Math S-21b - Summer 2023 - Homework \#6

Problems due Tues, July 18:

Section 5.5:

Problem 1. (5.5/10) Consider the space P_{2} with inner product $\langle f, g\rangle=\frac{1}{2} \int_{-1}^{1} f(t) g(t) d t$. Find an orthonormal basis of the space of all functions in P_{2} that are orthogonal to the function $f(t)=t$.

Problem 2. (5.5/12) Find all Fourier coefficients of the absolute value function $f(t)=|t|$ defined on the interval $[-\pi, \pi]$.
Problem 3(a). (5.5/27) Find the Fourier coefficients of the piecewise continuous function $f(t)=\left\{\begin{array}{ll}0 & \text { if } t \leq 0 \\ 1 & \text { if } t>0\end{array}\right\}$ defined on the interval $[-\pi, \pi]$.

3(b). (5.5/29) Apply Fact 5.5.6 to your answer in Problem 3(a). [Fact 5.5.6 states that the (infinite) sum of the squares of the Fourier coefficients of a piecewise continuous function f converges to $\|f\|^{2}$, the square of the norm of f.]

Section 6.1:

Problem 4. (6.1/18) Use the determinant to find out for which values of the constant k the matrix $\left[\begin{array}{ccc}0 & 1 & k \\ 3 & 2 k & 5 \\ 9 & 7 & 5\end{array}\right]$ is invertible.

Section 6.2:

In Problems 5 and 6, use Gaussian elimination, i.e. row reduction, to find the determinant of the matrix.
Problem 5. (6.2/6) $\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & 4 & 4 \\ 1 & -1 & 2 & -2 \\ 1 & -1 & 8 & -8\end{array}\right]$.
Problem 6. (6.2/9) $\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 1 & 3 & 3 & 3 \\ 1 & 1 & 1 & 4 & 4 \\ 1 & 1 & 1 & 1 & 5\end{array}\right]$
Problem 7. (6.2/17) Find the determinant of the linear transformation $T(f)=2 f+3 f^{\prime}$ from P_{2} to P_{2}.
Problem 8. (6.2/18) Find the determinant of the linear transformation $(T(f))(t)=f(3 t-2)$ from P_{2} to P_{2}.
Problem 9. (6.2/26) Find the determinant of the linear transformation $T(\mathbf{M})=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right] \mathbf{M}+\mathbf{M}\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ from the space V of symmetric 2×2 matrices to V.

Problem 10. (6.2/34) a. For an invertible $n \times n$ matrix \mathbf{A} and an arbitrary $n \times n$ matrix \mathbf{B}, show that $\operatorname{rref}[\mathbf{A} \mid \mathbf{A B}]=\left[\mathbf{I}_{n} \mid \mathbf{B}\right]$.
Hint: The left part of $\operatorname{rref}[\mathbf{A} \mid \mathbf{A B}]$ is $\operatorname{rref}(\mathbf{A})=\mathbf{I}_{n}$. Write $\operatorname{rref}[\mathbf{A} \mid \mathbf{A B}]=\left[\mathbf{I}_{n} \mid \mathbf{M}\right]$; we have to show that $\mathbf{M}=\mathbf{B}$. To demonstrate this, note that the columns of matrix $\left[\begin{array}{c}\mathbf{B} \\ -\mathbf{I}_{n}\end{array}\right]$ are in the kernel of $[\mathbf{A} \mid \mathbf{A B}]$ and therefore in the kernel of $\left[\mathbf{I}_{n} \mid \mathbf{M}\right]$. [Note: It's best to think in terms of block (or partitioned) matrices.] b. What does the formula $\operatorname{rref}[\mathbf{A} \mid \mathbf{A B}]=\left[\mathbf{I}_{n} \mid \mathbf{M}\right]$ tell you if $\mathbf{B}=\mathbf{A}^{-1}$?
[Note: The result that $\operatorname{rref}[\mathbf{A} \mid \mathbf{A B}]=\left[\mathbf{I}_{n} \mid \mathbf{B}\right]$ is an essential step in the proof that $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$.]

Section 6.3:

Problem 11. (6.3/7) Find the area of the following region:

Problem 12. (6.3/13) Find the area (or 2-volume) of the parallelogram
(or 2-parallelepiped) defined by the vectors $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$.

Problem 13. (6.3/14) Find the 3-volume of the 3-parallepipied defined by the vectors

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] .
$$

Problem 14. (6.3/18) If $T(\mathbf{x})=\mathbf{A x}$ is an invertible linear transformation from \mathbf{R}^{2} to \mathbf{R}^{2}, then the image $T(\Omega)$ of the unit circle Ω is an ellipse. (Reference: Exercise 2.2.50.) [Note: This observation is useful in Exercises 48 (Problem 16 below) and 49.]
a. Sketch this ellipse when $\mathbf{A}=\left[\begin{array}{ll}p & 0 \\ 0 & q\end{array}\right]$, where p and q are positive. What is its area?
b. For an arbitrary invertible transformation $T(\mathbf{x})=\mathbf{A x}$, denote the lengths of the semi-major and semi-minor axes of $T(\Omega)$ by a and b, respectively. What is the relationship between a, b, and $\operatorname{det}(\mathbf{A})$?
c. For the transformation $T(\mathbf{x})=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right] \mathbf{x}$, sketch this ellipse and determine its axes.

Hint: Consider $T\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $T\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
Problem 15. (6.3/48) What is the area of the largest ellipse you can inscribe into a triangle with side lengths 3,4 , and 5. Hint: The largest ellipse you can inscribe into an equilateral triangle is a circle. Then apply a linear transformation to relate the two scenarios.

For additional practice:

Section 5.5:

3. Consider a matrix \mathbf{S} in $\mathbf{R}^{n \times n}$. In \mathbf{R}^{n}, define the product $\langle\mathbf{x}, \mathbf{y}\rangle=(\mathbf{S x})^{\mathrm{T}} \mathbf{S y}$.
a. For which choices of \mathbf{S} is this an inner product?
b. For which choices of \mathbf{S} is $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x} \cdot \mathbf{y}$ (the dot product)?
4. In $\mathbf{R}^{n \times m}$, consider the inner product $\langle\mathbf{A}, \mathbf{B}\rangle=\operatorname{trace}\left(\mathbf{A}^{\mathrm{T}} \mathbf{B}\right)$.
a. Find a formula for this inner product in $\mathbf{R}^{n \times 1}=\mathbf{R}^{n}$.
b. Find a formula for this inner product in $\mathbf{R}^{1 \times m}$, i.e. the space of row vectors with m components.
5. Recall that a function $f(t)$ from \mathbf{R} to \mathbf{R} is called even if $f(-t)=f(t)$ for all t, and $o d d$ if $f(-t)=-f(t)$ for all t. Show that if $f(x)$ is an odd continuous function and $g(x)$ is an even continuous function, then functions $f(x)$ and $g(x)$ are orthogonal in the space $C[-1,1]$ with the inner product defined in Example 1, i.e. $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$
6. For which 2×2 matrices \mathbf{A} is $\langle\mathbf{v}, \mathbf{w}\rangle=\mathbf{v}^{\mathrm{T}} \mathbf{A w}$ an inner product on \mathbf{R}^{2} ?
[Hint: Be prepared to complete a square.]
7. Consider the inner product $\langle\mathbf{v}, \mathbf{w}\rangle=\mathbf{v}^{\mathrm{T}}\left[\begin{array}{ll}1 & 2 \\ 2 & 8\end{array}\right] \mathbf{w}$ in \mathbf{R}^{2}. (See Exercise 19.)
a. Find all vectors in \mathbf{R}^{2} that are perpendicular to $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ with respect to this inner product.
b. Find an orthonormal basis of \mathbf{R}^{2} with respect to this inner product.
8. Find the Fourier coefficients of the piecewise continuous function $f(t)=\left\{\begin{array}{cc}-1 & \text { if }-\pi<t<0 \\ 1 & \text { if } 0 \leq t \leq \pi\end{array}\right\}$ extended periodically. Sketch the graphs of the first few Fourier polynomials. [A graphing calculator may be useful.]
9. Apply Fact 5.5.6 to your answer in Exercise 26. [Fact 5.5.6 states that the (infinite) sum of the squares of the Fourier coefficients of a piecewise continuous function f converges to $\|f\|^{2}$, the square of the norm of f.]

Section 6.1:

In Exercises 16 and 17, use the determinant to find out for which values of the constant k the matrix is invertible.
16. $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & k & 5 \\ 6 & 7 & 8\end{array}\right]$
17. $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & k & -1 \\ 1 & k^{2} & 1\end{array}\right]$

In the following problems, use the determinant to find out for which values of the constant λ the matrix $\mathbf{A}-\lambda \mathbf{I}_{n}$ fails to be invertible.
26. $\mathbf{A}=\left[\begin{array}{ll}4 & 2 \\ 2 & 7\end{array}\right]$
30. $\mathbf{A}=\left[\begin{array}{lll}4 & 2 & 0 \\ 4 & 6 & 0 \\ 5 & 2 & 3\end{array}\right]$
34. Find the determinant of the matrix $\left[\begin{array}{cccc}4 & 5 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ 2 & 7 & 1 & 4 \\ 1 & 8 & 2 & 3\end{array}\right]$. [Do it without the calculator.]
43. If \mathbf{A} is an $n \times n$ matrix and k is an arbitrary constant, what is the relationship between $\operatorname{det}(\mathbf{A})$ and $\operatorname{det}(-\mathbf{A})$? 44. If \mathbf{A} is an $n \times n$ matrix and k is an arbitrary constant, what is the relationship between $\operatorname{det}(\mathbf{A})$ and $\operatorname{det}(k \mathbf{A})$?

Section 6.2:

5. Use Gaussian elimination, i.e. row reduction, to find the determinant of the matrix $\left[\begin{array}{llll}0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 4 \\ 1 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4\end{array}\right]$.
6. Find the determinant of the linear transformation $T(\mathbf{M})=\left[\begin{array}{ll}2 & 3 \\ 0 & 4\end{array}\right]$ from the space V of upper triangular 2×2 matrices to V.
7. If \mathbf{A} is an orthogonal matrix, what are the possible values of $\operatorname{det}(\mathbf{A})$?
8. Consider a skew-symmetric $n \times n$ matrix \mathbf{A}, where n is odd. Show that \mathbf{A} is noninvertible, by showing that $\operatorname{det}(\mathbf{A})=0$.
9. Consider two vectors \mathbf{v} and \mathbf{w} in \mathbf{R}^{n}. Form the matrix $\mathbf{A}=\left[\begin{array}{ll}\mathbf{v} & \mathbf{w}\end{array}\right]$. Express $\operatorname{det}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)$ in terms of $\|\mathbf{v}\|,\|\mathbf{w}\|$, and $\mathbf{v} \cdot \mathbf{w}$. What can you say about the sign of the result?

Section 6.3:

3. Find the area of the following triangle:

4. A basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ of \mathbf{R}^{3} is called positively oriented if \mathbf{v}_{1} encloses an acute angle with $\mathbf{v}_{2} \times \mathbf{v}_{3}$. Illustrate this definition with a sketch. Show that the basis is positively oriented if (and only if) $\operatorname{det}\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]$ is positive.
5. We say that a linear transformation T from \mathbf{R}^{3} to \mathbf{R}^{3} preserves orientation if it transforms any positively oriented basis into another positively oriented basis. (See Exercise 19.) Explain why a linear transformation $T(\mathbf{x})=\mathbf{A x}$ preserves orientation if (and only if) $\operatorname{det}(\mathbf{A})$ is positive.
6. Use Cramer's rule to solve the system $\left\{\begin{array}{r}5 x_{1}-3 x_{2}=1 \\ -6 x_{1}+7 x_{2}=0\end{array}\right\}$.
7. Use Cramer's rule to solve the system $\left\{\begin{aligned} 2 x+3 y & =8 \\ 4 y+5 z & =3 \\ 6 x+7 z & =-1\end{aligned}\right\}$.
8. What are the lengths of the semiaxes of the largest ellipse you can inscribe into a triangle with sides 3, 4, and 5? See Exercise 48.

Chapter 6 True/False Exercises

1. If $A=\left[\begin{array}{lll}\vec{u} & \vec{v} & \vec{w}\end{array}\right]$ is any 3×3 matrix, then $\operatorname{det} A=$ $\vec{u} \cdot(\vec{v} \times \vec{w})$.
2. $\operatorname{det}(4 A)=4 \operatorname{det} A$ for all 4×4 matrices A.
3. $\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$ for all 5×5 matrices A and B.
4. The equation $\operatorname{det}(-A)=\operatorname{det} A$ holds for all 6×6 matrices.
5. If all the entries of a 7×7 matrix A are 7 , then $\operatorname{det} A$ must be 7^{7}.
6. An 8×8 matrix fails to be invertible if (and only if) its determinant is nonzero.
7. If B is obtained be multiplying a column of A by 9 , then the equation $\operatorname{det} B=9 \operatorname{det} A$ must hold
8. $\operatorname{det}\left(A^{10}\right)=(\operatorname{det} A)^{10}$ for all 10×10 matrices A.
9. The determinant of any diagonal $n \times n$ matrix is the product of its diagonal entries.
10. If matrix B is obtained by swapping two rows of an $n \times n$ matrix A, then the equation $\operatorname{det} B=-\operatorname{det} A$ must hold.
11. Matrix $\left[\begin{array}{rrrr}9 & 100 & 3 & 7 \\ 5 & 4 & 100 & 8 \\ 100 & 9 & 8 & 7 \\ 6 & 5 & 4 & 100\end{array}\right]$ is invertible.
12. If A is an invertible $n \times n$ matrix, then $\operatorname{det}\left(A^{T}\right)$ must equal $\operatorname{det}\left(A^{-1}\right)$.
13. If the determinant of a 4×4 matrix A is 4 , then its rank must be 4 .
14. There exists a nonzero 4×4 matrix A such that $\operatorname{det} A=$ $\operatorname{det}(4 A)$.
15. If two $n \times n$ matrices A and B are similar, then the equation $\operatorname{det} A=\operatorname{det} B$ must hold.
16. The determinant of all orthogonal matrices is 1 .
17. If A is any $n \times n$ matrix, then $\operatorname{det}\left(A A^{T}\right)=\operatorname{det}\left(A^{T} A\right)$.
18. There exists an invertible matrix of the form $\left[\begin{array}{llll}a & e & f & j \\ b & 0 & g & 0 \\ c & 0 & h & 0 \\ d & 0 & i & 0\end{array}\right]$.
19. The matrix $\left[\begin{array}{rrr}k^{2} & 1 & 4 \\ k & -1 & -2 \\ 1 & 1 & 1\end{array}\right]$ is invertible for all positive constants k.
20. $\operatorname{det}\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]=1$.
21. There exists a 4×4 matrix A whose entries are all 1 or -1 , and such that $\operatorname{det} A=16$.
22. If the determinant of a 2×2 matrix A is 4 , then the inequality $\|A \vec{v}\| \leq 4\|\vec{v}\|$ must hold for all vectors \vec{v} in \mathbb{R}^{2}.
23. If $A=\left[\begin{array}{lll}\vec{u} & \vec{v} & \vec{w}\end{array}\right]$ is a 3×3 matrix, then the formula $\operatorname{det}(A)=\vec{v} \cdot(\vec{u} \times \vec{w})$ must hold.
24. There exist invertible 2×2 matrices A and B such that $\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$.
25. If all the entries of a square matrix are 1 or 0 , then $\operatorname{det} A$ must be 1,0 , or -1 .
26. If all the entries of a square matrix A are integers and $\operatorname{det} A=1$, then the entries of matrix A^{-1} must be integers as well.
27. If all the columns of a square matrix A are unit vectors, then the determinant of A must be less than or equal to 1.
28. If A is any noninvertible square matrix, then $\operatorname{det} A=$ $\operatorname{det}(\operatorname{rref} A)$.
29. If the determinant of a square matrix is -1 , then A must be an orthogonal matrix.
30. If all the entries of an invertible matrix A are integers, then the entries of A^{-1} must be integers as well.
31. There exist invertible 3×3 matrices A and S such that $S^{-1} A S=2 A$.
32. There exist invertible 3×3 matrices A and S such that $S^{T} A S=-A$.
33. If A is any symmetric matrix, then $\operatorname{det} A=1$ or $\operatorname{det} A=-1$.
34. If A is any skew-symmetric 4×4 matrix, then $\operatorname{det} A=0$.
35. If $\operatorname{det} A=\operatorname{det} B$ for two $n \times n$ matrices A and B, then A must be similar to B.
36. Suppose A is an $n \times n$ matrix and B is obtained from A by swapping two rows of A. If $\operatorname{det} B<\operatorname{det} A$, then A must be invertible.
37. If an $n \times n$ matrix A is invertible, then there must be an $(n-1) \times(n-1)$ submatrix of A (obtained by deleting a row and a column of A) that is invertible as well.
38. If all the entries of matrices A and A^{-1} are integers, then the equation $\operatorname{det} A=\operatorname{det}\left(A^{-1}\right)$ must hold.
39. If a square matrix A is invertible, then its classical adjoint $\operatorname{adj}(A)$ is invertible as well.
40. There exists a 3×3 matrix A such that $A^{2}=-I_{3}$.
41. If all the diagonal entries of an $n \times n$ matrix A are odd integers and all the other entries are even integers, then A must be an invertible matrix.
42. If all the diagonal entries of an $n \times n$ matrix A are even integers and all the other entries are odd integers, then A must be an invertible matrix.
43. For every nonzero 2×2 matrix A there exists a 2×2 matrix B such that $\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B$.
44. If A is a 4×4 matrix whose entries are all 1 or -1 , then $\operatorname{det} A$ must be divisible by 8 [i.e., $\operatorname{det} A=8 k$ for some integer k].
45. If A is an invertible $n \times n$ matrix, then A must commute with its adjoint, $\operatorname{adj}(A)$.
46. There exists a real number k such that the matrix

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & k & 7 \\
8 & 9 & 8 & 7 \\
0 & 0 & 6 & 5
\end{array}\right]
$$

is invertible.
47. If A and B are orthogonal $n \times n$ matrices such that $\operatorname{det} A=\operatorname{det} B=1$, then matrices A and B must commute.

