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Math S-21b – Lecture #10 Notes 

In today’s lecture we’ll finish up a few details on Least Square Approximate Solutions (see Lecture #9 notes), 

review inner product spaces, and then introduce the idea of an orthonormal set of functions. The primary 

application that we’ll focus on is Fourier series. We’ll cover this initially in the case of a continuous function on 

a closed interval, but the ideas can be extended to also represent discontinuous functions that are piecewise 

continuous. All results can then be used to describe periodic functions more generally. Much of the following 

notes are adapted from a course in differential equations. 

Inner Products and Orthogonality 

We are all familiar with the mutually perpendicular (orthogonal) unit vectors  , ,i j k  in 3
R  and how we can 

express any vector , ,x y z=v  in 3
R  as , , 1,0,0 0,1,0 0,0,1x y z x y z x y z= = + + = + +v i j k . The 

components of the vector are just the scalar projections of v  in the directions of  , ,i j k , respectively. We find 

the scalar projection of a vector in any given direction by calculating its dot product with a unit vector u  in the 

given direction, i.e. v u . So we can also express ( ) ( ) ( )x y z= + + =  +  + v i j k v i i v j j v k k . 

We could do the same thing with any set of three mutually orthogonal unit vectors  1 2 3, ,u u u  in 3
R . That is, if 

3v R  we could write 1 1 2 2 3 3( ) ( ) ( )=  +  + v v u u v u u v u u . 

Just as we can add and scale vectors, we can also do this with functions. We add functions by adding their 

values and scale them by scaling their values. That is, ( )( ) ( ) ( )f g x f x g x+ = +  and ( )( ) ( )cf x cf x= . We might 

speculate that if functions can be combined in a manner analogous to vectors (where we add respective values 

instead of respective components), perhaps there may be something analogous to the dot product that we could 

use to define notions such as orthogonality in spaces of functions. 

Think about how the dot product of two vectors is calculated: We multiply the respective components of the 

two vectors and sum these products, i.e. in 3
R  we have 

1 2 3 1 2 3 1 1 2 2 3 3, , , ,u u u v v v u v u v u v =  = + + u v R  and, 

more generally, in n
R  we have 

1 1 1 1, , , ,n n n nu u v v u v u v =  = + + u v R . We also derive using the 

Law of Cosines that cos =u v u v  where   is the angle between u  and v . It is from this fact that we 

conclude that nonzero vectors u  and v  are orthogonal if and only if 0 =u v . 

Vectors in 3
R  (or any n

R ) have just a finite list of components, whereas functions of a real variable have 

infinitely many values. If we think of the values of a function as analogous to the components of a vector, and if 

we use integration as analogous to a discrete sum, this suggests the following definition: 

Definition: If ,f g  are functions defined on some interval [ , ]a b , we can define an inner product of these 

functions by , ( ) ( )
b

a
f g f t g t dt=  . Such an inner product will then satisfy the following properties (where 

defined for any functions , ,f g h ): 

(1) , ,g f f g=      (symmetric) 

(2) , , ,f g h f h g h+ = +  and , , ,f g h f g f h+ = +      (left and right distributive laws) 

(3) , , ,cf g c f g f cg= =      for any scalar c 

These properties are analogous to the algebraic properties of the dot product. We can use this inner product to 

define orthogonality. 

Definition: We say that two (nonzero) functions ,f g  are orthogonal if , 0f g = . 
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There is a 4th property of the dot product that doesn’t quite work as simply in the context of functions. That is, 

for any vector v , we have 
2

0 = v v v  and 0 =v v  only if =v 0 . The corresponding statement for 

functions is not generally true. It will always be the case that  
2

, ( ) 0
b

a
f f f t dt=  , but this inner product 

could be equal to zero for a function that is not identically 0 with isolated discontinuities where the function 

takes on nonzero values. If we only consider continuous functions, then  
2

, ( ) 0
b

a
f f f t dt= =  would imply 

that ( )f t  is identically zero on the interval [ , ]a b . In any case, we can still define the norm of a function f by 

 
22

, ( )
b

a
f f f f t dt= =   or ,f f f= . 

It’s certainly possible that these integrals might not be defined, so we generally restrict the set of functions to 

those for which  
22

, ( )
b

a
f f f f t dt= =   is finite. These are called “square summable” functions, and the 

set of all such functions for the interval [ , ]a b  is denoted by ( )2 [ , ]L a b . It can be shown that in this space of 

functions, ,f g f g  (Cauchy-Schwartz Inequality) and f g f g+  +  (Triangle Inequality). 

Note: All of the above properties work just as well if we define the inner product as , ( ) ( )
b

a
f g K f t g t dt=   for 

some nonzero constant K. This will alter the way in which the norm of a given function is defined, but 

using such a normalizing constant is often desirable when working with a particular interval. We’ll start 

by considering functions defined on the interval [ , ] −  and choose our normalizing constant so that 

1, ( ) ( )f g f t g t dt


 −
=  . 

Proposition: In ( )2 [ , ]L  − , the finite collection  1
2

, cos ,sin ,cos 2 ,sin 2 , ,cos ,sinn t t t t nt nt=B  is an 

orthonormal set. That is, each function in nB  has norm 1 and any distinct pair has inner product equal to 0. We 

think of this set as consisting of mutually orthogonal unit elements. In linear algebra terminology, we would say 

that these 2 1n+  functions span a subspace (referred to as nT ) and that they form a basis for this subspace. 

Proof: This is just a list of integral calculations. We’ll calculate a few of them and just quote the rest (though 

you may want to try some integration techniques or consult an integral table to see why they are true). We have: 

( )
2

1 1 1 1 1 1 1 1
2 22 2 2

, ( )2 1dt dt
 

    
− −

= = = =   

sin1 1 1 1
2 2 2

,cos cos 0kt
k

kt kt dt


  − −
= = =  

1 1 1
2 2

,sin sin 0kt kt dt


 −
= =      (integral of an odd function over a symmetric interval) 

2 sin(2 )1 1 1 1
2 2 22

cos ,cos cos [1 cos(2 )] (2 ) 1
kt

k
kt kt kt dt kt dt t

 

  
   


− − −

 = = + = + = =
    

2 sin(2 )1 1 1 1
2 2 22

sin ,sin sin [1 cos(2 )] (2 ) 1
kt

k
kt kt kt dt kt dt t

 

  
   


− − −

 = = − = − = =
    

1cos ,cos cos cos 0jt kt jt kt dt


 −
= =  for integers j k      (consult integral table) 

1sin ,sin sin sin 0jt kt jt kt dt


 −
= =  for integers j k      (consult integral table) 

1cos ,sin cos sin 0jt kt jt kt dt


 −
= =  for integers ,j k      (consult integral table) 
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We can define the orthogonal projection of a function f onto the subspace nT  analogous to n
R , namely: 

1 1
2 2

Proj ( ) , , cos cos ,sin sin ,cos cos ,sin sinn nf f f f t t f t t f nt nt f nt nt= = + + + + +  

If we express these in terms of integrals, we get: 

1 1 1 1
2

1 1

( ) ( )cos cos ( )sin sin

( )cos cos ( )sin sin

nf f t dt f t t dt t f t t dt t

f t nt dt nt f t nt dt nt

  

  

 

 

  

 

− − −

− −

     = + + +
          

   + +
      

  

 
 

This function nf  is known as the nth order Fourier approximation of the function f. 

This can be expressed more succinctly by defining the Fourier coefficients by: 

0
1 ( )a f t dt



 −
=   1 ( )coska f t kt dt



 −
=  , 1 ( )sinkb f t kt dt



 −
=   

Then 0

1 12
cos sin cos sinn n n

a
f a t b t a nt b nt= + + + + +  is the nth order Fourier approximation. 

Note: There is a difference in the definition of 0a  between the text and the Lectures Notes. In the text, 0a  is the 

actual Fourier coefficient for the ON basis, but in the Lectures Notes the 1

2
 basis element and the additional 

1

2
 factor in the coefficient are combined, so that the constant term in the Fourier Series becomes 0

2

a
. 

If, for any given n, we express ( )n nf f f f= − + , we can think of n nf T  and ( )n nf f T ⊥−   (known as the 

orthogonal complement of nT ). There is the analogue of the Pythagorean Theorem in this context that gives that 
2 2 2

n nf f f f= − + . With some careful analysis it can be shown that as n gets larger, the Fourier 

approximation converges in the sense that 
2

lim 0n
n

f f
→

− = , and this implies that 
2 2

lim n
n

f f
→

=  which can 

provide some very interesting results. 

By letting n →  we produce the Fourier Series of f as ( )0

1
2

cos sinn n

n

a
a nt b nt



=

+ + , and there’s this 

accompanying theorem (proven elsewhere): 

Theorem (Fourier): Suppose a function ( )f t  is periodic with base period 2  and continuous except for a 

finite number of jump discontinuities. Then ( )f t  may be represented by a (convergent) Fourier Series: 

0

1
2

( ) ( cos sin )n n

n

a
f t a nt b nt



=

+ +  

where:   
0

1 ( )a f t dt


 −
=  ,   1 ( )cosna f t nt dt



 −
=  ,   1 ( )sinnb f t nt dt



 −
=  . 

The numbers 0 1 1{ , , , , , , }n na a b a b  are called the Fourier coefficients of the function ( )f t . 

This representation is an equality at all points of continuity of the function ( )f t . At any point of discontinuity 

t a= , the series converges to the average of ( )f a−
 and ( )f a+

, i.e. the value 1
2

[ ( ) ( )]f a f a− ++ . 

Note: (a) If ( )f t  is an even function [ ( ) ( )f t f t− =  for all t], then 0nb =  for all n by basic facts from calculus. 

(b) If ( )f t  is an odd function [ ( ) ( )f t f t− = −  for all t], then 0 0a =  and 0na =  for all n by basic facts 

from calculus. 
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Example (Square wave function): 
1 [ ,0)

( ) ( )
1 [0, )

t
f t sq t

t





−  − 
= =  

+  
, extended periodically for all t. 

This function is periodic (with period 2 ) and antisymmetric, i.e. an odd function. Therefore 0 0a =  and 0na =  

for all n. We calculate 
0 0

00

cos cos1 1 1( )sin ( 1)sin sinn
nt nt

n nb f t nt dt nt dt nt dt
  

    −− −

   = = − + = −              

4
1  odd

1 ( 1) ( 1) 1
0  even

n n n
n

n

n



 

    = − − − − − =      
 

. 

So 
 odd

sin4 4 1 1
53

( ) [sin sin 3 sin 5 ]
n

nt
nsq t t t t = + + + . 

The nature of the convergence of this Fourier series toward the square wave function can be seen by graphing 

the partial sums: 

 

n = 1 

 

n = 3 

 

n = 5 
 

n = 7 

 

n = 15 
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If we translate 
2 2

lim n
n

f f
→

=  for this function we get that 
2 1 1 2f dt



 −
= = , and 

2 2 2

2

0

16 161 1 1 1
9 25 49 (2 1)

lim 1 2n
n

n
n

f
 



→
=

+
 = + + + + = =   . Therefore 

2

2

0

1
8(2 1)

n
n




=
+

= , a curious fact. 

We can also apply the last statement in Fourier’s Theorem by evaluating the square-wave function at 2 , a 

point of continuity, to get that 4 1 1 1
5 73

( 2) 1 [1 ]sq  = = − + − + , so 1 1 1
5 73 4

1 − + − + = , but the convergence 

is so abysmally slow as to be of no practical consequence – another curiosity. 

Note: More generally, 
2

2 22 2 2 2 2 20
1 1 2 2lim

2
n n n

n

a
f a b a b a b f

→
= + + + + + + + + =  

Example (Sawtooth function): ( )f t t=  on the interval ( , ] − , extended periodically for all t. 

This is an odd function, so we conclude immediately that 0 0a =  and 0na =  for all n. For the Fourier sine 

coefficients we do a little integration by parts:  
2

1 1 cos sin
sinn

t nt nt
b t nt dt

n n



 −
= = − +

1 2( 1)n

n





+

−

 
= − 

 
 

So ( )1

1

2( ) ( 1) sinn

n

nf t nt


+

=

− . In this case the fact that
2 2

lim n
n

f f
→

=  translates into 

2 2

2
22 2 3

1 1 1

1 1
3

4 1 2
4

3
n

n n n
n n

b f t dt t
 

 

  

−−
= = =

 = = = = = =     . So 
2

2

1

1 2
4

3n
n



=

=  or 
2

2

1

1
6

n
n



=

= . 

It’s worth noting (from Calculus) that this is a p-series with 2p = . There you may recall that we know that this 

series converges but not necessarily what it converges to. This curious result answers that question. 

Tips & Tricks – Manipulation of Fourier series 

Different period: We developed our Fourier series representation for functions with a standard period 2  and 

fundamental interval [ , ] − . If we instead have a function ( )f t  with period 2L  and fundamental interval 

[ , ]L L− , we can simply change variables to produce the corresponding Fourier series in this case. We let t
L

u =  

(so Lut = ) and define ( )( ) Lug u f =  with period 2  and fundamental interval [ , ] − . The Fourier series for 

( )g u  is then  

( )0

1

( ) cos sin
2

n n

n

a
g u a nu b nu



=

+ +  and if we use the substitution t
L

u =  (and 
L

du dt= ), we’ll have  

0
1 1 1 1( ) ( ) ( ) ( )

L L L

L L L

t
L L L L

a g u dt g dt f u du f t dt





 − − − −

= = = =    , 

1 1 1( )cos ( )cos( ) ( )cos( )
L L

n
L L

t n t n t
L L L L L

a g u nu du g dt f t dt




  
 − − −

= = =   , 

1 1 1( )sin ( )sin( ) ( )sin( )
L L

n
L L

t n t n t
L L L L L

b g u nu du g dt f t dt




  
 − − −

= = =   , and we can write: 

( )0

1

( ) ( ) cos( ) sin( )
2

n n

n

n t n t n t
L L L

a
f t g a b  



=

= + +  
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Fourier series can be differentiated or integrated term-by-term to produce other Fourier series: 

Example: If we start with 
 odd

sin41 [ ,0)
( )

1 [0, )
n

nt
n

t
sq t

t 




−  − 
=  

+  
  and integrate term-by-term, we get 

2

 odd

cos4( )
n

nt
n

F t C − + . If we also insist that (0) 0F =  and that ( )F t  be continuous, we get that 

( )
2

2

 odd

4 1 4
8 2

0
n

n
C C C 

 
 

− + = − + = − + = 
 
 , so 

2
C = . This gives 

2

 odd

cos4
2

[ ,0)
( )

[0, )
n

nt
n

t t
F t t

t t







−  − 
= = − 

+  
 , extended periodically for all t, another kind of “sawtooth 

function”. This series could also have been calculated directly using the formulas for the Fourier coefficients 

and some integration by parts. 

Fourier series can be scaled, shifted, etc. to produce other Fourier series. 

Example: Start with 
 odd

sin41 [ ,0)
( )

1 [0, )
n

nt
n

t
sq t

t 




−  − 
=  

+  
 . 

Then 
 odd

sin40 [ ,0)
1 ( ) 1

2 [0, )
n

nt
n

t
sq t

t 




 − 
+ = + 

 
 . 

So  
 odd

sin1 1 2
2 2

0 [ ,0)
1 ( )

1 [0, )
n

nt
n

t
sq t

t 




 − 
+ = + 

 
 , extended periodically for all t, a different sort of square-

wave function. 

Example: Find the Fourier series for the function ( ) cos( 3)f t t = − . 

Solution: This function is periodic with period 2 . There’s no need to consider the formulas for the Fourier 

coefficients. Simply note that 31
2 2

( ) cos( 3) cos cos( 3) sin sin( 3) cos sinf t t t t t t  = − = + = + . 

A few applications 

1) Variations of this idea provide a method for representing a periodic function (such as a musical sound) not as 

an analog signal but instead as a discrete list of coefficients. If the Fourier representation is truncated at a 

point beyond those frequencies that can be discerned by human hearing, this provides a recipe for creating a 

“digital” representation as a substitute for the analog original which can then be “read” by a device in order 

to recreate a digital version that is essentially indistinguishable from the original analog recording. 

2) In the study of ordinary differential equations (ODEs), it’s relatively straightforward to solve inhomogeneous 

linear ODEs such as 
2

1 02
cos( )

d x dx
a a x kt

dt dt
+ + =  or 

2

1 02
sin( )

d x dx
a a x kt

dt dt
+ + = . Using linear principles, we 

can then solve ODEs of the form 
2

1 02
( )

d x dx
a a x f t

dt dt
+ + =  for a general periodic function ( )f t  by 

representing ( )f t  as a Fourier series, solving the problem term-by-term, and then reassembling the solutions 

as a linear combination to solve the original problem. 

 

Notes by Robert Winters 


