Math S-21b - Summer 2023 - Homework \#2

Problems due by Friday, June 30:

Problem 1. (2.1/43) a. Consider the vector $\mathbf{v}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$.
Is the transformation $T(\mathbf{x})=\mathbf{v} \cdot \mathbf{x}$ (the dot product) from \mathbf{R}^{3} to \mathbf{R} linear? If so, find the matrix of T.
b. Consider an arbitrary vector \mathbf{v} in \mathbf{R}^{3}. Is the transformation $T(\mathbf{x})=\mathbf{v} \cdot \mathbf{x}$ linear?

If so, find the matrix of T (in terms of the components of \mathbf{v}).
c. Conversely, consider a linear transformation T from \mathbf{R}^{3} to \mathbf{R}.

Show that there exists a vector \mathbf{v} in \mathbf{R}^{3} such that $T(\mathbf{x})=\mathbf{v} \cdot \mathbf{x}$, for all \mathbf{x} in \mathbf{R}^{3}.
Problem 2. (2.1/44) The cross product of two vectors in \mathbf{R}^{3} is defined by $\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \times\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]=\left[\begin{array}{l}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right]$.
Consider an arbitrary vector \mathbf{v} in \mathbf{R}^{3}. Is the transformation $T(\mathbf{x})=\mathbf{v} \times \mathbf{x}$ from \mathbf{R}^{3} to \mathbf{R}^{3} linear? If so, find its matrix in terms of the components of the vector \mathbf{v}.

Problem 3. (2.2/6) Let L be the line in \mathbf{R}^{3} that consists of all scalar multiples of the vector $\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$. Find the orthogonal projection of the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ onto L.

Problem 4. (2.2/7) Let L be the line in \mathbf{R}^{3} that consists of all scalar multiples of the vector $\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$. Find the reflection of the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ about the line L.

Find matrices of the linear transformations from \mathbf{R}^{3} to \mathbf{R}^{3} given in Problems 5-9. Some of these transformations have not been formally defined in the text. Use common sense. You may assume that all these transformations are linear.
Problem 5. (2.2/19) The orthogonal projection onto the $x y$-plane.
Problem 6. $(2.2 / 20)$ The reflection about the $x z$-plane.
Problem 7. (2.2/21) The rotation about the z-axis through an angle of $\pi / 2$, counterclockwise as viewed from the positive z-axis.
Problem 8. (2.2/22) The rotation about the y-axis through an angle θ, counterclockwise as viewed from the positive y-axis.
Problem 9. (2.2/23) The reflection about the plane $y=z$.
Problem 10. (2.2/34) One of the five given matrices represents an orthogonal projection onto a line and another represents a reflection about a line. Identify both and briefly justify your choice. [This is not such an easy problem!]
$\mathbf{A}=\frac{1}{3}\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$
$\mathbf{B}=\frac{1}{3}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
$\mathbf{C}=\frac{1}{3}\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$
$\mathbf{D}=-\frac{1}{3}\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$
$\mathbf{E}=\frac{1}{3}\left[\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$

In Problems 11 and 12, find all matrices \mathbf{X} that satisfy the given matrix equation.
Problem 11. (2.3/56) $\mathbf{X}\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \quad \quad$ Problem 12. $(2.3 / 58) \mathbf{X}\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]=\mathbf{I}_{2}$

Decide whether the matrices in Problems 13-15 are invertible. If they are, find the inverse matrix. Do the computations with paper and pencil. Show all your work.

Problem 13. (2.4/2) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
Problem 14. (2.4/4) $\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 1\end{array}\right]$
Problem 15. (2.4/12) $\left[\begin{array}{cccc}1 & 1 & 2 & 3 \\ 0 & -1 & 0 & 0 \\ 2 & 2 & 5 & 4 \\ 0 & 3 & 0 & 1\end{array}\right]$
Problem 16. (2.4/66) Consider two $n \times n$ matrices \mathbf{A} and \mathbf{B}, such that the product $\mathbf{A B}$ is invertible. Show that the matrices \mathbf{A} and \mathbf{B} are both invertible. Hint: $\mathbf{A B}(\mathbf{A B})^{-1}=\mathbf{I}_{n}$ and $(\mathbf{A B})^{-1} \mathbf{A B}=\mathbf{I}_{n}$. Use Fact 2.4.8.
Problem 17. (2.4/67-75) For two invertible $n \times n$ matrices \mathbf{A} and \mathbf{B}, determine which of the formulas stated in Exercises 67 through 75 are necessarily true.
67. $(\mathbf{A}+\mathbf{B})^{2}=\mathbf{A}^{2}+2 \mathbf{A B}+\mathbf{B}^{2}$
70. $(\mathbf{A}-\mathbf{B})(\mathbf{A}+\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}$
73. $\left(\mathbf{A B A}^{-1}\right)^{3}=\mathbf{A B}^{3} \mathbf{A}^{-1}$
68. \mathbf{A}^{2} is invertible, and
71. $\mathbf{A B B}^{-1} \mathbf{A}^{-1}=\mathbf{I}_{n}$
74. $\left(\mathbf{I}_{n}+\mathbf{A}\right)\left(\mathbf{I}_{n}+\mathbf{A}^{-1}\right)=2 \mathbf{I}_{n}+\mathbf{A}+\mathbf{A}^{-1}$
$\left(\mathbf{A}^{2}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{2}$
72. $\mathbf{A B A} \mathbf{A}^{-1}=\mathbf{B}$
75. $\mathbf{A}^{-1} \mathbf{B}$ is invertible, and
$\left(\mathbf{A}^{-1} \mathbf{B}\right)^{-1}=\mathbf{B}^{-1} \mathbf{A}$
69. $\mathbf{A}+\mathbf{B}$ is invertible, and
$(\mathbf{A}+\mathbf{B})^{-1}=\mathbf{A}^{-1}+\mathbf{B}^{-1}$
Problem 18. (2.4/76) Find all linear transformations T from \mathbf{R}^{2} to \mathbf{R}^{2} such that $T\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $T\left[\begin{array}{l}2 \\ 5\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
[Hint: We are looking for the 2×2 matrices \mathbf{A} such that $\mathbf{A}\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{A}\left[\begin{array}{l}2 \\ 5\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. These two equations can be combined to form the matrix equation $\left.\mathbf{A}\left[\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right].\right]$
Problem 19. (2.4/78) Find the matrix of the linear transformation T from \mathbf{R}^{2} to \mathbf{R}^{3} with
$T\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}7 \\ 5 \\ 3\end{array}\right]$ and $T\left[\begin{array}{l}2 \\ 5\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
Problem 20(a). (2.4/80) Consider the regular tetrahedron sketched below, whose center is at the origin.

Let T from \mathbf{R}^{3} to \mathbf{R}^{3} be the rotation about the axis through points 0 and P_{2} that transforms P_{1} into P_{3}. Find the images of the four corners of the tetrahedron under this
$\begin{array}{ll} & P_{0} \xrightarrow{T} \\ \text { transformation. } & P_{1} \rightarrow P_{3} \\ & P_{2} \rightarrow \\ & P_{3} \rightarrow\end{array}$

Let L from \mathbf{R}^{3} to \mathbf{R}^{3} be the reflection about the plane through the points $0, P_{0}$, and P_{3}. Find the images of the four corners of the tetrahedron under

$$
\begin{array}{ll}
& P_{0} \xrightarrow{L} \\
\text { this transformation. } & P_{1} \rightarrow \\
& P_{2} \rightarrow \\
& P_{3} \rightarrow
\end{array}
$$

Describe the transformations in parts (a) through (c) geometrically.
a. T^{-1}
b. L^{-1}
c. $T^{2}=T \circ T$ (the composite of T with itself)
d. Find the images of the four corners under the transformations

$P_{0} \xrightarrow{\text { ToL }}$	$P_{0} \xrightarrow{\text { LoT }}$
$P_{1} \rightarrow$	$P_{1} \rightarrow$
$P_{2} \rightarrow$	$P_{2} \rightarrow$
$P_{3} \rightarrow$	$P_{3} \rightarrow$

Problem 20(b). (2.4/81) Find the matrices of the transformations T and L defined in Exercise 80.

For additional practice (not to be turned in):

Section 2.1:
5. Consider the linear transformation T from \mathbf{R}^{3} to \mathbf{R}^{2} with $T\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}7 \\ 11\end{array}\right], T\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}6 \\ 9\end{array}\right]$, and $T\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}-13 \\ 17\end{array}\right]$.

Find the matrix \mathbf{A} of T.
6. Consider the linear transformation T from \mathbf{R}^{2} to \mathbf{R}^{3} given by $T\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+x_{2}\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$. Is this transformation linear? If so, find its matrix.

Consider the circular face in the accompanying figure. For each of the matrices \mathbf{A} in Exercises 24 through 30, draw a sketch showing the effect of the linear transformation $T(\mathbf{x})=\mathbf{A x}$ on this face.

24. $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
25. $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
26. $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
27. $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
28. $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
29. $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
30. $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

Section 2.2:

4. Interpret the following linear transformation geometrically: $\quad T(\mathbf{x})=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right] \mathbf{x}$.
5. The matrix $\left[\begin{array}{cc}-0.8 & -0.6 \\ 0.6 & -0.8\end{array}\right]$ represents a rotation. Find the angle of rotation (in radians).

Section 2.3:

3. $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
4. $\left[\begin{array}{cc}1 & -1 \\ 0 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 1 & 0\end{array}\right]$
5. $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$
6. $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$

In Exercises 55 and 57, find all matrices \mathbf{X} that satisfy the given matrix equation.
55. $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right] \mathbf{X}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \quad$ 57. $\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right] \mathbf{X}=\mathbf{I}_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Section 2.4:

41. Which of the following linear transformations T from \mathbf{R}^{3} to \mathbf{R}^{3} are invertible? Find the inverse if it exists.
a. Reflection about a plane.
b. Orthogonal projection onto a plane.
c. Scaling by a factor of 5 [i.e., $T(\mathbf{v})=5 \mathbf{v}$, for all vectors \mathbf{v}].
d. Rotation about an axis.

Chapter 2 True/False questions

1. If A is any invertible $n \times n$ matrix, then $\operatorname{rref}(A)=I_{n}$.
2. The formula $\left(A^{2}\right)^{-1}=\left(A^{-1}\right)^{2}$ holds for all invertible matrices A.
3. The formula $A B=B A$ holds for all $n \times n$ matrices A and B.
4. If $A B=I_{n}$ for two $n \times n$ matrices A and B, then A must be the inverse of B.
5. If A is a 3×4 matrix and B is a 4×5 matrix, then $A B$ will be a 5×3 matrix.
6. The function $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}y \\ 1\end{array}\right]$ is a linear transformation.
7. The matrix $\left[\begin{array}{rr}5 & 6 \\ -6 & 5\end{array}\right]$ represents a rotation combined with a scaling.
8. If A is any invertible $n \times n$ matrix, then A commutes with A^{-1}.
9. The function $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x-y \\ y-x\end{array}\right]$ is a linear transformation.
10. Matrix $\left[\begin{array}{rr}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$ represents a rotation.
11. There exists a real number k such that the matrix $\left[\begin{array}{cc}k-2 & 3 \\ -3 & k-2\end{array}\right]$ fails to be invertible.
12. Matrix $\left[\begin{array}{rr}-0.6 & 0.8 \\ -0.8 & -0.6\end{array}\right]$ represents a rotation.
13. The formula $\operatorname{det}(2 A)=2 \operatorname{det}(A)$ holds for all 2×2 matrices A.
14. There exists a matrix A such that
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] A\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.
15. Matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$ is invertible.
16. Matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ is invertible
17. There exists an upper triangular 2×2 matrix A such that

$$
A^{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

18. The function $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}(y+1)^{2}-(y-1)^{2} \\ (x-3)^{2}-(x+3)^{2}\end{array}\right]$ is a linear transformation.
19. Matrix $\left[\begin{array}{cc}k & -2 \\ 5 & k-6\end{array}\right]$ is invertible for all real numbers k.
20. There exists a real number k such that the matrix $\left[\begin{array}{cc}k-1 & -2 \\ -4 & k-3\end{array}\right]$ fails to be invertible.
21. The matrix product $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$ is always a
scalar multiple of I_{2}.
22. There exists a nonzero upper triangular 2×2 matrix A such that $A^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
23. There exists a positive integer n such that $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]^{n}=I_{2}$.
24. There exists an invertible 2×2 matrix A such that $A^{-1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.
25. There exists an invertible $n \times n$ matrix with two identical rows.
26. If $A^{2}=I_{n}$, then matrix A must be invertible.
27. There exists a matrix A such that $A\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$.
28. There exists a matrix A such that $\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right] A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.
29. The matrix $\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$ represents a reflection about a line.
30. $\left[\begin{array}{cc}1 & k \\ 0 & 1\end{array}\right]^{3}=\left[\begin{array}{cc}1 & 3 k \\ 0 & 1\end{array}\right]$ for all real numbers k.
31. If matrix $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ is invertible, then matrix $\left[\begin{array}{ll}a & b \\ d & e\end{array}\right]$ must be invertible as well.
32. If A^{2} is invertible, then matrix A itself must be invertible.
33. If $A^{17}=I_{2}$, then matrix A must be I_{2}.
34. If $A^{2}=I_{2}$, then matrix A must be either I_{2} or $-I_{2}$.
35. If matrix A is invertible, then matrix $5 A$ must be invertible as well.
36. If A and B are two 4×3 matrices such that $A \vec{v}=B \vec{v}$ for all vectors \vec{v} in \mathbb{R}^{3}, then matrices A and B must be equal.
37. If matrices A and B commute, then the formula $A^{2} B=$ $B A^{2}$ must hold.
38. If $A^{2}=A$ for an invertible $n \times n$ matrix A, then A must be I_{n}.
39. If matrices A and B are both invertible, then matrix $A+B$ must be invertible as well.
40. The equation $A^{2}=A$ holds for all 2×2 matrices A representing a projection.
41. The equation $A^{-1}=A$ holds for all 2×2 matrices A representing a reflection.
42. The formula $(A \vec{v}) \cdot(A \vec{w})=\vec{v} \cdot \vec{w}$ holds for all invertible 2×2 matrices A and for all vectors \vec{v} and \vec{w} in \mathbb{R}^{2}.
43. There exist a 2×3 matrix A and a 3×2 matrix B such that $A B=I_{2}$.
44. There exist a 3×2 matrix A and a 2×3 matrix B such that $A B=I_{3}$.
45. If $A^{2}+3 A+4 I_{3}=0$ for a 3×3 matrix A, then A must be invertible.
46. If A is an $n \times n$ matrix such that $A^{2}=0$, then matrix $I_{n}+A$ must be invertible.
47. If matrix A commutes with B, and B commutes with C, then matrix A must commute with C.
48. If T is any linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3}, then $T(\vec{v} \times \vec{w})=T(\vec{v}) \times T(\vec{w})$ for all vectors \vec{v} and \vec{w} in \mathbb{R}^{3}.
49. There exists an invertible 10×10 matrix that has 92 ones among its entries.
50. The formula $\operatorname{rref}(A B)=\operatorname{rref}(A) \operatorname{rref}(B)$ holds for all $n \times p$ matrices A and for all $p \times m$ matrices B.
51. There exists an invertible matrix S such that $S^{-1}\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] S$ is a diagonal matrix.
52. If the linear system $A^{2} \vec{x}=\vec{b}$ is consistent, then the system $A \vec{x}=b$ must be consistent as well.
53. There exists an invertible 2×2 matrix A such that $A^{-1}=-A$.
54. There exists an invertible 2×2 matrix A such that $A^{2}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$.
55. If a matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ represents the orthogonal projection onto a line L, then the equation $a^{2}+b^{2}+c^{2}+d^{2}=1$ must hold.
56. If A is an invertible 2×2 matrix and B is any 2×2 matrix, then the formula $\operatorname{rref}(A B)=\operatorname{rref}(B)$ must hold.
