Problems due Monday, July 8:

Problem 1. Find vectors that span the kernel of $\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 & 4 \\ 0 & 1 & -3 & -1 \\ 3 & 4 & -6 & 8 \\ 0 & -1 & 3 & 4 \end{bmatrix}$. Use paper and pencil.

Problem 2. Give an example of a linear transformation whose <u>image</u> is the line spanned by $\begin{bmatrix} 7 \\ 6 \\ 5 \end{bmatrix}$ in \mathbb{R}^3 . **Problem 3**. Give an example of a linear transformation whose <u>kernel</u> is the line spanned by $\begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$ in \mathbb{R}^3 .

Problem 4. Consider an $n \times p$ matrix **A** and a $p \times m$ matrix **B**.

- a. What is the relationship between ker(**AB**) and ker(**B**)? Are they always equal? Is one of them always contained in the other?
- b. What is the relationship between im(A) and im(AB)?
- **Problem 5**. Consider a matrix **A**, and let $\mathbf{B} = \operatorname{rref}(\mathbf{A})$.
 - a. Is ker(A) necessarily equal to ker(B)? Explain.
 - b. Is im(A) necessarily equal to im(B)? Explain.
- **Problem 6.** Consider a linear transformation T from \mathbf{R}^n to \mathbf{R}^p and some linearly dependent vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ in \mathbf{R}^n . Are the vectors $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_m)\}$ necessarily linearly dependent? How can you tell?
- **Problem 7(a).** Consider an $n \times p$ matrix **A** and a $p \times m$ matrix **B** such that $ker(\mathbf{A}) = \{\mathbf{0}\}$ and $ker(\mathbf{B}) = \{\mathbf{0}\}$. Find $ker(\mathbf{AB})$.
 - (b) Consider an $n \times p$ matrix **A** and a $p \times m$ matrix **B**. We are told that the columns of **A** and the columns of **B** are linearly independent (respectively). Are the columns of the product **AB** linearly independent as well? [*Hint*: Problem 7a above is useful.]
- **Problem 8.** Express the plane V in \mathbb{R}^3 with equation $3x_1 + 4x_2 + 5x_3 = 0$ as the kernel of a matrix A and as the image of a matrix B. [*Note*: This exercise doesn't specify the sizes of the matrices A and B. There are many possible solutions, including the case where both A and B are 3×3 matrices. Think geometrically!]
- **Problem 9.** Find the reduced row-echelon form of the matrix $\mathbf{A} = \begin{bmatrix} 4 & 8 & 1 & 1 & 0 \\ 3 & 6 & 1 & 2 & 5 \\ 2 & 4 & 1 & 9 & 10 \\ 1 & 2 & 3 & 2 & 0 \end{bmatrix}$.

Then find a basis of the image of A and a basis of the kernel of A.

Problem 10. Find a basis of the subspace of \mathbf{R}^4 defined by the equation $2x_1 - x_2 + 2x_3 + 4x_4 = 0$.

Problem 11. Find a basis of the subspace of \mathbf{R}^4 that consists of all vectors perpendicular to both $\begin{vmatrix} 1 \\ 0 \\ -1 \\ 1 \end{vmatrix}$ and $\begin{vmatrix} 0 \\ 1 \\ 2 \\ 3 \end{vmatrix}$.

In Problems 12 and 13, determine whether the vector \mathbf{x} is in the span *V* of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ (proceed "by inspection" if possible, and use the reduced row-echelon form if necessary). If \mathbf{x} is in *V*, find the coordinates of \mathbf{x} with respect to the basis $\mathcal{B} = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m}$ of *V*, and write the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$.

Problem 12.
$$\mathbf{x} = \begin{bmatrix} -4\\4 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 1\\2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 5\\6 \end{bmatrix}$$

Problem 13. $\mathbf{x} = \begin{bmatrix} 5\\4\\3\\2 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0\\-1\\0\\1 \end{bmatrix}$

Problem 14. Find the matrix of the linear transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ with respect to the basis $\mathcal{B} = {\mathbf{v}_1, \mathbf{v}_2}$

where
$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Problem 15. Find the matrix of the linear transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ with respect to the basis $\mathcal{B} = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$

where
$$\mathbf{A} = \begin{bmatrix} 5 & -4 & -2 \\ -4 & 5 & -2 \\ -2 & -2 & 8 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}; \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}; \mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$$

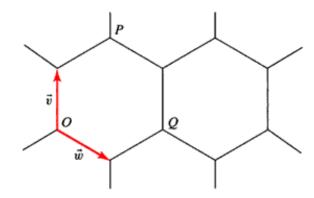
Problem 16. Consider the plane with equation $2x_1 - 3x_2 + 4x_3 = 0$ with the basis **B** consisting of

vectors
$$\begin{bmatrix} 8\\4\\-1 \end{bmatrix}$$
 and $\begin{bmatrix} 5\\2\\-1 \end{bmatrix}$. If $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2\\-1 \end{bmatrix}$, find \mathbf{x} .

Problem 17. Find a basis \mathscr{B} of the plane $x_1 + 2x_2 + x_3 = 0$. such that $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ for $\mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.

Problem 18. Given a hexagonal tiling of the plane, such as you might find on a kitchen floor, consider the basis \mathcal{B} of \mathbb{R}^2 consisting of the vectors \vec{v} , \vec{w} in the following sketch:

- a. Find the coordinate vectors $\left[\overrightarrow{OP}\right]_{\mathcal{B}}$ and $\left[\overrightarrow{OQ}\right]_{\mathcal{B}}$. *Hint*: Sketch the coordinate grid defined by the basis
 - $\mathcal{B} = \{\vec{v}, \vec{w}\}$.
- b. We are told that $\left[\overrightarrow{OR}\right]_{\mathcal{B}} = \begin{bmatrix} 3\\2 \end{bmatrix}$. Sketch the point *R*.


Is *R* the vertex or the center of a tile?

c. We are told that $\begin{bmatrix} \overrightarrow{OS} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 17 \\ 13 \end{bmatrix}$.

Is *S* the center or the vertex of a tile?

Problem 19. Find a basis \mathcal{B} of \mathbb{R}^2 such that $\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 4 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

[Note: Read this problem very carefully. Many students get this one backwards!]

For additional practice:

Section 3.1:

For each matrix A in Exercises 5, 6, and 8, find vectors that span the kernel of A. Use paper and pencil.

- For each matrix **A** in Electrose c, c, and c, and
- (as a line, plane, etc. in \mathbf{R}^2 or \mathbf{R}^3).
- 20. For the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, describe the image of the transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ geometrically (as a line,

plane, etc. in \mathbf{R}^2 or \mathbf{R}^3)

Describe the images and kernels of the transformations in Exercises 23 through 25 geometrically.

- 23. Reflection about the line $y = \frac{1}{3}x$ in \mathbb{R}^2 .
- 24. Orthogonal projection onto the plane x + 2y + 3z = 0 in \mathbb{R}^3 .

25. Rotation through an angle $\pi/4$ in the counterclockwise direction (in \mathbb{R}^2). 31. Give an example of a matrix **A** such that im(**A**) is the plane with normal vector $\begin{bmatrix} 1\\3\\2 \end{bmatrix}$ in \mathbb{R}^3 .

Section 3.2:

Which of the sets W in Exercises 1 through 3 are subspaces of \mathbb{R}^3 ?

1.
$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 1 \right\}$$

2.
$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x \le y \le z \right\}$$

3.
$$W = \left\{ \begin{bmatrix} x + 2y + 3z \\ 4x + 5y + 6z \\ 7x + 8y + 9z \end{bmatrix} : x, y, z \text{ arbitrary constants} \right\}$$

6. Consider two subspaces V and W of \mathbb{R}^n .

a. Is the intersection $V \cap W$ necessarily a subspace of \mathbb{R}^n ?

b. Is the union $V \cup W$ necessarily a subspace of \mathbf{R}^n ?

In Exercises 17 and 19, use paper and pencil to identify the redundant vectors. Thus determine whether the given vectors are linearly independent.

$$17. \begin{bmatrix} 1\\1\\1\\3\end{bmatrix}, \begin{bmatrix} 1\\3\\6\end{bmatrix}$$

$$19. \begin{bmatrix} 1\\0\\0\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 2\\0\\0\\0\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 3\\4\\5\\0\\0\end{bmatrix}$$

24. Find a redundant column vector of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 3 & 6 \\ 1 & 2 & 5 \\ 1 & 1 & 4 \end{bmatrix}$, and write it as a linear combination of

preceding columns. Use this representation to write a nontrivial relation among the columns, and thus find a nonzero vector in the kernel of A.

- 28. Find a basis for the image of the matrix $\mathbf{A} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 5 \\ 1 & 3 & 7 \end{vmatrix}$.
- 37. Consider a linear transformation *T* from \mathbb{R}^n to \mathbb{R}^p and some linearly independent vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ in \mathbb{R}^n . Are the vectors $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_m)\}$ necessarily linearly independent? How can you tell?
- 41. Consider an $m \times n$ matrix **A** and an $n \times m$ matrix **B** (with $n \neq m$) such that $AB = I_m$. (We say that **A** is a *left inverse* of **B**.) Are the columns of **B** linearly independent? What about the columns of **A**?
- 49. Express the line *L* in \mathbb{R}^3 spanned by the vector $\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$ as the image of a matrix **A** and as the kernel of a

matrix **B**. [*Note*: This exercise doesn't specify the sizes of the matrices **A** and **B**. There are many possible solutions, including the case where both **A** and **B** are 3×3 matrices. Think geometrically!]

Section 3.3:

23. Find the reduced row-echelon form of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 & 4 \\ 0 & 1 & -3 & -1 \\ 3 & 4 & -6 & 8 \\ 0 & -1 & 3 & 1 \end{bmatrix}$.

Then find a basis of the image of A and a basis of the kernel of A

27. Determine whether the vectors
$$\begin{cases} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\2\\4\\8 \end{bmatrix}, \begin{bmatrix} 1\\-2\\4\\-8 \end{bmatrix} \end{cases} \text{ form a basis of } \mathbf{R}^4.$$

- 29. Find a basis of the subspace of \mathbf{R}^3 defined by the equation $2x_1 + 3x_2 + x_3 = 0$.
- 36. Can you find a 3×3 matrix **A** such that $im(\mathbf{A}) = ker(\mathbf{A})$? Explain.
- 60. Consider two subspaces V and W of \mathbb{R}^n , where V is contained in W. Explain why dim(V) \leq dim(W). (This statement seems intuitively rather obvious. Still, we cannot rely on our intuition when dealing with \mathbb{R}^n .)
- 61. Consider two subspaces V and W of \mathbb{R}^n , where V is contained in W. In Exercise 40, we learned that $\dim(V) \leq \dim(W)$. Show that if $\dim(V) = \dim(W)$, then V = W.
- 62. Consider a subspace V of \mathbb{R}^n with dim(V) = n. Explain why $V = \mathbb{R}^n$.
- 81. Consider a 4×2 matrix **A** and a 2×5 matrix **B**.
 - a. What are the possible dimensions of the kernel of AB?
 - b. What are the possible dimensions of the *image* of AB?

Section 3.4:

In Exercises 5, 7, and 17, determine whether the vector **x** is in the span V of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ (proceed

"by inspection" if possible, and use the reduced row-echelon form if necessary). If **x** is in *V*, find the coordinates of **x** with respect to the basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m\}$ of *V*, and write the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$.

5.
$$\mathbf{x} = \begin{bmatrix} 7\\16 \end{bmatrix}; \ \mathbf{v}_1 = \begin{bmatrix} 2\\5 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 5\\12 \end{bmatrix}$$

7. $\mathbf{x} = \begin{bmatrix} 3\\1\\-4 \end{bmatrix}; \ \mathbf{v}_1 = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$

17.
$$\mathbf{x} = \begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0\\1\\3\\0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0\\0\\4\\1 \end{bmatrix}$$

27. Find the matrix **B** of the linear transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ with respect to the

basis
$$\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$$
 where $\mathbf{A} = \begin{bmatrix} 4 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 4 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}; \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}; \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$

- 42. Find a basis \mathcal{B} of \mathbb{R}^3 such that the \mathcal{B} -matrix \mathbb{B} of the linear transformation given by reflection *T* about the plane $x_1 2x_2 + 2x_3 = 0$ in \mathbb{R}^3 is diagonal.
- 45. Consider the plane $2x_1 3x_2 + 4x_3 = 0$ Find a basis **B** of this plane such that $\mathbf{x}_{\mathcal{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ for $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$.

55. Consider the basis $\boldsymbol{\mathcal{B}}$ of \mathbf{R}^2 consisting of the vectors $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ and $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$, and let $\boldsymbol{\mathcal{R}}$ be the basis consisting

of
$$\begin{bmatrix} 1\\2 \end{bmatrix}$$
, $\begin{bmatrix} 3\\4 \end{bmatrix}$. Find a matrix **P** such that $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{R}} = \mathbf{P} \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{R}}$.

Chapter 3 True/False

- There exists a 5 × 4 matrix whose image consists of all of ℝ⁵.
- The kernel of any invertible matrix consists of the zero vector only.
- The identity matrix I_n is similar to all invertible n × n matrices.
- If 2u + 3v + 4w = 5u + 6v + 7w, then vectors u, v, w must be linearly dependent.
- The column vectors of a 5 × 4 matrix must be linearly dependent.
- If \$\vec{v}_1\$, \$\vec{v}_2\$, \ldots, \$\vec{v}_n\$ and \$\vec{w}_1\$, \$\vec{w}_2\$, \ldots, \$\vec{w}_m\$ are any two bases of a subspace \$V\$ of \$\mathbb{R}^{10}\$, then \$n\$ must equal \$m\$.
- If A is a 5 × 6 matrix of rank 4, then the nullity of A is 1.
- The image of a 3 × 4 matrix is a subspace of ℝ⁴.
- The span of vectors v
 ₁, v
 ₂,..., v
 _n consists of all linear combinations of vectors v
 ₁, v
 ₂,..., v
 _n.

If vectors v
₁, v
₂, v
₃, v
₄ are linearly independent, then vectors v
₁, v
₂, v
₃ must be linearly independent as well.

12. The vectors of the form $\begin{bmatrix} a \\ b \\ 0 \\ a \end{bmatrix}$ (where a and b are arbitrary

real numbers) form a subspace of \mathbb{R}^4 .

- **13.** Matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ is similar to $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. **14.** Vectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ form a basis of \mathbb{R}^3 .
- If the kernel of a matrix A consists of the zero vector only, then the column vectors of A must be linearly independent.
- If the image of an n × n matrix A is all of Rⁿ, then A must be invertible.
- If vectors v
 ₁, v
 ₂,..., v
 _n span ℝ⁴, then n must be equal to 4.
- If vectors u
 ü, v
 i, and w
 are in a subspace V of Rⁿ, then vector 2u
 u − 3v
 + 4w
 must be in V as well.
- If matrix A is similar to matrix B, and B is similar to C, then C must be similar to A.

- If a subspace V of ℝⁿ contains none of the standard vectors e
 ₁, e
 ₂, ..., e
 _n, then V consists of the zero vector only.
- If A and B are n × n matrices, and vector v is in the kernel of both A and B, then v must be in the kernel of matrix AB as well.
- If two nonzero vectors are linearly dependent, then each of them is a scalar multiple of the other.
- 23. If $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are any three distinct vectors in \mathbb{R}^3 , then there must be a linear transformation T from \mathbb{R}^3 to \mathbb{R}^3 such that $T(\vec{v}_1) = \vec{e}_1, T(\vec{v}_2) = \vec{e}_2$, and $T(\vec{v}_3) = \vec{e}_3$.
- If vectors u, v, w are linearly dependent, then vector w must be a linear combination of u and v.
- If A and B are invertible n × n matrices, then AB must be similar to BA.
- **26.** If A is an invertible $n \times n$ matrix, then the kernels of A and A^{-1} must be equal.

27. Matrix
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 is similar to $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.
28. Vectors $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 6 \\ 7 \\ 8 \end{bmatrix}$, $\begin{bmatrix} 9 \\ 8 \\ 7 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 4 \\ 3 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ -1 \\ -2 \end{bmatrix}$ are linearly

independent.

- If a subspace V of R³ contains the standard vectors *e*₁, *e*₂, *e*₃, then V must be R³.
- 30. If a 2 × 2 matrix P represents the orthogonal projection onto a line in ℝ², then P must be similar to matrix [1 0]
 - 0 0
- ℝ² is a subspace of ℝ³.
- If an n × n matrix A is similar to matrix B, then A+7I_n must be similar to B + 7I_n.
- If V is any three-dimensional subspace of ℝ⁵, then V has infinitely many bases.
- 34. Matrix In is similar to 21n.
- 35. If AB = 0 for two 2 × 2 matrices A and B, then BA must be the zero matrix as well.
- 36. If A and B are n × n matrices, and vector v is in the image of both A and B, then v must be in the image of matrix A + B as well.
- If V and W are subspaces of ℝⁿ, then their union V ∪ W must be a subspace of ℝⁿ as well.

- **38.** If the kernel of a 5×4 matrix A consists of the zero vector only and if $A\vec{v} = A\vec{w}$ for two vectors \vec{v} and \vec{w} in \mathbb{R}^4 , then vectors \vec{v} and \vec{w} must be equal.
- **39.** If $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ and $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n$ are two bases of \mathbb{R}^n , then there exists a linear transformation T from \mathbb{R}^n to \mathbb{R}^n such that $T(\vec{v}_1) = \vec{w}_1, T(\vec{v}_2) = \vec{w}_2, \ldots, T(\vec{v}_n) = \vec{w}_n$.
- If matrix A represents a rotation through π/2 and matrix B a rotation through π/4, then A is similar to B.
- There exists a 2 × 2 matrix A such that im(A) = ker(A).
- If two n × n matrices A and B have the same rank, then they must be similar.
- If A is similar to B, and A is invertible, then B must be invertible as well.
- 44. If A² = 0 for a 10 × 10 matrix A, then the inequality rank(A) ≤ 5 must hold.
- 45. For every subspace V of ℝ³ there exists a 3 × 3 matrix A such that V = im(A).
- There exists a nonzero 2 × 2 matrix A that is similar to 2A.
- 47. If the 2 × 2 matrix R represents the reflection about a line in \mathbb{R}^2 , then R must be similar to matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- 48. If A is similar to B, then there exists one and only one invertible matrix S such that S⁻¹AS = B.
- 49. If the kernel of a 5 × 4 matrix A consists of the zero vector alone, and if AB = AC for two 4 × 5 matrices B and C, then matrices B and C must be equal.
- 50. If A is any n × n matrix such that A² = A, then the image of A and the kernel of A have only the zero vector in common.
- 51. There exists a 2 × 2 matrix A such that $A^2 \neq 0$ and $A^3 = 0$.
- 52. If A and B are n × m matrices such that the image of A is a subset of the image of B, then there must exist an m × m matrix C such that A = BC.
- 53. Among the 3 × 3 matrices whose entries are all 0's and 1's, most are invertible.