Math S-21b – Summer 2024 – Homework #6

Problems due Mon, July 22: Section 5.5:

Problem 1. Consider the space P_2 with inner product $\langle f, g \rangle = \frac{1}{2} \int_{-1}^{1} f(t)g(t) dt$. Find an orthonormal basis of the space of all functions in P_2 that are orthogonal to the function f(t) = t.

Problem 2. Find all Fourier coefficients of the absolute value function f(t) = |t| defined on the interval $[-\pi, \pi]$.

Problem 3(a). Find the Fourier coefficients of the piecewise continuous function $f(t) = \begin{cases} 0 & \text{if } t \le 0 \\ 1 & \text{if } t > 0 \end{cases}$ defined

on the interval $[-\pi,\pi]$.

3(b). Apply Fact 5.5.6 to your answer in Problem 3(a). [Fact 5.5.6 states that the (infinite) sum of the squares of the Fourier coefficients of a piecewise continuous function *f* converges to $||f||^2$, the square

of the norm of f. That is, $\frac{a_0^2}{2} + a_1^2 + b_1^2 + a_2^2 + b_2^2 + \dots + a_n^2 + b_n^2 + \dots = ||f||^2$.]

Section 6.1:

Problem 4. Use the determinant to find out for which values of the constant k the matrix $\begin{vmatrix} 0 & 1 & k \\ 3 & 2k & 5 \\ 9 & 7 & 5 \end{vmatrix}$

is invertible.

Section 6.2:

In Problems 5 and 6, use Gaussian elimination, i.e. row reduction, to find the determinant of the matrix.

	Γ1	1	1	1 7		1	1	1	1	1	
				1		1	2	2	1 2	2	
Problem 5.		I	4	4	Problem 6.	1	1	3	3	3	
		-1	2	-2	Problem 6.	1	1	1	4	4	
	[]	-1	8	-8		1	1	1	1	5	

Problem 7. Find the determinant of the linear transformation T(f) = 2f + 3f' from P_2 to P_2 .

Problem 8. Find the determinant of the linear transformation (T(f))(t) = f(3t-2) from P_2 to P_2 .

Problem 9. Find the determinant of the linear transformation $T(\mathbf{M}) = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \mathbf{M} + \mathbf{M} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ from the space *V* of symmetric 2×2 matrices to *V*.

Problem 10. a. For an invertible $n \times n$ matrix **A** and an arbitrary $n \times n$ matrix **B**, show that rref[**A** | **AB**] = [**I**_n | **B**]. *Hint*: The left part of rref[**A** | **AB**] is rref(**A**) = **I**_n. Write rref[**A** | **AB**] = [**I**_n | **M**]; we have to show that

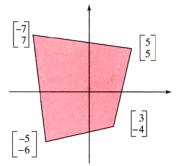
 $\mathbf{M} = \mathbf{B}$. To demonstrate this, note that the columns of matrix $\begin{bmatrix} \mathbf{B} \\ -\mathbf{I}_n \end{bmatrix}$ are in the kernel of $[\mathbf{A} | \mathbf{AB}]$ and therefore in the kernel of $[\mathbf{I}_n | \mathbf{M}]$. [Note: It's best to think in terms of *block* (or *partitioned*) *matrices*.] b. What does the formula rref $[\mathbf{A} | \mathbf{AB}] = [\mathbf{I}_n | \mathbf{M}]$ tell you if $\mathbf{B} = \mathbf{A}^{-1}$?

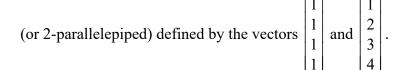
[Note: The result that $\operatorname{rref}[\mathbf{A} | \mathbf{AB}] = [\mathbf{I}_n | \mathbf{B}]$ is an essential step in the proof that $\det(\mathbf{AB}) = \det(\mathbf{A})\det(\mathbf{B})$.]

Section 6.3:

Problem 11. Find the area of the following region:

Problem 12. Find the area (or 2-volume) of the parallelogram





Ω

Problem 13. Find the 3-volume of the 3-parallepipied defined by the vectors $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$.

- **Problem 14.** If $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ is an invertible linear transformation from \mathbf{R}^2 to \mathbf{R}^2 , then the image $T(\Omega)$ of the unit circle Ω is an ellipse. (Reference: Exercise 2.2.50.) [*Note*: This observation is useful in Exercises 48 (Problem 16 below) and 49.]
 - a. Sketch this ellipse when $\mathbf{A} = \begin{bmatrix} p & 0 \\ 0 & q \end{bmatrix}$, where p and q are positive. What is its area?

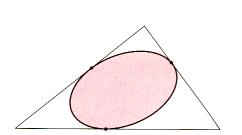
b. For an arbitrary invertible transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$, denote the lengths of the semi-major and semi-minor axes of $T(\Omega)$ by *a* and *b*, respectively. What is the relationship between *a*, *b*, and det(**A**)?

c. For the transformation $T(\mathbf{x}) = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \mathbf{x}$, sketch this

ellipse and determine its axes. $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Hint: Consider
$$T \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $T \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Problem 15. What is the area of the largest ellipse you can inscribe into a triangle with side lengths 3, 4, and 5. *Hint*: The largest ellipse you can inscribe into an equilateral triangle is a circle. Then apply a linear transformation to relate the two scenarios.



 $T(\Omega)$

For additional practice:

Section 5.5:

3. Consider a matrix **S** in $\mathbf{R}^{n \times n}$. In \mathbf{R}^n , define the product $\langle \mathbf{x}, \mathbf{y} \rangle = (\mathbf{S}\mathbf{x})^T \mathbf{S}\mathbf{y}$.

- a. For which choices of S is this an inner product?
- b. For which choices of **S** is $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$ (the dot product)?
- 4. In $\mathbf{R}^{n \times m}$, consider the inner product $\langle \mathbf{A}, \mathbf{B} \rangle = \text{trace}(\mathbf{A}^{\mathsf{T}}\mathbf{B})$.
 - a. Find a formula for this inner product in $\mathbf{R}^{n \times 1} = \mathbf{R}^n$.
 - b. Find a formula for this inner product in $\mathbf{R}^{1 \times m}$, i.e. the space of row vectors with *m* components.

9. Recall that a function f(t) from **R** to **R** is called *even* if f(-t) = f(t) for all *t*, and *odd* if f(-t) = -f(t) for all *t*. Show that if f(x) is an odd continuous function and g(x) is an even continuous function, then functions f(x) and g(x) are orthogonal in the space C[-1, 1] with the inner product defined in Example 1, i.e. $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) dt$

19. For which 2×2 matrices **A** is $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{w}$ an inner product on \mathbf{R}^{2} ? [*Hint*: Be prepared to complete a square.]

20. Consider the inner product $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^{\mathrm{T}} \begin{bmatrix} 1 & 2 \\ 2 & 8 \end{bmatrix} \mathbf{w}$ in \mathbf{R}^{2} . (See Exercise 19.)

a. Find all vectors in \mathbf{R}^2 that are perpendicular to $\begin{bmatrix} 1\\0 \end{bmatrix}$ with respect to this inner product.

b. Find an orthonormal basis of \mathbf{R}^2 with respect to this inner product.

26. Find the Fourier coefficients of the piecewise continuous function $f(t) = \begin{cases} -1 & \text{if } -\pi < t < 0 \\ 1 & \text{if } 0 \le t \le \pi \end{cases}$ extended

periodically. Sketch the graphs of the first few Fourier polynomials. [A graphing calculator may be useful.]

28. Apply Fact 5.5.6 to your answer in Exercise 26. [Fact 5.5.6 states that the (infinite) sum of the squares of the Fourier coefficients of a piecewise continuous function *f* converges to $||f||^2$, the square of the norm of *f*.]

Section 6.1:

In Exercises 16 and 17, use the determinant to find out for which values of the constant k the matrix is invertible.

	[1	2	3		1	1	1
16.	4	k	5	17.	1	k	1 -1
16.	6	7	8_		1	k^2	1

In the following problems, use the determinant to find out for which values of the constant λ the matrix $\mathbf{A} - \lambda \mathbf{I}_n$ fails to be invertible.

26. $\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 2 & 7 \end{bmatrix}$ 30. $\mathbf{A} = \begin{bmatrix} 4 & 2 & 0 \\ 4 & 6 & 0 \\ 5 & 2 & 3 \end{bmatrix}$ 34. Find the determinant of the matrix $\begin{bmatrix} 4 & 5 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ 2 & 7 & 1 & 4 \\ 1 & 8 & 2 & 3 \end{bmatrix}$. [Do it without the calculator.]

43. If **A** is an $n \times n$ matrix and *k* is an arbitrary constant, what is the relationship between det(**A**) and det(-**A**)? 44. If **A** is an $n \times n$ matrix and *k* is an arbitrary constant, what is the relationship between det(**A**) and det(*k***A**)? **Section 6.2**:

5. Use Gaussian elimination, i.e. row reduction, to find the determinant of the matrix $\begin{bmatrix} 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 4 \\ 1 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \end{bmatrix}$.

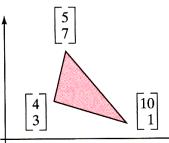
25. Find the determinant of the linear transformation $T(\mathbf{M}) = \begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix}$ from the space V of upper triangular 2×2

matrices to V.

- 40. If A is an orthogonal matrix, what are the possible values of det(A)?
- 41. Consider a skew-symmetric $n \times n$ matrix **A**, where *n* is odd. Show that **A** is noninvertible, by showing that $det(\mathbf{A}) = 0$.
- 43. Consider two vectors **v** and **w** in \mathbf{R}^n . Form the matrix $\mathbf{A} = \begin{bmatrix} \mathbf{v} & \mathbf{w} \end{bmatrix}$. Express det($\mathbf{A}^T \mathbf{A}$) in terms of $\|\mathbf{v}\|$, $\|\mathbf{w}\|$, and $\mathbf{v} \cdot \mathbf{w}$. What can you say about the sign of the result?

Section 6.3:

3. Find the area of the following triangle:



- 23. Use Cramer's rule to solve the system $\left\{ \right.$
- 24. Use Cramer's rule to solve the system

- 19. A basis \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 of \mathbf{R}^3 is called positively oriented if \mathbf{v}_1 encloses an acute angle with $\mathbf{v}_2 \times \mathbf{v}_3$. Illustrate this definition with a sketch. Show that the basis is positively oriented if (and only if) det $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$ is positive.
- 20. We say that a linear transformation *T* from \mathbf{R}^3 to \mathbf{R}^3 *preserves orientation* if it transforms any positively oriented basis into another positively oriented basis. (See Exercise 19.) Explain why a linear transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ preserves orientation if (and only if) det(**A**) is positive.

$$\begin{cases} 5x_1 - 3x_2 = 1 \\ -6x_1 + 7x_2 = 0 \end{cases}$$

$$\begin{cases} 2x + 3y = 8 \\ 4y + 5z = 3 \\ 6x + 7z = -1 \end{cases}$$

49. What are the lengths of the semiaxes of the largest ellipse you can inscribe into a triangle with sides 3, 4, and 5? See Exercise 48.

Chapter 6 True/False Exercises

- 1. If $A = \begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix}$ is any 3×3 matrix, then det $A = \vec{u} \cdot (\vec{v} \times \vec{w})$.
- det(4A) = 4 det A for all 4 × 4 matrices A.
- det(A + B) = det A + det B for all 5 × 5 matrices A and B.
- 4. The equation det(-A) = det A holds for all 6×6 matrices.
- If all the entries of a 7 × 7 matrix A are 7, then det A must be 7⁷.
- An 8 × 8 matrix fails to be invertible if (and only if) its determinant is nonzero.
- 7. If B is obtained be multiplying a column of A by 9, then the equation det $B = 9 \det A$ must hold.
- 8. $det(A^{10}) = (det A)^{10}$ for all 10×10 matrices A.
- The determinant of any diagonal n × n matrix is the product of its diagonal entries.

10. If matrix B is obtained by swapping two rows of an $n \times n$ matrix A, then the equation det $B = -\det A$ must hold.

11. Matrix	9 5 100 6	100 4 9 5	3 100 8 4	7 8 7 100	is invertible.
------------	--------------------	--------------------	--------------------	--------------------	----------------

- 12. If A is an invertible $n \times n$ matrix, then det (A^T) must equal det (A^{-1}) .
- If the determinant of a 4 × 4 matrix A is 4, then its rank must be 4.
- There exists a nonzero 4 × 4 matrix A such that det A = det(4A).
- 15. If two $n \times n$ matrices A and B are similar, then the equation det $A = \det B$ must hold.
- The determinant of all orthogonal matrices is 1.
- 17. If A is any $n \times n$ matrix, then $det(AA^T) = det(A^TA)$.

18. There exists an invertible matrix of the form $\begin{bmatrix}
a & e & f & j \\
b & 0 & g & 0 \\
c & 0 & h & 0 \\
d & 0 & i & 0
\end{bmatrix}$

19. The matrix $\begin{bmatrix} k^2 & 1 & 4 \\ k & -1 & -2 \\ 1 & 1 & 1 \end{bmatrix}$ is invertible for all posi-

tive constants k.

- **20.** det $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} = 1.$
- There exists a 4 × 4 matrix A whose entries are all 1 or -1, and such that det A = 16.
- If the determinant of a 2 × 2 matrix A is 4, then the inequality ||Av
 i ≤ 4||v
 i|| must hold for all vectors v
 in ℝ².
- **23.** If $A = \begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix}$ is a 3 × 3 matrix, then the formula $det(A) = \vec{v} \cdot (\vec{u} \times \vec{w})$ must hold.
- 24. There exist invertible 2 × 2 matrices A and B such that det(A + B) = det A + det B.
- 25. If all the entries of a square matrix are 1 or 0, then det A must be 1, 0, or −1.
- 26. If all the entries of a square matrix A are integers and det A = 1, then the entries of matrix A^{-1} must be integers as well.
- If all the columns of a square matrix A are unit vectors, then the determinant of A must be less than or equal to 1.
- If A is any noninvertible square matrix, then det A = det(rref A).
- If the determinant of a square matrix is -1, then A must be an orthogonal matrix.
- **30.** If all the entries of an invertible matrix A are integers, then the entries of A^{-1} must be integers as well.
- There exist invertible 3 × 3 matrices A and S such that S⁻¹AS = 2A.
- 32. There exist invertible 3 × 3 matrices A and S such that S^TAS = -A.

- 33. If A is any symmetric matrix, then det A = 1 or det A = -1.
- 34. If A is any skew-symmetric 4×4 matrix, then det A = 0.
- 35. If det A = det B for two n × n matrices A and B, then A must be similar to B.
- 36. Suppose A is an n × n matrix and B is obtained from A by swapping two rows of A. If det B < det A, then A must be invertible.
- 37. If an n × n matrix A is invertible, then there must be an (n-1) × (n-1) submatrix of A (obtained by deleting a row and a column of A) that is invertible as well.
- **38.** If all the entries of matrices A and A^{-1} are integers, then the equation det $A = det(A^{-1})$ must hold.
- If a square matrix A is invertible, then its classical adjoint adj(A) is invertible as well.
- 40. There exists a 3 × 3 matrix A such that A² = −I₃.
- 41. If all the diagonal entries of an n × n matrix A are odd integers and all the other entries are even integers, then A must be an invertible matrix.
- 42. If all the diagonal entries of an n × n matrix A are even integers and all the other entries are odd integers, then A must be an invertible matrix.
- 43. For every nonzero 2 × 2 matrix A there exists a 2 × 2 matrix B such that det(A + B) ≠ det A + det B.
- 44. If A is a 4 × 4 matrix whose entries are all 1 or −1, then det A must be divisible by 8 [i.e., det A = 8k for some integer k].
- 45. If A is an invertible n × n matrix, then A must commute with its adjoint, adj(A).
- 46. There exists a real number k such that the matrix

[1	2	3	4]
5	6	k	7
8	9	8	7
1 5 8 0	0	6	4 7 7 5

is invertible.

47. If A and B are orthogonal n × n matrices such that det A = det B = 1, then matrices A and B must commute.