}_{1}+\mathrm{C}_{2} \mathbf{v}_{2}\right)=\mathrm{c}_{1} \mathbf{A} \mathbf{v}_{1}+\mathrm{C} \mathbf{A}_{2} \mathbf{v}_{2}=\mathrm{C}_{1} \lambda_{1} \mathbf{v}_{1}+\mathrm{C}_{2} \lambda_{2} \mathbf{v}_{2}=\mathbf{A}(\mathbf{0})=\mathbf{0}$. The original relation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=\mathbf{0}$ gives that $c_{2} \mathbf{v}_{2}=-c_{1} \mathbf{v}_{1}$, so $c_{1} \lambda_{1} \mathbf{v}_{1}+\lambda_{2}\left(-c_{1} \mathbf{v}_{1}\right)=c_{1}\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}_{1}=\mathbf{0}$. Because $\lambda_{1} \neq \lambda_{2}$ and $\mathbf{v}_{1} \neq \mathbf{0}$, we must have $\mathrm{c}_{1}=0$. But therefore $\mathrm{c}_{2} \mathbf{v}_{2}=\mathbf{0}$, so necessarily $\mathrm{c}_{2}=0$. Therefore $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ are linearly independent.
(3) Suppose $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are distinct eigenvalues (hence $\lambda_{1} \neq \lambda_{2}, \lambda_{1} \neq \lambda_{3}, \lambda_{2} \neq \lambda_{3}$), with corresponding eigenvectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. Once again, we write $\mathrm{C}_{1} \mathbf{v}_{1}+\mathrm{C}_{2} \mathbf{v}_{2}+\mathrm{C}_{3} \mathbf{v}_{3}=\mathbf{0}$. M ultiplication by \boldsymbol{A} gives
$\mathrm{C}_{1} \mathbf{A} \mathbf{v}_{1}+\mathrm{C}_{2} \mathbf{A} \mathbf{v}_{2}+\mathrm{C}_{3} \mathbf{A} \mathbf{v}_{3}=\mathrm{C}_{1} \lambda_{1} \mathbf{v}_{1}+\mathrm{C}_{2} \lambda_{2} \mathbf{v}_{2}+\mathrm{C}_{3} \lambda_{3} \mathbf{v}_{3}=\mathbf{0}$, and the original relation allows us to solve for $c_{3} \mathbf{v}_{3}=-c_{1} \mathbf{v}_{1}-c_{2} \mathbf{v}_{2}$. Substitution gives $c_{1} \lambda_{1} \mathbf{v}_{1}+c_{2} \lambda_{2} \mathbf{v}_{2}+\lambda_{3}\left(-c_{1} \mathbf{v}_{1}-c_{2} \mathbf{v}_{2}\right)=c_{1}\left(\lambda_{1}-\lambda_{3}\right) \mathbf{v}_{1}+c_{2}\left(\lambda_{2}-\lambda_{3}\right) \mathbf{v}_{2}=\mathbf{0}$. The previous step established the linear independence of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, so necessarily $c_{1}\left(\lambda_{1}-\lambda_{3}\right)=0$ and
$C_{2}\left(\lambda_{2}-\lambda_{3}\right)=0$. Because the eigenvalues are all distinct, this implies that $c_{1}=0$ and $c_{2}=0$. Therefore $\mathrm{C}_{3} \mathbf{v}_{3}=\mathbf{0}$, so $\mathrm{C}_{3}=0$ as well. So $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ are linearly independent.
The argument continues in the same fashion so that if $\lambda_{1}, \cdots, \lambda_{k}$ are distinct eigenvalues with corresponding eigenvectors $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}$, these must be linearly independent.

Corollary: If \mathbf{A} is an $\mathrm{n} \times \mathrm{n}$ matrix with distinct, real eigenvalues, then \mathbf{A} is diagonalizable.
Proof: If the roots of the nth degree characteristic polynomial are $\lambda_{1}, \cdots, \lambda_{n}$, each will yield a corresponding eigenvector so we'll have a collection $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ of linearly independent eigenvectors. This will constitute a basis for \mathbf{R}^{n}, so the matrix \mathbf{A} will be diagonalizable.
Note: This means that for a matrix \mathbf{A} to fail to be diagonalizable, its spectrum must contain either repeated eigenvalues, complex eigenvalues, or possibly both. However, it is quite possible for a matrix with repeated eigenvalues to still be diagonalizable. The best example is the $n \times n$ identity matrix which has only the eigenvalue 1 but this eigenvalue has algebraic multiplicity n. The identity matrix is clearly diagonalizable because it's already diagonal! All vectors are eigenvectors of the identity matrix.
Example: If we compare the three matrices $\mathbf{A}=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right], \mathbf{B}=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$, and $\mathbf{C}=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$, we'll see that they each have the same characteristic polynomial $p(\lambda)=(\lambda-2)^{3}$, so they each have just the one eigenvalue $\lambda=2$ with algebraic multiplicity 3 . However, a quick calculation with each of these matrices reveals that the geometric multiplicity of \mathbf{A} is 3 (every vector is an eigenvector), the geometric multiplicity of \mathbf{B} is 2 , and the geometric multiplicity of \mathbf{C} is 1 . Neither matrix \mathbf{B} nor matrix \mathbf{C} is diagonalizable.

Notes by R obert W inters

