Math S-21b - Summer 2023 - Homework \#3

Problems due Wednesday, July 5:

Problem 1. (3.1/11) Find vectors that span the kernel of $\mathbf{A}=\left[\begin{array}{cccc}1 & 0 & 2 & 4 \\ 0 & 1 & -3 & -1 \\ 3 & 4 & -6 & 8 \\ 0 & -1 & 3 & 4\end{array}\right]$. Use paper and pencil.
Problem 2. (3.1/32) Give an example of a linear transformation whose image is the line spanned by $\left[\begin{array}{l}7 \\ 6 \\ 5\end{array}\right]$ in \mathbf{R}^{3}.
Problem 3. (3.1/34)
Give an example of a linear transformation whose kernel is the line spanned by $\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$ in \mathbf{R}^{3}.
Problem 4. (3.1/39) Consider an $n \times p$ matrix \mathbf{A} and a $p \times m$ matrix \mathbf{B}.
a. What is the relationship between $\operatorname{ker}(\mathbf{A B})$ and $\operatorname{ker}(\mathbf{B})$? Are they always equal? Is one of them always contained in the other?
b. What is the relationship between $\operatorname{im}(\mathbf{A})$ and $\operatorname{im}(\mathbf{A B})$?

Problem 5. (3.1/44) Consider a matrix \mathbf{A}, and let $\mathbf{B}=\operatorname{rref}(\mathbf{A})$.
a. Is $\operatorname{ker}(\mathbf{A})$ necessarily equal to $\operatorname{ker}(\mathbf{B})$? Explain.
b. Is $\operatorname{im}(\mathbf{A})$ necessarily equal to $\mathrm{im}(\mathbf{B})$? Explain.

Problem 6. (3.2/36) Consider a linear transformation T from \mathbf{R}^{n} to \mathbf{R}^{p} and some linearly dependent vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{m}\right\}$ in \mathbf{R}^{n}. Are the vectors $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \cdots, T\left(\mathbf{v}_{m}\right)\right\}$ necessarily linearly dependent? How can you tell?
Problem 7(a). (3.1/51) Consider an $n \times p$ matrix \mathbf{A} and a $p \times m$ matrix \mathbf{B} such that $\operatorname{ker}(\mathbf{A})=\{\mathbf{0}\}$ and $\operatorname{ker}(\mathbf{B})=\{\boldsymbol{0}\}$. Find $\operatorname{ker}(\mathbf{A B})$.
(b) (3.2/40) Consider an $n \times p$ matrix \mathbf{A} and a $p \times m$ matrix \mathbf{B}. We are told that the columns of \mathbf{A} and the columns of \mathbf{B} are linearly independent (respectively). Are the columns of the product $\mathbf{A B}$ linearly independent as well? [Hint: Exercise 3.1.51 (7a above) is useful.]
Problem 8. (3.2/48) Express the plane V in \mathbf{R}^{3} with equation $3 x_{1}+4 x_{2}+5 x_{3}=0$ as the kernel of a matrix \mathbf{A} and as the image of a matrix \mathbf{B}. [Note: This exercise doesn't specify the sizes of the matrices \mathbf{A} and \mathbf{B}. There are many possible solutions, including the case where both \mathbf{A} and \mathbf{B} are 3×3 matrices. Think geometrically!]
Problem 9. (3.3/24) Find the reduced row-echelon form of the matrix $\mathbf{A}=\left[\begin{array}{ccccc}4 & 8 & 1 & 1 & 6 \\ 3 & 6 & 1 & 2 & 5 \\ 2 & 4 & 1 & 9 & 10 \\ 1 & 2 & 3 & 2 & 0\end{array}\right]$. Then find a basis of the image of \mathbf{A} and a basis of the kernel of \mathbf{A}.
Problem 10. (3.3/30) Find a basis of the subspace of \mathbf{R}^{4} defined by the equation $2 x_{1}-x_{2}+2 x_{3}+4 x_{4}=0$.
Problem 11. (3.3/32)
Find a basis of the subspace of \mathbf{R}^{4} that consists of all vectors perpendicular to both $\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right]$.

In Problems 12 and 13, determine whether the vector \mathbf{x} is in the span V of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ (proceed "by inspection" if possible, and use the reduced row-echelon form if necessary). If \mathbf{x} is in V, find the coordinates of \mathbf{x} with respect to the basis $\mathscr{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ of V, and write the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$.

Problem 12. (3.4/6) $\mathbf{x}=\left[\begin{array}{c}-4 \\ 4\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}5 \\ 6\end{array}\right]$
Problem 13. (3.4/18) $\mathbf{x}=\left[\begin{array}{l}5 \\ 4 \\ 3 \\ 2\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 1\end{array}\right]$
Problem 14. (3.4/26) Find the matrix of the linear transformation $T(\mathbf{x})=\mathbf{A x}$ with respect to the basis $\mathfrak{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ where $\mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Problem 15. (3.4/28) Find the matrix of the linear transformation $T(\mathbf{x})=\mathbf{A x}$ with respect to the basis
$\mathfrak{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ where $\mathbf{A}=\left[\begin{array}{ccc}5 & -4 & -2 \\ -4 & 5 & -2 \\ -2 & -2 & 8\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right] ; \mathbf{v}_{2}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right] ; \mathbf{v}_{3}=\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right]$
Problem 16. (3.4/44) Consider the plane with equation $2 x_{1}-3 x_{2}+4 x_{3}=0$ with the basis \mathfrak{B} consisting of
vectors $\left[\begin{array}{c}8 \\ 4 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}5 \\ 2 \\ -1\end{array}\right]$. If $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$, find \mathbf{x}.
Problem 17. (3.4/46) Find a basis \mathfrak{B} of the plane $x_{1}+2 x_{2}+x_{3}=0$. such that $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$ for $\mathbf{x}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$.
Problem 18. (3.4/50) Given a hexagonal tiling of the plane, such as you might find on a kitchen floor, consider the basis \mathfrak{B} of \mathbf{R}^{2} consisting of the vectors \vec{v}, \vec{w} in the following sketch:
a. Find the coordinate vectors $[\overrightarrow{O P}]_{\mathcal{B}}$ and $[\overrightarrow{O Q}]_{\mathcal{B}}$.

Hint: Sketch the coordinate grid defined by the basis $\mathscr{B}=\{\vec{v}, \vec{w}\}$.
b. We are told that $[\overrightarrow{O R}]_{\mathscr{B}}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$. Sketch the point R. Is R the vertex or the center of a tile?
c. We are told that $[\overrightarrow{O S}]_{\mathcal{B}}=\left[\begin{array}{l}17 \\ 13\end{array}\right]$. Is S the center or the
 vertex of a tile?

Problem 19. (3.4/56) Find a basis \boldsymbol{B} of \mathbf{R}^{2} such that $\left[\begin{array}{l}1 \\ 2\end{array}\right]_{\mathcal{B}}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 4\end{array}\right]_{\mathcal{B}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
[Note: Read this problem very carefully. Many students get this one backwards!]

For additional practice:

Section 3.1:

For each matrix \mathbf{A} in Exercises 5, 6, and 8, find vectors that span the kernel of \mathbf{A}. Use paper and pencil.
5. $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5\end{array}\right]$
6. $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
8. $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3\end{array}\right]$
19. For the matrix $\mathbf{A}=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ -2 & -4 & -6 & -8\end{array}\right]$, describe the image of the transformation $T(\mathbf{x})=\mathbf{A x}$ geometrically (as a line, plane, etc. in \mathbf{R}^{2} or \mathbf{R}^{3}).
20. For the matrix $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$, describe the image of the transformation $T(\mathbf{x})=\mathbf{A x}$ geometrically (as a line, plane, etc. in \mathbf{R}^{2} or \mathbf{R}^{3}).
Describe the images and kernels of the transformations in Exercises 23 through 25 geometrically.
23. Reflection about the line $y=\frac{1}{3} x$ in \mathbf{R}^{2}.
24. Orthogonal projection onto the plane $x+2 y+3 z=0$ in \mathbf{R}^{3}.

25 . Rotation through an angle $\pi / 4$ in the counterclockwise direction (in \mathbf{R}^{2}).
31. Give an example of a matrix \mathbf{A} such that $\operatorname{im}(\mathbf{A})$ is the plane with normal vector $\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$ in \mathbf{R}^{3}.

Section 3.2:

Which of the sets W in Exercises 1 through 3 are subspaces of \mathbf{R}^{3} ?

1. $W=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x+y+z=1\right\}$
2. $W=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x \leq y \leq z\right\}$
3. $W=\left\{\left[\begin{array}{c}x+2 y+3 z \\ 4 x+5 y+6 z \\ 7 x+8 y+9 z\end{array}\right]: x, y, z\right.$ arbitrary constants $\}$
4. Consider two subspaces V and W of \mathbf{R}^{n}.
a. Is the intersection $V \cap W$ necessarily a subspace of \mathbf{R}^{n} ?
b. Is the union $V \cup W$ necessarily a subspace of \mathbf{R}^{n} ?

In Exercises 17 and 19, use paper and pencil to identify the redundant vectors. Thus determine whether the given vectors are linearly independent.
17. $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 6\end{array}\right]$
19. $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 5 \\ 0\end{array}\right]$
24. Find a redundant column vector of the matrix $\mathbf{A}=\left[\begin{array}{lll}1 & 3 & 6 \\ 1 & 2 & 5 \\ 1 & 1 & 4\end{array}\right]$, and write it as a linear combination of preceding columns. Use this representation to write a nontrivial relation among the columns, and thus find a nonzero vector in the kernel of \mathbf{A}.
28. Find a basis for the image of the matrix $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 5 \\ 1 & 3 & 7\end{array}\right]$.
37. Consider a linear transformation T from \mathbf{R}^{n} to \mathbf{R}^{p} and some linearly independent vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{m}\right\}$ in \mathbf{R}^{n}. Are the vectors $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \cdots, T\left(\mathbf{v}_{m}\right)\right\}$ necessarily linearly independent? How can you tell?
41. Consider an $m \times n$ matrix \mathbf{A} and an $n \times m$ matrix \mathbf{B} (with $n \neq m$) such that $\mathbf{A B}=\mathbf{I}_{m}$. (We say that \mathbf{A} is a left inverse of \mathbf{B}.) Are the columns of \mathbf{B} linearly independent? What about the columns of \mathbf{A} ?
49. Express the line L in \mathbf{R}^{3} spanned by the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ as the image of a matrix \mathbf{A} and as the kernel of a matrix B. [Note: This exercise doesn't specify the sizes of the matrices A and B. There are many possible solutions, including the case where both \mathbf{A} and \mathbf{B} are 3×3 matrices. Think geometrically!]

Section 3.3:

23. Find the reduced row-echelon form of the matrix $\mathbf{A}=\left[\begin{array}{cccc}1 & 0 & 2 & 4 \\ 0 & 1 & -3 & -1 \\ 3 & 4 & -6 & 8 \\ 0 & -1 & 3 & 1\end{array}\right]$.

Then find a basis of the image of \mathbf{A} and a basis of the kernel of \mathbf{A}.
27. Determine whether the vectors $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 4 \\ 8\end{array}\right],\left[\begin{array}{c}1 \\ -2 \\ 4 \\ -8\end{array}\right]\right\}$ form a basis of \mathbf{R}^{4}.
29. Find a basis of the subspace of \mathbf{R}^{3} defined by the equation $2 x_{1}+3 x_{2}+x_{3}=0$.
36. Can you find a 3×3 matrix \mathbf{A} such that $\operatorname{im}(\mathbf{A})=\operatorname{ker}(\mathbf{A})$? Explain.
60. Consider two subspaces V and W of \mathbf{R}^{n}, where V is contained in W. Explain why $\operatorname{dim}(V) \leq \operatorname{dim}(W)$. (This statement seems intuitively rather obvious. Still, we cannot rely on our intuition when dealing with \mathbf{R}^{n}.)
61. Consider two subspaces V and W of \mathbf{R}^{n}, where V is contained in W. In Exercise 40, we learned that $\operatorname{dim}(V) \leq \operatorname{dim}(W)$. Show that if $\operatorname{dim}(V)=\operatorname{dim}(W)$, then $V=W$.
62. Consider a subspace V of \mathbf{R}^{n} with $\operatorname{dim}(V)=n$. Explain why $V=\mathbf{R}^{n}$.
81. Consider a 4×2 matrix \mathbf{A} and a 2×5 matrix B.
a. What are the possible dimensions of the kernel of $\mathbf{A B}$?
b. What are the possible dimensions of the image of $\mathbf{A B}$?

Section 3.4:

In Exercises 5, 7, and 17, determine whether the vector \mathbf{x} is in the span V of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ (proceed "by inspection" if possible, and use the reduced row-echelon form if necessary). If \mathbf{x} is in V, find the coordinates of \mathbf{x} with respect to the basis $\mathscr{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ of V, and write the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$.
5. $\mathbf{x}=\left[\begin{array}{c}7 \\ 16\end{array}\right] ; \quad \mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 5\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}5 \\ 12\end{array}\right]$
7. $\mathbf{x}=\left[\begin{array}{c}3 \\ 1 \\ -4\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$
17. $\mathbf{x}=\left[\begin{array}{c}1 \\ 1 \\ 1 \\ -1\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 3 \\ 0\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 4 \\ 1\end{array}\right]$
27. Find the matrix \mathbf{B} of the linear transformation $T(\mathbf{x})=\mathbf{A x}$ with respect to the basis $\mathscr{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ where $\mathbf{A}=\left[\begin{array}{ccc}4 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 4\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right] ; \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right] ; \mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
42. Find a basis \mathscr{B} of \mathbf{R}^{3} such that the \mathscr{B}-matrix \mathbf{B} of the linear transformation given by reflection T about the plane $x_{1}-2 x_{2}+2 x_{3}=0$ in \mathbf{R}^{3} is diagonal.
45. Consider the plane $2 x_{1}-3 x_{2}+4 x_{3}=0$ Find a basis \mathfrak{B} of this plane such that $\mathbf{x}_{\mathscr{B}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ for $\mathbf{x}=\left[\begin{array}{c}2 \\ 0 \\ -1\end{array}\right]$.
55. Consider the basis \mathscr{B} of \mathbf{R}^{2} consisting of the vectors $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$, and let \mathscr{R} be the basis consisting of $\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right]$. Find a matrix \mathbf{P} such that $[\mathbf{x}]_{\mathcal{R}}=\mathbf{P}[\mathbf{x}]_{\mathcal{B}}$.

Chapter 3 True/False

1. If $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly independent vectors in \mathbb{R}^{n}. then they must form a basis of \mathbb{R}^{n}.
2. There exists a 5×4 matrix whose image consists of all of \mathbb{R}^{5}.
3. The kernel of any invertible matrix consists of the zero vector only.
4. The identity matrix I_{n} is similar to all invertible $n \times n$ matrices.
5. If $2 \vec{u}+3 \vec{v}+4 \vec{w}=5 \vec{u}+6 \vec{v}+7 \vec{w}$, then vectors $\vec{u}, \vec{v}, \vec{w}$ must be linearly dependent.
6. The column vectors of a 5×4 matrix must be linearly dependent.
7. If $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ and $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{m}$ are any two bases of a subspace V of \mathbb{R}^{10}, then n must equal m.
8. If A is a 5×6 matrix of rank 4 , then the nullity of A is 1 .
9. The image of a 3×4 matrix is a subspace of \mathbb{R}^{4}.
10. The span of vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ consists of all linear combinations of vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$.
11. If vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ are linearly independent, then vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ must be linearly independent as well.
12. The vectors of the form $\left[\begin{array}{l}a \\ b \\ 0 \\ a\end{array}\right]$ (where a and b are arbitrary real numbers) form a subspace of \mathbb{R}^{4}.
13. Matrix $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$ is similar to $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
14. Vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ form a basis of \mathbb{R}^{3}.
15. If the kernel of a matrix A consists of the zero vector only, then the column vectors of A must be linearly independent.
16. If the image of an $n \times n$ matrix A is all of \mathbb{R}^{n}, then A must be invertible.
17. If vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ span \mathbb{R}^{4}, then n must be equal to 4 .
18. If vectors \vec{u}, \vec{v}, and \vec{w} are in a subspace V of \mathbb{R}^{n}, then vector $2 \vec{u}-3 \vec{v}+4 \vec{w}$ must be in V as well.
19. If matrix A is similar to matrix B, and B is similar to C, then C must be similar to A.
20. If a subspace V of \mathbb{R}^{n} contains none of the standard vectors $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$, then V consists of the zero vector only.
21. If A and B are $n \times n$ matrices, and vector \vec{v} is in the kernel of both A and B, then \vec{v} must be in the kernel of matrix $A B$ as well.
22. If two nonzero vectors are linearly dependent, then each of them is a scalar multiple of the other.
23. If $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are any three distinct vectors in \mathbf{R}^{3}, then there must be a linear transformation T from \mathbb{R}^{3} to \mathbb{R}^{3} such that $T\left(\vec{v}_{1}\right)=\vec{e}_{1}, T\left(\vec{v}_{2}\right)=\vec{e}_{2}$, and $T\left(\vec{v}_{3}\right)=\vec{e}_{3}$.
24. If vectors $\vec{u}, \vec{v}, \vec{w}$ are linearly dependent, then vector \vec{w} must be a linear combination of \vec{u} and \vec{v}.
25. If A and B are invertible $n \times n$ matrices, then $A B$ must be similar to $B A$.
26. If A is an invertible $n \times n$ matrix, then the kernels of A and A^{-1} must be equal.
27. Matrix $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is similar to $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.
28. Vectors $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}5 \\ 6 \\ 7 \\ 8\end{array}\right],\left[\begin{array}{l}9 \\ 8 \\ 7 \\ 6\end{array}\right],\left[\begin{array}{l}5 \\ 4 \\ 3 \\ 2\end{array}\right],\left[\begin{array}{r}1 \\ 0 \\ -1 \\ -2\end{array}\right]$ are linearly independent.
29. If a subspace V of \mathbb{R}^{3} contains the standard vectors $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$, then V must be \mathbb{R}^{3}.
30. If a 2×2 matrix P represents the orthogonal projection onto a line in \mathbb{R}^{2}, then P must be similar to matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.
31. \mathbb{R}^{2} is a subspace of \mathbb{R}^{3}.
32. If an $n \times n$ matrix A is similar to matrix B, then $A+7 I_{n}$ must be similar to $B+7 I_{n}$.
33. If V is any three-dimensional subspace of \mathbb{R}^{5}, then V has infinitely many bases.
34. Matrix I_{n} is similar to $2 I_{n}$.
35. If $A B=0$ for two 2×2 matrices A and B, then $B A$ must be the zero matrix as well.
36. If A and B are $n \times n$ matrices, and vector \vec{v} is in the image of both A and B, then \vec{v} must be in the image of matrix $A+B$ as well.
37. If V and W are subspaces of \mathbb{R}^{n}, then their union $V \cup W$ must be a subspace of \mathbb{R}^{n} as well.
38. If the kernel of a 5×4 matrix A consists of the zero vector only and if $A \vec{v}=A \vec{w}$ for two vectors \vec{v} and \vec{w} in \mathbb{R}^{4}, then vectors \vec{v} and \vec{w} must be equal.
39. If $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ and $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n}$ are two bases of \mathbb{R}^{n}, then there exists a linear transformation T from \mathbb{R}^{n} to \mathbb{R}^{n} such that $T\left(\vec{v}_{1}\right)=\vec{w}_{1}, T\left(\vec{v}_{2}\right)=\vec{w}_{2}, \ldots$, $T\left(\vec{v}_{n}\right)=\vec{w}_{n}$.
40. If matrix A represents a rotation through $\pi / 2$ and matrix B a rotation through $\pi / 4$, then A is similar to B.
41. There exists a 2×2 matrix A such that $\operatorname{im}(A)=\operatorname{ker}(A)$.
42. If two $n \times n$ matrices A and B have the same rank, then they must be similar.
43. If A is similar to B, and A is invertible, then B must be invertible as well.
44. If $A^{2}=0$ for a 10×10 matrix A, then the inequality $\operatorname{rank}(A) \leq 5$ must hold.
45. For every subspace V of \mathbb{R}^{3} there exists a 3×3 matrix A such that $V=\operatorname{im}(A)$.
46. There exists a nonzero 2×2 matrix A that is similar to $2 A$.
47. If the 2×2 matrix R represents the reflection about a line in \mathbf{R}^{2}, then R must be similar to matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
48. If A is similar to B, then there exists one and only one invertible matrix S such that $S^{-1} A S=B$.
49. If the kernel of a 5×4 matrix A consists of the zero vector alone, and if $A B=A C$ for two 4×5 matrices B and C, then matrices B and C must be equal.
50. If A is any $n \times n$ matrix such that $A^{2}=A$, then the image of A and the kernel of A have only the zero vector in common.
51. There exists a 2×2 matrix A such that $A^{2} \neq 0$ and $A^{3}=0$.
52. If A and B are $n \times m$ matrices such that the image of A is a subset of the image of B, then there must exist an $m \times m$ matrix C such that $A=B C$.
53. Among the 3×3 matrices whose entries are all 0 's and 1 's, most are invertible.
