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Matrix Methods for Solving Systems of 1st Order Linear Differential Equations 

The Main Idea: 

Given a system of 1st order linear differential equations d
dt

=x Ax  with initial conditions (0)x , we use 

eigenvalue-eigenvector analysis to find an appropriate basis 1{ , , }n= v vB   for Rn and a change of basis 

matrix 1 n

 ↑ ↑
 =
 
↓ ↓  

S v v  such that in coordinates relative to this basis ( 1−=u S x ) the system is in a standard 

form with a known solution. Specifically, we find a standard matrix 1[ ] −= =B A S ASB , transform the system 

into d
dt

=u Bu , solve it as ( ) [ ] (0)tt e= Bu u  where [ ]te B  is the evolution matrix for B, then transform back to the 

original coordinates to get ( ) [ ] (0)tt e= Ax x  where 1[ ] [ ]t te e −=A BS S  is the evolution matrix for B. That is 
1( ) [ ] [ ] (0)t tt e e −= =A Bx S S x . This is actually easier to do than it is to explain, so here are a few illustrative 

examples: 

The diagonalizable case 

Problem: Solve the system 
5 6

3 4

dx
x y

dt
dy

x y
dt

 = − 
 
 = −
 

 with initial 

conditions (0) 3, (0) 1x y= = . 

Solution: In matrix form, we have d
dt

=x Ax  where  

5 6
3 4

− =  − 
A  and 

3
(0)

1
 =   

x . We start by finding the 

eigenvalues of the matrix: 
5 6

3 4
λλ λ
− − =  − + 

I A , and the 

characteristic polynomial is 2( ) 2 ( 2)( 1)p λ λ λ λ λ= − − = − +A . This gives the eigenvalues 1 2λ =  and 2 1λ = −

. The first of these gives the eigenvector 1

2
1
 =   

v , and the second gives the eigenvector 2

1
1
 =   

v . So we have 

1 1 1

2 2 2

= λ 
 = λ 

Av v
Av v

. The change of basis matrix is 
2 1
1 1
 =   

S  and with the new basis (of eigenvectors) 

1 2{ , }= v vB we have 1 1

2

0 2 0
[ ]

0 0 1
−    = = = =   −  

A S AS DB

λ
λ , a diagonal matrix. [There is no need to carry 

out the multiplication of the matrices if 1 2{ , }= v vB  is known to be is a basis of eigenvectors. It will always 
yield a diagonal matrix with the eigenvalues on the diagonal.] 

The evolution matrix for this diagonal matrix is 
2 0

[ ]
0

t
t

t

e
e

e−

 
=  
 

D , and the solution of the system is: 

2 2
1

2

2
2 2

2 1 2

2 1 0 1 1 3 2 2( ) [ ] (0) [ ] (0) 1 1 1 2 1 10

4 2 12 21 12

t t t
t t

t t t

t t
t t t t

t t

e e et e e
e e e

e e e e e e
e e

−
−

− −

−
− −

−

   −       = = = =   − −                 
 −    = = − = −     −     

A Dx x S S x

v v
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The complex eigenvalue case 

Let A be a matrix with a complex conjugate pair of eigenvalues a ibλ = +  and a ibλ = − . We can proceed just 
as in the case of real eigenvalues and find a complex vector w such that ( )λ − =I A w 0 . The components of such 
a vector w will have complex numbers for its components. If we decompose w into its real and imaginary vector 
components as i= +w u v  (where u and v and real vectors), we can calculate that: 

(1)   ( )( ) ( ) ( )i a ib i a b i b a= + = λ = + + = − + +Aw Au Av w u v u v u v  

If we define the vector ˆ i= −w u v  and use the easy-to-prove fact that for a matrix A with all real entries we’ll 

have ˆ ˆλ λAw = Aw = w = w , we see that ˆ i= −w u v  will also be an eigenvector with eigenvalue λ , and: 

(2)     ( ) ( )i a b i b a− = − − +Au Av u v u v  

The true value of this excursion into the world of complex numbers and complex vectors is seen when we add 
and subtract equation (1) and (2). We get: 

2 2( )a b= −Au u v  
2 2 ( )i i b a= +Av u v  

After cancellation of the factors of 2 and 2i in the respective equations and rearranging, we get: 

a b= +Av v u  
b a= − +Au v u  

Note that we are now back in the “real world”: all vectors and scalars in the above equations are real. If we use 
the two vectors { },= v uB  as basis vectors associated with the two complex conjugate eigenvalues, we see that 

in coordinates associated with this basis (and change of basis matrix [ ]=S v u ) we’ll have the matrix [ ]A
B

 of 

the form: 

[ ]
2 2 2 2

1 2 2

2 2 2 2

cos sin
sin cos

a b
a b a b a ba b
b a b a

a b a b

−
θ

− 
− θ − θ    + += = = + = λ = λ    θ θ    + + 

A S AS R
B

 

where θR  is the rotation matrix corresponding to the angle arg( )θ = λ . 

Next, we want to find the evolution matrix for this (real) normal form. 

In fact, 
cos sin

[ ]
sin cos

t at bt bt
e e

bt bt
− =   

B , a time-varying rotation matrix with exponential scaling. This yields a 

trajectory that spirals out in the case where Re( ) 0aλ = >  (look to the original vector field to see whether it’s 
clockwise or counterclockwise), or a trajectory that spirals inward toward 0 in the case where Re( ) 0aλ = < . 

To derive this expression for [ ]te B , make another coordinate change with complex eigenvectors starting 

with 
a b
b a

− =   
B . B will have the same eigenvalues of A, namely a ibλ = +  and a ibλ = − , and 

a b
b a

λ − λ − =  − λ − 
I B . Using the eigenvalue a ibλ = + , we seek a complex eigenvector 

α 
 β 

 such that 

0
0

ib b ib b
b ib b ib

α α + β       = =       − β − α + β       
. This implies that iα = β , so one such complex eigenvector is 

1
i =   

w . The 
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eigenvalue a ibλ = −  will then give eigenvector ˆ
1
i− =   

w . Using the (complex) change of basis matrix 

1 1
i i− =   

P , we have that 1 0
0

a ib
a ib

− + = =  − 
P BP D . Just as in the case of real eigenvalues, it follows that: 

( )
1

( )
2 2

2 2

1 0 1 cos sin
[ ] [ ]

1 1 1 sin cos02

a ib t
t t at at

a ib t

ibt ibt ibt ibt

ibt ibt ibt ibt

e e e e
i

e e e e
i

i i e i bt bt
e e e e

i bt btei

+
−

−

− −

− −

+ −

− +

 − − −      = = = =      −         

B DP P . 

Note that the exponential factor ate  will grow if Re( ) 0a = λ >  and decay if Re( ) 0a = λ < . Further note that 

the matrix 
cos sin
sin cos

bt bt
bt bt

− 
  

 is a time-varying rotation matrix with rotational frequency b. The product of the 

exponential factor and the time-varying rotation matrix means that the trajectories associated with the evolution 
matrix [ ]te B  will be either outward or inward spirals depending upon whether 0a >  or 0a < . In the case where 

0a =  we would get closed (periodic) trajectories – circles, in fact, for this standard case. 

These calculations enable us to write down a closed form expression for the solution of this linear system, 

namely ( ) [ ] (0)tt e= Ax x  where 1 1cos sin
[ ] [ ]

sin cos
t t at bt bt

e e e
bt bt

− −− = =   
A BS S S S . However, the more important result 

is the ability to qualitatively describe the trajectories for this system by knowing only the real part of the 
eigenvalues of the matrix A and the direction of the corresponding vector field (clockwise vs. 
counterclockwise). 

Problem: Solve the system 
2 5

2 4

dx
x y

dt
dy

x y
dt

 = − 
 
 = −
 

 with initial conditions 

(0) 0, (0) 1x y= = . 

Solution: In matrix form, we have d
dt

=x Ax  where 
2 5
2 4

− =  − 
A  

and 
0

(0)
1
 =   

x . We again start by finding the eigenvalues of the 

matrix: 
2 5

2 4
λ − λ − =  − λ + 

I A , and the characteristic polynomial 

is 2 2( ) 2 2 ( 1) 1p λ = λ + λ + = λ + +A . This gives the complex 

eigenvalue pair 1 iλ = − +  and 1 iλ = − − . We seek a complex eigenvector for the first of these: 
3 5 0

2 3 0
i

i
α
β

− +     =     − +     
 gives the (redundant) equations ( 3 ) 5 0i α β− + + =  and 2 (3 ) 0i− + + =α β . The first 

of these can be written as 5 (3 )iβ α= − , and an easy solution to this is where 5, 3 iα β= = − . (We could also 
have used the second equation – which is a scalar multiple of the first. The eigenvector might then have been 
different, but ultimately we’ll get the same result.) This gives the complex eigenvector 

5 5 0
3 3 1

i i
i

     = = + = +     − −     
w u v . We have shown that with the specially chosen basis { , }= v uB , the new 

system will have standard matrix 1[ ]
a b
b a

− − = = =  
A S AS BB  where a is the real part of the complex 
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eigenvalue and b is its imaginary part. We also showed that 
cos sin

[ ]
sin cos

t at bt bt
e e

bt bt
− =   

B . In this example, 

1a = −  and 1b = , [ ] 0 5
1 3

 = =  − 
S v u , 1 1

5
3 5
1 0

− − =   
S , 

1 1
1 1
− − =  − 

B , and 
cos sin

[ ]
sin cos

t t t t
e e

t t
− − =   

B . The 

solution to the system is therefore 1

5
0 5 cos sin 3 5 0

( ) [ ] [ ] (0)
1 3 sin cos 1 0 1

t t te t t
t e e

t t
− − − −       = = =        −       

A Bx S S x  

5
5sin 5cos 5 5sin

cos 3sin sin 3cos 0 cos 3sin
tte t t t

e
t t t t t t

−− − −     = =     − + + −     
. That is, 

( ) 5sin
( ) cos 3sin

x t t
y t t t

= − 
 = − 

. 

Repeated eigenvalue case [with geometric multiplicity (GM) less 
than the algebraic multiplicity (AM)]: 

Problem: Solve the system 
4 4

dx
y

dt
dy

x y
dt

 = 
 
 = − +
 

 with initial 

conditions (0) 3, (0) 2x y= = . 

Solution: In matrix form, we have d
dt

=x Ax  where 
0 1
4 4

 =  − 
A  

and 
3

(0)
2
 =   

x . We again start by finding the eigenvalues of the 

matrix: 
1

4 4
λ − λ − =  λ − 

I A , and the characteristic polynomial is 

2 2( ) 4 4 ( 2)p λ = λ − λ + = λ −A . This gives the repeated eigenvalue 2λ =  with (algebraic) multiplicity 2. We 

seek eigenvectors: 
2 1 0
4 2 0

− α     =     − β     
 gives the (redundant) equations 2 0α −β =  and 4 2 0α − β = . Therefore 

2β = α , so we can choose 1

1
2
 =   

v  or any scalar multiple of this as an eigenvector, but we are unable to find 

a second linearly independent eigenvector. (We say that the geometric multiplicity of the 2λ =  eigenvalue  
is 1.) 

The standard procedure in this case is to seek a generalized eigenvector for this repeated eigenvalue, i.e. a 
vector 2v  such that 2( )λ −I A v  is not zero, but rather a multiple of the eigenvector 1v . Specifically, we seek a 

vector such that 2 1 2= + λAv v v . This translates into seeking 2v  such that 2 1( )λ − = −I A v v . That is, 

2 1 1
4 2 2

− α −     =     − β −     
. This gives redundant equations the first of which is 2 1α −β = −  or 2 1β = α + . If we 

(arbitrarily) choose 0α = , then 1β = , so 2

0
1
 =   

v . The fact that 1 1

2 1 2

2
2

= 
 = + 

Av v
Av v v

 tells us that with the 

change of basis matrix 
1 0
2 1
 =   

S , we will have 1 2 1
[ ]

0 2
−  = = =  

A S AS BB . 

The standard form in this repeated eigenvalue case is a matrix of the form 
1

0
λ =  λ 

B . (There are analogous 

forms in cases larger than 2 2×  matrices.) Note that we can write 
1

0
λ = = λ + λ 

B I P  where 
0 1
0 0
 =   

P . 
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There is a simple relationship between the solutions of the systems d
dt

=x Bx  and d
dt

=u Pu , namely 

( ) ( )tt e tλ=x u . This is easily seen by differentiation: 

[ ( )] ( ) ( ) ( )t t t t t t t td d d
dt dt dte t e e e e e e eλ λ λ λ λ λ λ λ= = + λ = + λ = + λ = λ + = λ + =x uu u Pu u Pu Iu I P u I P u Bx  

together with the fact that (0) (0)=x u . Furthermore, solving d
dt

=u Pu  is simple. If 1

2

u
u
 =   

u , then with the 

matrix 
0 1
0 0
 =   

P  we have 1 2

2

( )

( ) 0

u t u

u t

 ′ = 
 

′ =  
. The second equation gives that 2 2 2( ) (0)u t c u= = , a constant. The 

first equation is then 1 2( ) (0)u t u′ = , so 1 2 1( ) (0)u t u t c= ⋅ + . At 0t =  this gives 1 1(0)u c= , so 

1 1 2( ) (0) (0)u t u u t= + ⋅ . Together this gives: 

1 1 2 1

2 2 2

( ) (0) (0) (0)1 1
( ) (0) (0)

( ) (0) (0)0 1 0 1
tu t u u t ut t

t e
u t u u

+ ⋅          = = = = =                  
Pu u u  

Therefore 
1

( ) (0) (0)
0 1 0

t t
t

t

t e te
t e

e

λ λ
λ

λ

  = =      
x x x , so 

0

t t
t

t

e te
e

e

λ λ

λ

   =     
B  for 

1
0
λ =  λ 

B . 

If we apply this to the problem at hand, we get 
2 2

2[ ]
0

t t
t

t

e te
e

e

 
=  
 

B . The solution to the system is therefore 

2 2 2 2
1

2 2 2 2

1 0 1 0 3 3
( ) [ ] [ ] (0)

2 1 2 1 2 40 2 2

t t t t
t t

t t t t

e te e te
t e e

e e te e
−           = = = =          − −+          

A Bx S S x  

2 2 2 2
2

2 2 2 2 2

3 4 3 4 3 4
2 86 8 4 2 8

t t t t
t

t t t t t

e te e te t
e

te te e e te

   − − − = = =     −− − −     
. That is, 

2

2

( ) (3 4 )
( ) (2 8 )

t

t

x t e t
y t e t

 = −
 = − 

. 

It’s worth noting that this can also be expressed as 2 23 1
( ) 4

2 2
t tt e te   = −      

x . 

The phase portrait in this case has just one invariant (eigenvector) direction. It gives an unstable node which 
can be viewed as a degenerate case of a (clockwise) outward spiral that cannot get past the eigenvector 
direction. 

Moral of the Story: It’s always possible to find a special basis relative to which a given linear system is in its 
simplest possible form. The new basis provides a way to decompose the given problem into several simple, 
standard problems which can be easily solved. Any complication in the algebraic expressions for the solution is 
the result of changing back to the original coordinates. 

The standard 2 2×  cases are: 

Diagonalizable with eigenvalues 1 2,λ λ : 1

2

0
0
λ = =  λ 

B D  
1

2

0
[ ] [ ]

0

t
t t

t

e
e e

e

λ

λ

 
= =  

 
B D  

Complex pair of eigenvalues a ibλ = ± :  
a b
b a

− =   
B   

cos sin
[ ]

sin cos
t at bt bt

e e
bt bt

− =   
B  

Repeated eigenvalue λ  with GM AM< :  
1

0
λ =  λ 

B   [ ]
0

t t
t

t

e te
e

e

λ λ

λ

 
=  
 

B  
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In general, you should expect to encounter systems more complicated than these 2 2×  examples. To illustrate 
the line of reasoning in a significantly more complicated case, here is a Big Problem. 

Big Problem: a) Find the general solution for the following system of differential equations: 

1
1 4 5

2
2 3 4

3
2 4

4
4

5
4 5

2 4 3

2 2 2

3 2

dx
x x x

dt
dx

x x x
dt
dx

x x
dt

dx
x

dt
dx

x x
dt

 = − + 
 
 = − +
 
 

= − 
 
 = − 
 

= − + 
 

              b) Find the solution in the case where 

5
4

(0) 3
2
1

 
 
 =  
 
  

x . 

Solution: This is a continuous dynamical system of the form 
d

dt
=

x
Ax  where 

2 0 0 4 3
0 2 2 2 0
0 1 0 1 0
0 0 0 1 0
0 0 0 3 2

− 
− 

=  −
 −
 − 

A . 

We start by seeking the eigenvalues. We have 

2 0 0 4 3
0 2 2 2 0
0 1 1 0
0 0 0 1 0
0 0 0 3 2

λ − − 
λ − − 

λ − =  − λ
 λ +
 λ − 

I A .  

The characteristic polynomial is 2 2( ) ( 2) ( 1)( 2 2)p λ = λ − λ + λ − λ +A  which yields the repeated eigenvalue 

1 2 2λ = λ =  (with algebraic multiplicity 2), the distinct eigenvalue 3 1λ = − , and the complex pair 4 1 iλ = +  and 

5 4 1 iλ = λ = − . 

The repeated eigenvalue 1 2 2λ = λ =  yields just one eigenvector 1

1
0
0
0
0

 
 

=  
 
  

v , so its geometric multiplicity if just 1. 

We then seek a “generalized eigenvector” 2v  such that 2 1 2= + λAv v v  where 2λ = . That is, we seek a vector 

2v  such that 2 2 2 1( )λ − = λ − = −v Av I A v v . This is just an inhomogeneous system which yields solutions of the 

form 2

1
3

0
0
0

t 
 

=  
 
  

v . For simplicity, take the solution with 0t = , i.e. 2

1
3

0
0
0
0

 
 

=  
 
  

v .  
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The eigenvalue 3 1λ = −  yields the eigenvector 3

1
0
3
3
3

 
 

=  
 
  

v . A straightforward calculation with the complex 

eigenvalue 4 1 iλ = +  yields the complex eigenvector 5 4

0 0 0
1 1 1

1 1 0
0 0 0
0 0 0

i
i i

     
+     

= = + = +     
     
          

v v v  in accordance with the 

method previously derived. 

Using the basis 1 2 3 4 5

1
3

1 0 1 0 0
0 0 0 1 1

, , , ,0 0 3 0 1
0 0 3 0 0
0 3 0 0

          
           = = = = = =          

          
                    

v v v v vB  and change of basis matrix 

1
3

1 0 1 0 0
0 0 0 1 1
0 0 3 0 1
0 0 3 0 0
0 3 0 0

 
 

=  
 
  

S , we compute the inverse matrix 

1
3

1 1
3

1 0 0 0
0 0 0 3 3
0 0 0 0
0 1 1 1 0
0 0 1 1 0

−

− 
− 

=  
− 

 − 

S . 

We know that 

1 1

2 1 2

3 3

4 4 5

5 4 5

2
2

= 
= +  = − 
= + 
= − +  

Av v
Av v v
Av v
Av v v
Av v v

, so the matrix of A relative to the basis B is 

1

2 1 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 1 1

−

 
 

= =  −
 −
  

B S AS . 

Since 1−=A SBS , it will be the case that the evolution matrices are related via 1t te e −   =   
A BS S  where  

2 2

2
0 0 0

0 0 0 0
0 0 0 0
0 0 0 cos sin
0 0 0 sin cos

t t

t

t t

t t

t t

e te
e

e e
e t e t
e t e t

−

 
 
   =   − 
 

B . 

The solution is then 
2 2

1
32

1 1
3

1
3

0 0 01 0 1 0 0 1 0 0 0
0 0 0 00 0 0 1 1 0 0 0 3 3

( ) (0) (0) (0)0 0 3 0 1 0 0 0 00 0 0 0
0 1 1 1 00 0 3 0 0 0 0 0 cos sin
0 0 1 1 00 3 0 0 0 0 0 sin cos

t t

t

t t t

t t

t t

e te
e

t e e e
e t e t
e t e t

− −

  −   
  −   
    = = =           − −    −    

A Bx x S S x x . 



Revised May 6, 2014 8 

If we multiply the leftmost matrices and write 

1

21
3

4

5

(0)

c
c
c
c
c

−

 
 
 =
 
  

S x , this yields the general solution: 

2 2

1

21
3

4
21

53

0 0
0 0 0 (cos sin ) (cos sin )

( ) (0) (0) 0 0 3 sin cos
0 0 3 0 0
0 3 0 0

t t t

t t

t t t t t

t

t t

e te e c
e t t e t t c

ct e e e e t e t
ce
ce e

−

− −

−

−

   
 + −  
      = = =       
      

A Bx x S S x  

or 

2 2
1 1 2 3

2 4 5

3 3 4 5

4 3
21

5 2 33

( )
( ) (cos sin ) (cos sin )
( ) 3 sin cos
( ) 3
( ) 3

t t t

t t

t t t

t

t t

x t c e c te c e
x t c e t t c e t t
x t c e c e t c e t
x t c e
x t c e c e

−

−

−

−

 = + +
 = + + − 

= + + 
 =
 = + 

. 

If, on the other hand, we use the initial condition 

5
4

(0) 3
2
1

 
 

=  
 
  

x , we get the specific solution: 

2 2
13

3

2
3

21
3

0 0
0 0 0 (cos sin ) (cos sin ) 3

( ) 0 0 3 sin cos
30 0 3 0 0
10 3 0 0

t t t

t t

t t t

t

t t

e te e
e t t e t t

t e e t e t
e

e e

−

−

−

−

    + − −  =           

x  

or 

2 213 2
1 3 3

2

3

4
2

5

( ) 3
( ) (4cos 2sin )
( ) 2 (3sin cos )
( ) 2
( ) 2

t t t

t

t t

t

t t

x t e te e
x t e t t
x t e e t t
x t e
x t e e

−

−

−

−

 = − +
 = + 

= + + 
 =
 = − + 

. 


