Math S-21b – Summer 2024 – Homework #4

Problems due Friday, July 12:

Find a basis for each of the spaces in Problems 1 to 3 and determine its dimension.

Problem 1. The space of all matrices $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ in $\mathbf{R}^{2\times 2}$ such that a + d = 0.

Problem 2. The space of all polynomials f(t) in P_3 such that f(1) = 0 and $\int_{-1}^{1} f(t) dt = 0$.

Problem 3. The space of all 2×2 matrices **A** such that $\begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix} \mathbf{A} = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix}$.

Problem 4. (a) Is the transformation $T(\mathbf{M}) = \mathbf{M} \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ from $\mathbf{R}^{2\times 2}$ to $\mathbf{R}^{2\times 2}$ linear?

If it is, determine whether it is an isomorphism.

(b) Find the kernel and nullity of the transformation in 4(a).

Problem 5. (a) Is the transformation [T(f)](t) = f''(t) + 4f'(t) from P_2 to P_2 linear?

- (b) Find the image, rank, kernel and nullity of the transformation in (a).
- (c) Find the matrix of the linear transformation T(f) = f'' + 4f' from P_2 to P_2 relative to the basis $\mathcal{U} = \{1, t, t^2\}$. Is *T* an isomorphism? Why or why not?
- **Problem 6.** Find the kernel and nullity of the transformation T(f) = f f' from C^{∞} to C^{∞} .

 $[C^{\infty}]$ denotes the linear space consisting of all infinitely differentiable functions of one variable.]

Problem 7. (a) Find the matrix $\mathbf{A} = \begin{bmatrix} T \end{bmatrix}_{u}$ of the linear transformation $T(\mathbf{M}) = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \mathbf{M}$ from $\mathbf{R}^{2\times 2}$ to $\mathbf{R}^{2\times 2}$ with respect to the (standard) basis $\boldsymbol{\mathcal{U}} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.

Is *T* an isomorphism? If not find bases for the kernel and image of *T*, and thus determine the rank of *T*.

(**b**) Find the matrix $\mathbf{B} = \begin{bmatrix} T \end{bmatrix}_{\mathscr{B}}$ of the linear transformation $T(\mathbf{M}) = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \mathbf{M}$ from $\mathbf{R}^{2\times 2}$ to $\mathbf{R}^{2\times 2}$ with

respect to the basis $\boldsymbol{\mathcal{B}} = \left\{ \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \right\}.$

- (c) Find the change of basis matrix S from coordinates relative to the basis \mathcal{B} in 7(b) to coordinates relative to the standard basis \mathcal{U} considered in 7(a). [Note: $[\mathbf{M}]_{\mathcal{U}} = \mathbf{S}[\mathbf{M}]_{\mathcal{B}}$]
- (d) Verify the formula SB = AS (that is, $B = S^{-1}AS$) for the matrices B and A you found in 7(a) and 7(b), respectively.
- **Problem 8. (a)** Find the matrix $\mathbf{A} = [T]_u$ of the linear transformation [T(f)](t) = f(2t-1) from P_2 to P_2 relative to the basis $\mathcal{U} = \{1, t, t^2\}$. Is *T* an isomorphism? If not, find bases for the kernel and image of *T*, and thus determine the rank of *T*.
- (b) Find the matrix $\mathbf{B} = [T]_{\mathcal{B}}$ of the linear transformation [T(f)](t) = f(2t-1) from P_2 to P_2 relative to the basis $\mathcal{B} = \{1, t-1, (t-1)^2\}$.
- (c) Find the change of basis matrix S from coordinates relative to the basis \mathcal{B} in 8(b) to coordinates relative to the standard basis \mathcal{U} considered in 8(a). Then find the change of basis matrix from \mathcal{U} to \mathcal{B} .
- (d) Verify the formula SB = AS (that is, $B = S^{-1}AS$) for the matrices B and A you found in 8(a) and 8(b), respectively.

For additional practice:

Section 4.1:

Which of the subsets of P_2 given in Exercises 1, 2, and 3 are subspaces of P_2 ? Find a basis for those that are subspaces. [P_2 is the linear space consisting of polynomials of degree less than or equal to 2.]

1. $\{p(t): p(0) = 2\}$ 2. $\{p(t): p(0) = 0\}$ 3. $\{p(t): p'(1) = p(2)\}$ (p' denotes the derivative.)

Which of the subsets of $\mathbf{R}^{3\times3}$ such given in Exercises 9, 10, and 11 are subspaces of $\mathbf{R}^{3\times3}$?

9. The 3×3 matrices whose entries are all greater than or equal to zero.

10. The 3×3 matrices **A** such that the vector $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ is in the kernel of **A**.

- 11. The 3×3 matrices in reduced row-echelon form.
- 25. Find a basis for the space of all polynomials f(t) in P_2 such that f(1) = 0 and determine its dimension.

29. Find a basis for the space of all 2×2 matrices **A** such that $\mathbf{A}\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and determine its dimension.

Section 4.2:

2. Is the transformation $T(\mathbf{M}) = 7\mathbf{M}$ from $\mathbf{R}^{2\times 2}$ to $\mathbf{R}^{2\times 2}$ linear? If so, determine whether it is an isomorphism.

4. Is the transformation $T(\mathbf{M}) = \det(\mathbf{M})$ from $\mathbf{R}^{2\times 2}$ to \mathbf{R} linear? If so, determine whether it is an isomorphism.

67. For which constants k is the linear transformation $T(\mathbf{M}) = \begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix} \mathbf{M} - \mathbf{M} \begin{bmatrix} 3 & 0 \\ 0 & k \end{bmatrix}$ an isomorphism

from $\mathbf{R}^{2\times 2}$ to $\mathbf{R}^{2\times 2}$.

81. In this exercise, we will outline a proof of the Rank-Nullity Theorem: If T is a linear transformation from V to W, where V is finite-dimensional, then dim(V) = dim(im(T)) + dim(ker(T)) = rank(T) + nullity(T).
a. Explain why ker(T) and im(T) are finite dimensional. *Hint*: Use Exercises 4.1.54 and 4.1.57.

Now, consider a basis $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of ker(T), where n = nullity(T), and a basis $\{\mathbf{w}_1, \dots, \mathbf{w}_r\}$ of im(T),

where $r = \operatorname{rank}(T)$. Consider vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ in *V* such that $T(\mathbf{u}_i) = \mathbf{w}_i$ for $i = 1, \dots, r$. Our goal is to show that the r + n vectors $\mathbf{u}_1, \dots, \mathbf{u}_r, \mathbf{v}_1, \dots, \mathbf{v}_n$ form a basis of *V*. This will prove our claim.

- b. Show that the vectors $\mathbf{u}_1, \dots, \mathbf{u}_r, \mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent. *Hint*: Consider a relation $c_1\mathbf{u}_1 + \dots + c_r\mathbf{u}_r + d_1\mathbf{v}_1 + \dots + d_n\mathbf{v}_n = \mathbf{0}$, apply linear transformation *T* to both sides, and take it from there.
- c. Show that the vectors $\mathbf{u}_1, \dots, \mathbf{u}_r, \mathbf{v}_1, \dots, \mathbf{v}_n$ span *V*. *Hint*: Consider an arbitrary vector \mathbf{v} in *V*, and write $T(\mathbf{v}) = d_1 \mathbf{w}_1 + \dots + d_r \mathbf{w}_r$. Now show that the vector $\mathbf{v} d_1 \mathbf{u}_1 + \dots + d_r \mathbf{u}_r$ is in the kernel of *T*, so that $\mathbf{v} d_1 \mathbf{u}_1 + \dots + d_r \mathbf{u}_r$ can be written as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_n$.

Section 4.3:

1. Are the polynomials $f(t) = 7 + 3t + t^2$, $g(t) = 9 + 9t + 4t^2$, and $h(t) = 3 + 2t + t^2$ linearly independent?

TRUE or FALSE?

- 1. The space $\mathbb{R}^{2 \times 3}$ is 5-dimensional.
- **2.** If f_1, \ldots, f_n is a basis of a linear space V, then any element of V can be written as a linear combination of f_1, \ldots, f_n .
- The space P₁ is isomorphic to C.
- If the kernel of a linear transformation T from P₄ to P₄ is {0}, then T must be an isomorphism.
- If W₁ and W₂ are subspaces of a linear space V, then the intersection W₁ ∩ W₂ must be a subspace of V as well.
- If T is a linear transformation from P₆ to ℝ^{2×2}, then the kernel of T must be 3-dimensional.
- The polynomials of degree less than 7 form a 7dimensional subspace of the linear space of all polynomials.
- 8. The function T(f) = 3f 4f' from C^{∞} to C^{∞} is a linear transformation.
- The lower triangular 2 × 2 matrices form a subspace of the space of all 2 × 2 matrices.
- The kernel of a linear transformation is a subspace of the domain.
- The linear transformation T(f) = f + f" from C[∞] to C[∞] is an isomorphism.
- All linear transformations from P₃ to R^{2×2} are isomorphisms.
- If T is a linear transformation from V to V, then the intersection of im(T) and ker(T) must be {0}.
- The space of all upper triangular 4×4 matrices is isomorphic to the space of all lower triangular 4×4 matrices.
- Every polynomial of degree 3 can be expressed as a linear combination of the polynomial (t 3), (t 3)², and (t 3)³.
- If a linear space V can be spanned by 10 elements, then the dimension of V must be ≤ 10.
- 17. The function $T(M) = \det(M)$ from $\mathbb{R}^{2 \times 2}$ to \mathbb{R} is a linear transformation.
- There exists a 2 × 2 matrix A such that the space of all matrices commuting with A is 1-dimensional.
- All bases of P₃ contain at least one polynomial of degree ≤ 2.
- If T is an isomorphism, then T⁻¹ must be an isomorphism as well.
- If the image of a linear transformation T from P to P is all of P, then T must be an isomorphism.
- **22.** If f_1 , f_2 , f_3 is a basis of a linear space V, then f_1 , $f_1 + f_2$, $f_1 + f_2 + f_3$ must be a basis of V as well.
- 23. If a, b, and c are distinct real numbers, then the polynomials (x-b)(x-c), (x-a)(x-c), and (x-a)(x-b) must be linearly independent.
- 24. The linear transformation T(f(t)) = f(4t 3) from *P* to *P* is an isomorphism.

- **25.** The linear transformation $T(M) = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} M$ from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$ has rank 1.
- **26.** If the matrix of a linear transformation *T* (with respect to some basis) is $\begin{bmatrix} 3 & 5 \\ 0 & 4 \end{bmatrix}$, then there must exist a nonzero element *f* in the domain of *T* such that T(f) = 3f.
- 27. The kernel of the linear transformation $T(f(t)) = f(t^2)$ from P to P is {0}.
- **28.** If S is any invertible 2×2 matrix, then the linear transformation T(M) = SMS is an isomorphism from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$.
- 29. There exists a 2 × 2 matrix A such that the space of all matrices commuting with A is 2-dimensional.
- There exists a basis of ℝ^{2×2} that consists of four invertible matrices.
- If W is a subspace of V, and if W is finite dimensional, then V must be finite dimensional as well.
- 32. There exists a linear transformation from R^{3×3} to R^{2×2} whose kernel consists of all lower triangular 3 × 3 matrices, while the image consists of all upper triangular 2 × 2 matrices.
- Every two-dimensional subspace of ℝ^{2×2} contains at least one invertible matrix.
- 34. If 𝔄 = (f, g) and 𝔅 = (f, f + g) are two bases of a linear space V, then the change of basis matrix from 𝔄 to 𝔅 is
 ¹ 1
 ¹ 0
 ¹
 ¹
- **35.** If the matrix of a linear transformation *T* with respect to a basis (f, g) is $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then the matrix of *T* with respect to the basis (g, f) is $\begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$.
- 36. The linear transformation T(f) = f' from P_n to P_n has rank n, for all positive integers n.
- 37. If the matrix of a linear transformation T (with respect to some basis) is $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$, then T must be an isomorphism.
- There exists a subspace of ℝ^{3×4} that is isomorphic to P₉.
- 39. There exist two distinct subspaces W₁ and W₂ of ℝ^{2×2} whose union W₁ ∪ W₂ is a subspace of ℝ^{2×2} as well.
- There exists a linear transformation from P to P₅ whose image is all of P₅.
- If f₁,..., f_n are polynomials such that the degree of f_k is k (for k = 1,..., n), then f₁,..., f_n must be linearly independent.
- **42.** The transformation D(f) = f' from C^{∞} to C^{∞} is an isomorphism.
- 43. If T is a linear transformation from P_4 to W with im(T) = W, then the inequality $dim(W) \le 5$ must hold.

The kernel of the linear transformation

$$T(f(t)) = \int_0^1 f(t) \, dt$$

from P to \mathbb{R} is finite dimensional.

- **45.** If T is a linear transformation from V to V, then $\{f \text{ in } V : T(f) = f\}$ must be a subspace of V.
- 46. If T is a linear transformation from P₆ to P₆ that transforms t^k into a polynomial of degree k (for k = 1, ..., 6), then T must be an isomorphism.
- 47. There exist invertible 2×2 matrices P and Q such that the linear transformation T(M) = PM MQ is an isomorphism.
- 48. There exists a linear transformation from P₆ to C whose kernel is isomorphic to ℝ^{2×2}.
- **49.** If f_1 , f_2 , f_3 is a basis of a linear space V, and if f is any element of V, then the elements $f_1 + f$, $f_2 + f$, $f_3 + f$ must form a basis of V as well.
- There exists a two-dimensional subspace of ℝ^{2×2} whose nonzero elements are all invertible.
- 51. The space P_{11} is isomorphic to $\mathbb{R}^{3\times 4}$.
- 52. If T is a linear transformation from V to W, and if both im(T) and ker(T) are finite dimensional, then W must be finite dimensional.
- 53. If T is a linear transformation from V to $\mathbb{R}^{2\times 2}$ with $\ker(T) = \{0\}$, then the inequality $\dim(V) \le 4$ must hold.
- 54. The function

$$T(f(t)) = \frac{d}{dt} \int_{2}^{3t+4} f(x) \, dx$$

from P5 to P5 is an isomorphism.

- Any 4-dimensional linear space has infinitely many 3-dimensional subspaces.
- 56. If the matrix of a linear transformation T (with respect to some basis) is $\begin{bmatrix} 3 & 5 \\ 0 & 4 \end{bmatrix}$, then there must exist a nonzero element f in the domain of T such that T(f) = 4f.
- 57. If the image of a linear transformation T is infinite dimensional, then the domain of T must be infinite dimensional.
- There exists a 2 × 2 matrix A such that the space of all matrices commuting with A is 3-dimensional.
- If A, B, C, and D are noninvertible 2 × 2 matrices, then the matrices AB, AC, and AD must be linearly dependent.
- 60. There exist two distinct 3-dimensional subspaces W₁ and W₂ of P₄ such that the union W₁ ∪ W₂ is a subspace of P₄ as well.
- 61. If the elements f₁,..., f_n (where f₁ ≠ 0) are linearly dependent, then one element f_k can be expressed uniquely as a linear combination of the preceding elements f₁,..., f_{k-1}.

- 62. There exists a 3×3 matrix P such that the linear transformation T(M) = MP PM from $\mathbb{R}^{3\times3}$ to $\mathbb{R}^{3\times3}$ is an isomorphism.
- **63.** If f_1 , f_2 , f_3 , f_4 , f_5 are elements of a linear space V, and if there are exactly two redundant elements in the list f_1 , f_2 , f_3 , f_4 , f_5 , then there must be exactly two redundant elements in the list f_2 , f_4 , f_5 , f_1 , f_3 as well.
- 64. There exists a linear transformation T from P₆ to P₆ such that the kernel of T is isomorphic to the image of T.
- 65. If T is a linear transformation from V to W, and if both im(T) and ker(T) are finite dimensional, then V must be finite dimensional.
- 66. If the matrix of a linear transformation T (with respect to some basis) is $\begin{bmatrix} 3 & 5 \\ 0 & 4 \end{bmatrix}$, then there must exist a nonzero element f in the domain of T such that T(f) = 5f.
- Every three-dimensional subspace of ℝ^{2×2} contains at least one invertible matrix.