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Math S-21b – Lecture #11 Notes 
This week is all about determinants. We’ll discuss how to define them, how to calculate them, learn the all-
important property known as multilinearity, and show that a square matrix A is invertible if and only if its 
determinant is nonzero. We’ll also derive some useful geometric applications that will allow us to not only 
calculate length, area, and volume, but also to define geometric content (k-volume) in higher dimensions. We 
will also give an interpretation of the determinant as an “expansion factor” for geometric content. We’ll wrap it 
up with a few minor results (Cramer’s Rule and a not-too-practical formula for the inverse of a matrix). 

Defining the determinant 
You are probably already familiar with the determinant in the case of 2 2×  and perhaps 3 3×  matrices. Let’s 
start with those and “reverse engineer” the general definition for any square matrix. 

1 1×  matrix: Just for the sake of consistency, let’s define det[ ]a a=  for a 1 1×  matrix. 

2 2×  matrix: We define det a b a b ad bcc d c d
  = = −  

. 

3 3×  matrix: We define 
11 12 13 11 12 13

22 23 21 23 21 22
21 22 23 21 22 23 11 12 13

32 33 31 33 31 32
31 32 33 31 32 33

det
a a a a a a a a a a a aa a a a a a a a aa a a a a aa a a a a a

 
  = = − +
 
 

 

11 22 33 23 32 12 21 33 23 31 13 21 32 22 31( ) ( ) ( )a a a a a a a a a a a a a a a= − − − + −  

11 22 33 11 23 32 12 21 33 12 23 31 13 21 32 13 22 31a a a a a a a a a a a a a a a a a a= − − + + −  

This definition is based on a fact that we have not yet established called the Laplace expansion, but let’s take 
this as given and see what, if any, pattern it suggests. Note that there is just 1 term for the determinant of a 1 1×  
matrix, 2 terms for a 2 2×  matrix (one positive, one negative), and 3! 6=  terms for a 3 3×  matrix (half of them 
positive and half negative). Also note that the number of factors in each term grows with the size of the matrix. 
A more subtle observation is that, at least as written for the 3 3×  case, all terms are of the form 1 2 3x y za a a  and 
the choices of , ,x y z  correspond precisely with the different ways of permuting the characters in 123 , i.e. 
{ }123,132,213,231,312,321 . Finally, note that the sign of each term corresponds to whether this is an even 
permutation (positive if obtained by an even number of transpositions of the characters starting with 123) or an 
odd permutation (negative if obtained by an even number of transpositions). 

Based on these observations, we might (correctly) speculate that for an n n×  matrix we should define the 
determinant as follows: 

Definition: Given an n n×  matrix 
11 1

1

n

n nn

a a

a a

 
 =
 
 

A


  



, we define 1 (1) 2 (2) ( )
( )

det sgn( ) n n
P n

a a as s s
s

s
∈

= ∑A   where 

( )P n  denotes the set of all permutations of the characters 12 n ; σ  denoting an individual permutation; ( )iσ  
denoting where the character i is mapped under that permutation; and sgn( ) 1s = +  if σ  is an even permutation 
and sgn( ) 1s = −  if σ  is an odd permutation. There will be !n  terms in the sum – corresponding to the number 
of permutations in ( )P n . 

There are other ways to define the determinant, but this is a practical definition at least in the case of relatively 
small matrices. 

Two simple observations 
1) If A is either upper triangular or lower triangular, all but one of the terms in the determinant will vanish 

and the determinant will be simply the product of its diagonal entries. 
2) For any n n×  matrix, Tdet det=A A . [The sum is the same, just rearranged and with the same signs.] 
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Multilinearity 
Note that the determinant is, in fact, a function det : n n× →R R  that takes any n n×  matrix A and yields the real 
number det A . As a function from one linear space to another, the determinant is not linear. For example, if we 

were to scale a 2 2×  matrix a b
c d
 =   

A  (with det ad bc= −A ), we have at btt ct dt
 =   

A  and 

2 2 2 2det( ) ( ) dett t ad t bc t ad bc t= − = − =A A . More generally, for any n n×  matrix, we have det( ) detnt t=A A . 

However, the determinant is linear in any single row or column. This is known as multilinearity. 

2 2×  example: [ ]1 1
2 1

2 2

3det 3 2 2 32
x xx xx x

   = − = −      
 

3 3×  example: [ ]
1

3 2 3 1 2 1 1 2 3 2

1 2 3 3

1 2 1
det 3 4 2 1(4 2 ) 2(3 2 ) 1(3 4 ) 8 5 2 8 5 2

x
x x x x x x x x x x

x x x x

   
   − = + − + + − = − + − = − −
   
   

. 

The multilinearity property gives several immediate corollaries. 

In terms of the kth column of a matrix: 

1 1 1det det detn n n

     ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
     + = +
     
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓          

v x y v v x v v y v       

and 1 1det detn nr r
   ↑ ↑ ↑ ↑ ↑ ↑
   =
   
↓ ↓ ↓ ↓ ↓ ↓      

v x v v x v     

In terms of the kth row of a matrix: 
1 1 1

det det det

n n n

← → ← → ← →     
     
     ← + → = ← → + ← →     
     
     ← → ← → ← →     

v v v

x y x y

v v v

  

  

 

and 

1 1

det det

n n

r r

← → ← →   
   
   ← → = ← →   
   
   ← → ← →   

v v

x x

v v

 

 

 

This actually explains the Laplace expansion. Choose any row or column of the n n×  matrix A and for each 
entry ija of that row or column, let ijA  be its minor – the ( 1) ( 1)n n− × −  matrix obtained by deleting the ith row 

and jth column of the matrix A. Then, in terms of the ith row, 
1

det ( 1) det
n

i j
ij ij

j
a+

=

= −∑A A ; and in terms of the 

jth column, 
1

det ( 1) det
n

i j
ij ij

i
a+

=

= −∑A A . 
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For example, in terms of the 1st row of a matrix 
11 1

1

n

n nn

a a

a a

 
 =
 
 

A


  



, we can express 

[ ] [ ] [ ]11 1 11 11 0 0 1n na a a a= + +    . Applying linearity in the 1st row, this gives; 

11 1

11 1

1 1 1

1 0 0 1
det det det

n

n

n nn n nn n nn

a a
a a

a a a a a a

     
     = = + +
     
     

A
  

         

  

 and because of all the 0’s in the first 

row of each, and some observations about even vs. odd permutations to determine the signs, this becomes 
11 1 22 2 21 2

1
11 1

1 2 1

1
11 11 1 1

det det ( 1) det

det ( 1) det

n n n
n

n

n nn n nn n nn

n
n n

a a a a a a
a a

a a a a a a

a a

+

+

     
     = = + − + −
     
     

= + − + −

A

A A

  

         

  



 

The same idea applies to any choice of row or column with appropriate signs. 

Example: If 
3 2 1
1 1 0
1 1 3

 
 =
 − 

A , we can choose to expand along any row or column. We often choose a row with 

one or more 0’s in order to minimize the number of nonzero terms in the sum, but not necessarily. 

Expanding along the 1st row gives 1 0 1 0 1 1det 3 2 1 3(3) 2(3) 1(2) 51 3 1 3 1 1= − + = − + =
− −

A . 

Expanding along the 2nd row gives 2 1 3 1 3 2det 1 1 0 1(5) 1(10) 0( ) 51 3 1 3 1 1= − + − = − + − =
− −

A  . 

Expanding along the 3rd column gives 1 1 3 2 3 2det 1 0 3 1(2) 0( ) 3(1) 51 1 1 1 1 1= − + = − + =
− −

A  . 

Effect of elementary row operations on the determinant 
For any n n×  matrix A, we have the following properties: 

(a) scale row
by det detk k→ ⇒ =A B B A  

scale row
by 1 , 0

1det detk k k≠→ ⇒ =A B B A  

(b) interchange
two rows det det→ ⇒ = −A B B A  

(c) add a multiple of
one row to another det det→ ⇒ =A B B A  

Property (a) follows directly from linearity in any one row. Property (b) follows by observing that all the terms 
in the determinant will be the same except that even permutations will become odd and vice-versa. This causes 
all the signs to be reversed. Property (b) also implies that if a matrix has two identical rows, then its determinant 
must be zero. Property (c) requires a small argument for justification: 

det det det det 0 det
i i i ii

j i j j ji

k k
k

        
        ← → ← → ← → ← →← →
        = + = + ⋅ =        
← + → ← → ← → ← →← →        
                

v v v vv

v v v v vv

   



   





   
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There are at least two significant results that flow from these observations. The first has to do with 
simplification of the calculation of a determinant by first doing some row reduction. The second will give a new 
criterion for invertibility of a matrix. 

We can calculate the determinant of a matrix by “double tracking” the steps in row reduction and the effect of 
each step on the value of the determinant. This is especially useful for larger matrices. 

Example: Calculate det A  for the matrix 
2 3 1
1 1 4
0 4 5

 
 =
 
 

A . 

Solution: 
1 1
33 33

1 0 11 1 0 02 3 1 1 1 4 1 1 4 1 0 11
0 1 7 0 1 01 1 4 2 3 1 0 1 7 0 1 7
0 0 1 0 0 10 4 5 0 4 5 0 4 5 0 0 33

det detdet det det det

          
           −− −    → → → → →                  
− −− − − A AA A A A

 

We could conclude from the 4th entry when we obtained an upper triangular matrix that det 33− =A , so 
det 33= −A . We could also have completed the row reduction to get to reduced row-echelon form. This would 
give that 1

33 det 1− =A , so det 33= −A . 

Invertibility and the determinant 
Suppose we began with a matrix A and carried out a sequence of steps to obtain rref( )A . This sequence of steps 
would involve s row swaps which would affect the determinant by multiplying by ( 1)s− , r row scalings by 
factors 

1 2

1 1 1, , ,
rk k k  (where 1 2, , , 0rk k k ≠ ), and some number of steps where a multiple of a pivot row is 

added to another row. The effect of these row operations on the determinant then gives that 

1 2

1 1 1det[rref ( )] ( 1) det( )
r

s
k k k= −A A . From this we conclude that 1 2det( ) ( 1) det[rref ( )]s

rk k k= −A A . 

There are only two possible values for det[rref ( )]A . If the matrix A is invertible with rank n, then rref ( ) n=A I  
and det[rref ( )] 1=A . If the matrix A is not invertible with rank k n< , then rref ( )A  will have at least one all-
zero row and det[rref ( )] 0=A . From the result above, this gives the following important theorem: 

Theorem: An n n×  matrix A is invertible if and only if det 0≠A . 

There are a number of other facts about determinants of both practical and theoretical value. 

Proposition: If A and B are n n×  matrices, then det( ) (det )(det )=AB A B . 
Proof: If the matrix A is not invertible, then AB will also not be invertible and det 0=A  and det( ) 0=AB , so 
the result holds in this case. A homework exercise shows that in the case where A is invertible and B is an 
arbitrary n n×  matrix, then rref[ | ] [ | ]n=A AB I B . If the row reduction from A to nI  involves the same row 
operations as outlined previously, then these same row operations would be applied in reducing AB to B, so 

1 2det( ) ( 1) det( ) det( )det( )s
rk k k= − =AB B A B . 

Proposition: If A is invertible, then 1 1det( )
det( )

− =A
A

. 

Proof: If A is invertible, then 1
n

− =A A I , so 1 1det( ) det( )det( ) det( ) 1n
− −= = =A A A A I , so 1det( )−A  and det( )A  

are reciprocals. 

Proposition: If two n n×  matrices A and B are similar, then det det=A B . 
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Proof: Two n n×  matrices A and B are similar if an only if 1−=B S AS  for some invertible (change of basis) 
matrix S. Therefore 1 1det det( ) det( )det( )det( ) det( )− −= = =B S AS S A S A . 

This last proposition yields an important corollary: 

Corollary: Suppose V is a finite-dimensional vector space and :T V V→  is a linear transformation. Then the 
determinant det( )T  is well-defined. That is, if B  is any basis for V and if [ ]T=A

B
 is the matrix of T relative to 

this basis, and if we define det( ) det( )T = A , then this value will be the same no matter what basis we choose. 
Proof: If we choose any other basis then the matrix of T relative to this other basis will be 1−=B S AS  for some 
invertible (change of basis) matrix S. Therefore det( ) det detT = =A B  from the previous proposition. 

Geometry and the determinant 
If we merge some of the previous information about Gram-Schmidt orthogonalization and QR factorization 
with the current facts about determinants, we can derive some important and useful results. Recall that if 

{ }1, , kv v  are linearly independent and if we write 1 2 k

 ↑ ↑ ↑
 =
 
↓ ↓ ↓  

A v v v , then the Gram-Schmidt process 

gave 
11 2 1 1

22 2
1 2 1 2

 matrix w/linearly  matrix
 upper triangularindependent columns w/orthonormal columns

0

0 0

k

k
k k

kk
n k n k

k k

r
r

r
× ×

×

⋅ ⋅    ↑ ↑ ↑ ↑ ↑ ↑  ⋅   = =       ↓ ↓ ↓ ↓ ↓ ↓         

v u v u
v uA v v v u u u





 

   



 

 matrix
with nonzero diagonal entries

= QR



. 

The columns of the matrix A are the original vectors; the columns of the matrix Q are those of the Gram-
Schmidt basis; and the entries of the matrix R capture all of the geometric aspects of the original basis, i.e. 
lengths, areas, etc. and the non-orthogonality of the original vectors. The k-volume of the parallelepiped 
determined by { }1, , kv v  is just the product of the diagonal entries of R, i.e. 11 22 detkkr r r = R . 
Note that with =A QR  we have T T T T T T( ) k= = = =A A QR QR R Q QR R I R R R . Therefore 

T T T 2 2det( ) det( ) det( )det( ) det( )det( ) (det ) ( -volume)k= = = = =A A R R R R R R R , so T-volume det( )k = A A . 

This is a very handy way to calculate areas, volumes, and their higher-dimensional analogues. 

Example: In 3R , find the area of the parallelogram determined by the vectors 1

1
2
3

 
 =
 
 

v  and 2

1
0
2

− 
 =
 
 

v . 

Solution: In multivariable calculus, we would likely find the area of this parallelogram using the cross product. 

We would calculate that 1 2

4
5

2

 
 × = −
 
 

v v  and find its magnitude: 1 2Area 16 25 4 45 3 5= × = + + = =v v . 

Using our determinant method, we write 
1 1
2 0
3 2

− 
 =
 
 

A  and calculate T
1 11 2 3 14 52 01 0 2 5 53 2

− 
    = =   −     

 
A A . So 

T 14 5det( ) det 70 25 455 5
 = = − =  

A A  and TArea 2-volume det( ) 45 3 5= = = =A A . 

It is important to note that the cross product is only defined in 3R , so any method involving cross products has 
very limited applicability. 
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Special Case: Determinant of an n×n matrix as an expansion factor 

If 1 n

 ↑ ↑
 =
 
↓ ↓  

A v v  is an n n×  matrix, then T T 2 2det( ) det( )det( ) (det ) ( -volume)n= = =A A A A A  and the n-

volume determined by the vectors { }1, , nv v  is given by T 2det( ) (det ) det= =A A A A . If we further note 

that 
1 1

n n

=  
 
 = 

v Ae

v Ae
 , we can observe that the unit n-cube determined by { }1, , ne e  is mapped to the parallelepiped 

determined by { }1, , nv v , so the volume is expanded from 1 to det A . This result extends to any region in the 

domain and enables us to think of det A  as a “volume expansion factor”. This provides a simple geometric 

interpretation of the fact that det( ) (det )(det )=AB A B  (and therefore det( ) det det=AB A B ). Since the 
product of two matrices corresponds to the composition of linear transformations, and if applying the matrix B 
scales volume by det B , and this is followed by applying the matrix A which scales volume by det A , then 

the composition should scale volume by the product det detA B . 

It’s not hard to reason that the sign of the determinant will be positive if the linear transformation is “orientation 
preserving” and negative if the transformation is “orientation reversing.” Indeed, we can define these terms by 
the sign of the determinant. 

Cramer’s Rule 
In the special case when a system of n linear equations in n variables has a unique solution, determinants 
provide a formula for this unique solution. This is known as Cramer’s Rule. 

Cramer’s Rule: Suppose a linear system is represented as =Ax b  where A is an n n×  matrix with rank n. Let 
kA  be the n n×  matrix obtained by replacing the kth column of A with the column vector b. If the solution to 

the system is 
1

n

x

x

 
 =
 
 

x  , then det
det

k
kx =

A
A

 for all k. 

Proof: Suppose x solves =Ax b , then 1 1det det detk n n

   ↑ ↑ ↑ ↑ ↑ ↑
   = =
   
↓ ↓ ↓ ↓ ↓ ↓      

A v b v v Ax v     

1 1 1 1det ( ) det detn n n k k n kx x x x
   ↑ ↑ ↑ ↑ ↑ ↑
   = + + = =
   
↓ ↓ ↓ ↓ ↓ ↓      

v v v v v v v A      

where we have liberally applied several previous results. So det
det

k
kx =

A
A

. 

Example: Solve the linear system 
2 3 1

3 4 5 3
6 4

x y z
x y z
x y z

+ − =  − + + = 
 − + = − 

 using Cramer’s Rule. 

Solution: We have 
2 1 3
3 4 5

1 1 6

− 
 = −
 − 

A  and 
1
3
4

 
 =
 − 

b . We first calculate 

det 2(29) 1( 23) 3( 1) 58 23 3 84 0= − − − − = + + = ≠A , so the system will yield a unique solution. We next write 
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1

1 1 3
3 4 5
4 1 6

− 
 =
 − − 

A , 2

2 1 3
3 3 5

1 4 6

− 
 = −
 − 

A , and 3

2 1 1
3 4 3

1 1 4

 
 = −
 − − 

A  and calculate 

1det 1(29) 1(38) 3(13) 29 38 39 48= − − = − − = −A  and 2det 2(38) 1( 23) 3(9) 76 23 27 72= − − − = + − =A  and 

3det 2( 13) 1(9) 1( 1) 26 9 1 36= − − + − = − − − = −A . So 1
48 4

784x −= = − , 2
72 6

784x = = , and 3
36 3

784x −= = − . 

Cookbook recipe for finding the inverse of an invertible matrix 
If you look carefully at Cramer’s Rule, you may notice that it actually provides a formula for the inverse of any 
invertible matrix. The fact that det A  should appear in the denominators is clear enough , and we omit most of 
the remaining details, but with a little effort we can arrive at the following (not particularly useful) result: 

Recipe for 1−A : Given an n n×  matrix, we first calculate det A . If det 0=A , stop – the matrix is not invertible. 
If det 0≠A , we continue. For each entry ija  of the matrix, let ijA  be its minor – the ( 1) ( 1)n n− × −  matrix 
obtained by deleting the ith row and jth column of the matrix A. We define the cofactors by 
cof ( ) ( 1) deti j

ij ija += − A . If we assemble all of these cofactors into a matrix, we call this cof ( )A . We then 

transpose this matrix to get the adjoint matrix Tadj( ) [cof ( )]=A A . Then 1 1
det( ) adj( )− = AA A . 

A simple procedure for carrying this out is to: 
(a) Calculate the determinant of the given matrix. If it’s nonzero, continue. 
(b) Calculate the matrix consisting of the determinants of the respective minors for every entry of the given 

matrix. 

(c) Adjust all the signs using the checkerboard pattern: 

+ − + 
 − + −
 + − + 
  







   

. 

(d) Transpose the resulting matrix to get the adjoint. 
(e) Multiply by the reciprocal of the determinant to get the inverse matrix. 

Example: Find the inverse of the matrix 
2 1 3
3 4 5

1 1 6

− 
 = −
 − 

A . 

Solution: (a) det 2(29) 1( 23) 3( 1) 58 23 3 84 0= − − − − = + + = ≠A . 

(b) The determinant of the minors gives: 
29 23 1
3 15 3

17 1 11

− − 
 −
 
 

 

(c) Adjust the signs to get the matrix of cofactors: 
29 23 1

3 15 3
17 1 11

− 
 −
 − 

 

(d) Transpose to get the adjoint: 
29 3 17
23 15 1

1 3 11

− 
 −
 − 

 

(e) Multiply by the reciprocal of the determinant to get 1 1
84

29 3 17
23 15 1

1 3 11

−
− 

 = −
 − 

A . 
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Had we proceeded this way, we would have solved the system in the previous example as 

1 1 1 1
784 84

29 3 17 1 48 4
23 15 1 3 72 6

1 3 11 4 36 3

−
− − −       

       = = − = =
       − − − −       

x A b . 

Note: The impracticality of this method starts to become clear when we look at 4 4×  matrices which would 
involve the calculation 16 determinants of 3 3×  matrices in addition to the original 4 4×  determinant which 
requires the calculation of other 3 3×  determinants to bring the total to 20 such determinants (in addition to the 
other calculations). For a 5 5×  matrix, we would have to calculate 25 5 30+ =  determinants of 4 4×  matrices 
each of which would require the calculation of smaller determinants. In general, it is far quicker to solve using 
row reduction methods, and row reduction has the additional advantage of yielding solutions in the case of 
consistent systems with rank less than n. 

 
Notes by Robert Winters 


