Math S-21b — Lecture #9 Notes

The main topics in this lecture are orthogonal projection, the Gram-Schmidt orthogonalization
process, QR factorization, isometries and orthogonal transformations, least-squares
approximate solutions and applications to data-fitting.

Some previous results:

T T
1) Suppose V :Span{vl,m,vk}. Let A=|v, --- Vv, |.Thisisan nxk matrix with
\2 l

V =im(A) and V" =(imA)" =ker(AT)|.

2) Suppose B = {u,,---,u, } is an orthonormal (ON) basis for a subspace V < R". Then for any

T 0
xeR", [Proj,x=(X-u)u, + (X-u)u, +---+(x-u)u, |. If we write B=|u, --- u, |, then
\2 \!
Proj, =BB| is the matrix for orthogonal projection onto V, and |Ref, =2BB" —1| is the

matrix for reflection through this subspace.



0 0

3)If V=R"and B={u,,---,u,} isan orthonormal basis for all of R", then B=|u, - u,

\ \

will be an nxn matrix with ON columns (hence invertible), and Proj, = BB" = I. Therefore
in this special case we’ll have B™ =B". Such a matrix is called an orthogonal matrix.

0 1
4)1f B=|u, --- u, |isany nxk matrix with orthonormal columns, then B'B =1, . In the
\ \

special case where B is an nxn matrix with orthonormal columns, this gives B'B =1, .

Transpose Facts
The following relations hold wherever the expressions are defined:

(1) (AB)" =BTAT
(2) (A+B)'=AT+B’
(3) If Ais an invertible nxn matrix, then AT is also invertible and (A")™" =(A™)"



The proofs are somewhat routine. For example, to establish (1), if A isan mxn matrix and B is

a nx p matrix, then the (i, j) of AB will be Zaikbkj . This will then be the (j,i) entry of

k=1

(AB)". On the other hand, the (j,k) entry of B" will be b and the (k,i) entry of AT will
be a,, so the (j,i) entry of BTAT will be ) bya, => a,b, which coincides with the
k=1 k=1

(j,i) entry of (AB)". Therefore (AB)' =B'A".

Corollary: The matrix A for any orthogonal projection or reflection is always symmetric, i.e.
AT =A.

Proof: Using the previous results, any projection matrix can be expressed as A=BB" and
AT =(BB")" =BB' = A, so the matrix is symmetric. Similarly, Ref, =2BB" -1 and

(2BB"—1)" =2(BB")" — 1" =2BB" -1, so this matrix is also symmetric.

Gram-Schmidt Orthogonalization Process
Suppose we begin with a basis B = {vl,---,vk} for a k-dimensional subspace V < R". We

would like to construct an orthonormal basis for this same subspace. The Gram-Schmidt
orthogonalization process sequentially constructs such a basis. It should be emphasized that the
resulting ON basis is very much dependent on the ordering of the original basis. We proceed as
follows:



(1) Start with v, and normalize it by scaling, i.e. u, ” ” For reasons that will soon become
1

clear, we write r,, =||v,|. We can also solve for v, =r,u,. Let V, =Span{v,} =Span{u,}.

(2) Next, we take the second basis vector v,, find its projection onto the subspace V,, subtract
this from the original to get a vector orthogonal to the first, then scale this to get a unit
vector. We can calculate the projection as Proj, (v,)=(v,-u,)u,, so we take

Vv, —Proj, (v,)
||v2 —Proj, (v, )”
parallelogram determined by the vectors {v,,v,} and the area of this parallelogram is

Note that r,, —||v PrOJV || is the perpendicular height of the

therefore (base)(L height) =r,,r,,. We can also solve for v, =(v,-u,)u, +r,u,. Let
V, =Span{v,,v,}=Span{u,,u,} .

(3) If k >2, we continue with the third basis vector v,. We find its projection onto the
subspace V,, subtract this from the original to get a vector orthogonal to V,, then scale this
to get a unit vector. We can calculate the projection as Proj, (v,)=(V,-u,)u, +(Vv;-U,)u,,



so we take u, = V3 —Proj,, (v;)
3 ||V3 - F’I’Oj\,2 (V3 )”

. Note that r,, = ||v3 ~Proj,, (v3)|| is the perpendicular

height of the parallelepiped determined by the vectors {vl, vz,vs} and the volume of this

parallelepiped is therefore (area of base)(L height) =r,,r,,r,,. We can also solve for

Vy = (Vg U ) Uy +(Vy-U, U, + U, Let V, =Span{v,,v,,v,} =Span{u,,u,,u,}.

We continue in this same manner until we exhaust our finite list of basis vectors. The last
v, —Proj, (v)
||vk —Proj, (v, )”
we can define the k-volume of the k-dimensional parallelepiped determined by the vectors

{Vi,Vy,e+, v, } @S 16y, -+, . We can also solve for

Vi =(Vy -u)u - +( v, -u U, + Reu, - We then have

orthonormal vector will be u, =

and if we write r, = ||Vk —Proj, (v, )”

V =Span{v,,---,v, } =Span{u,,---,u,}, and this completes the orthogonalization process.



OR factorization
If we assemble the equations from the above process as

vV, =hU,
V, =(V,-u,)u; +r,u,
v, = (V3-Up)uy +(Vy-u, U, + 15U,

Vi =(Vk 'ul)u1+"'+(vk 'uk—l)uk—1+ MU

we can express this as a product of matrices as follows:

£ N B I N N %1 Vorth o Vil
r .

-« V, -u
= cee = . 22 k 2| _
A_ Vl VZ Vk - ul u2 uk . . ", . _QR
‘ 0 0 [
nxk matrix w/linearly nxk matrix ) - -
independent columns w/orthonormal columns kxk upper triangular matrix

with nonzero diagonal entries

The columns of the matrix A are the original basis vectors; the columns of the matrix Q are
those of the Gram-Schmidt basis; and the entries of the matrix R capture all of the geometric
aspects of the original basis, i.e. lengths, areas, etc. and the non-orthogonality of the original
vectors. Note that the k-volume is just the product of the diagonal entries of R, i.e. r,r,, -, .
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1] 1 0
Example: In R*, let v, = i ,V, = 8 ,and v, = % ,and let V =Span{v,,v,,v,}. These
1] 1 -1
vector form a basis for V, but not an orthonormal basis. Using the Gram-Schmidt process, we
1
have r, =|v,|=2,s0 u, =3 % . We next calculate:
1
1 1111 1 1 1 1 b/Z ]7{/2 1
: _10 110 [1](2]2]_|O0| 1 11_10 2| _|-Y2|_1|-1
Vo =Prob, (Va) =l o |7 2| o |1 ||2|1|7| 0|72 D|1|7| 0|7 |12 |7| -T2 |7 2| -1 |
1 1111 1 1 1 1] |12 2 1
1
Its magnitude is r,, :”v2 —Proj\,l(vz)”:l, SO u, =53 _% .



We next calculate

0 1 1 12 1
v, —Proj, (v;) =V, —(V,-u,)u, —(V;-u,)u, = i - i + j = _]/1/22 =3 _11 , and
-1 1 1 -1/2 -1
1
r33=||v3—ProjV2(v3)||=1,so u, =% _11 .
-1
The 3-volume of the parallelepiped determined by {v,,v,,v,} is r;r,r, =(2)0)1) =2.
110 Y2 Y2 12 21 1
The corresponding QR-factorization is A = 1 8 i = z; :z; _]4/22 8 (1) —12 =QR.
11 -1 (Y2 Y2 -12

Isometries and orthogonal transformations
Given two spaces V and W where there’s a notion of distance (metric spaces), an isometry is a
transformation T :V —W that preserves distances. Familiar examples include rotations and
reflections, but also “isometric embeddings” such as the transformation that places R* in R®
as either the xy-plane, xz-plane, yz-plane, or any other plane such that distances are preserved.
In the case of linear transformations, we are more specific:
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Definition: A linear transformation T : R" — R" is called an orthogonal transformation if it
preserves norms, i.e. |[T (x)||=|x| for all x. Its matrix is called an orthogonal matrix.

Proposition: If a linear transformation T :R" — R™ preserves norm, then ker(T) ={0}.
Proof: If T(x)=0, then |T (x)|=|x|=]0]=0,s0 x=0.
Corollary: If T:R" — R" is an orthogonal transformation, it must be invertible.

Proposition: If T:R" — R" is an orthogonal transformation, then T preserves dot products:
T(x)-T(y)=x-y forall x,yeR".

Proof: By linearity, T(x+y) =T (x)+T(y), so [T (x+y)||=|T (x)+T(y)| and

T x+y)[" =[T(x)+T(y)| . Since T is an orthogonal transformation,

||T(x+y)||2 =||x+y||2 =(X+Y) - (X+Y) =X-X+X-Y+Y-X+Y-y :||x||2 +||y||2 +2x-y . Similarly,
TO)+T (y)||2 =7 (x)||2 +|T (y)||2 +2T(X)-T(y)= ||x||2 + ||y||2 +2T(X)-T(y) . Comparing both
sides we see that T(X)-T(y)=X-y.

Proposition: If T:R" — R" is an orthogonal transformation, then T preserves angles. That is,
if 6, is the angle between two nonzero vectors x and y, and if &, is the angle between T (X)

and T(y), then 6, =+6,.



Proof: We know that x-y = x||ly|cos 6, and T (x)-T (y) =T (|[[T (v)||cos &, = |x|||y[ cos 6,
and T(x)-T(y)=X-y . Therefore cosf, =cos6,, so 6, =+6,.

Matrix of an orthogonal transformation

Because the standard basis & = {el,ez,...,en} is an orthonormal basis of R" and since
orthogonal transformations preserve length and angle, it follows that {T (el),T(ez),...,T(en)}

must also be an orthonormal basis of R". This includes rotations and reflections. The matrix of
an orthogonal transformation must therefore be

T T T T T 0

A=|[TE)], - [TE,)], |=|Ae, - Ae,|=|u, --- u, |, i.e.itmusthave orthonormal
l ! 2 \J 2 \J

columns. It must also be the case that
—u |7 ™ Tug-u, - ueu ] [1-0

ATA = : u, -~ u, = . i |=[: . i|=1,,s0an orthogonal
«— u, > 3 u,-u, -+ U -u 0 -1

matrix has the special property that A" = A™, and any matrix that satisfies this property must
be the matrix of an orthogonal transformation. Geometrically, these are all (compositions of)
rotations and reflections.
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Least-Squares approximate solutions

Situation: We would like to solve a linear system Ax =b where A isan mxn matrix, but we
find that the system is inconsistent. This means that b ¢ im A, but this suggests the possibility
that we might seek a vector x* such that Ax" is as close to the subspace im A as possible.

Orthogonal projection is a natural choice, so we seek x* such that |Ax" = Proj,b| where

V =im A. This means that we want b—Ax" e (im A)" =V . We have already shown that
(imA)* =ker(AT), so we want b—Ax" e ker(AT),i.e. AT (b—AX*) =0 or |[ATAX =A'b|.

This is known as the normal equation (or normal equations). A solution x" is called a least-
squares approximate solution.

The name “least-squares solution” comes from an alternate way that it can be derived using
multivariable calculus methods in the special case where we’re trying to find the line that best
fits a given data set. That method involves minimizing the sum of the square deviations
between values predicted by a best-fit line (also called a regression line) and actual values
provided by the data set.

The normal equation is easy to remember. If the original system is Ax =b, then you just have
to apply the matrix A" to both sides of the equation to get ATAx = A"b. This system will
always be consistent. If A is an mxn matrix, then ATA will be an nxn (square) matrix. It
will also be symmetric since (ATA)" = ATA.
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In the case where ker(ATA) ={0}, the matrix ATA will be invertible and there will be a unique
least-squares solution x* = (ATA)™"A'b . Many students memorize this formula and apply it

blindly, but it is often simplest to solve the consistent system ATAx =A'b using row reduction
to find the least-squares solution.

There is a simple way to determine when the normal equation will yield a unique least-squares
solution. This is based on the following lemma:

Lemma: For any matrix A, it is the case that ker(A"A) = ker A.

Proof: If xeker A, then Ax=0.S0 ATAx=A"0=0 which means that x  ker(ATA). So
ker A — ker(ATA). On the other hand, if x € ker(ATA), then ATAx =0. But this means that
Ax e ker(AT) = (im A)" . But it’s obvious that Ax eim A, so we have

Ax e (im A)" N (im A) ={0}. Therefore Ax=0, and therefore x  ker A. So

ker(ATA) c ker A. Therefore ker(ATA) =ker A.

We also know that for any matrix A, ker A ={0} if and only if the columns of A are linearly

independent. If we combine this fact and the previous results, we see that the matrix ATA will
be invertible and there will be a unique least-squares approximate solution to Ax=>b if and
only if the columns of A are linearly independent.
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There’s an unexpected benefit provided by the least-squares solution. If V is any subspace with

) 0
basis {v,,---,v,},ifwelet A=|v, --- v, | thenV =imA and A will have linearly
\§ \2

independent columns. So for any b e R", Proj,b = Ax" = A(ATA)"A'b . Therefore

A(ATA) AT will be the matrix for orthogonal projection onto the subspace V. This is

significant in that our previous method required the use of the Gram-Schmidt process to
produce an orthonormal basis for the subspace V. This alternative method only requires that

{vi,---,v,} beabasis. It is perhaps worth noting that if {v,,---,v,} had been an orthonormal

basis, then we would have ATA =1, and A(ATA) AT = AIAT = AA" which coincides with
our previous method.

Data fitting

It is common that data occurs in the form
of ordered pairs (or ordered n-tuples). If
we plot the data, the resulting graph is .o
called a scatterplot. If the scatterplot
suggests a roughly straight-line
relationship, it is reasonable to ask which
straight line might best fit the given data.
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Suppose the data is {(xi : yi)}i ,- We can use our least-squares method by assuming the absurd,

namely that all of the data fits a straight with equation y =mx+b perfectly. If this is the case,
then we get the system of linear equations:

mX1+b=y1 X 1 Y1

mx, +b =y, X, 1|im| |V, B
: = S [b}_ : = Ac=y

mXN+b:yN XN 1 Y

This is, of course, a hopelessly inconsistent linear system, but we can find a least-squares

approximate solution by solving A"Ac= A"y . We can calculate

X; X; X Yi

ATA=|X X 0 X |l X 1i_|= = | and ATy = X Xy o Xy || Y2 ||
1 1 - 11 : : ix N 1 1 - 11 : ZN:

XN 1 = i yN — yi

N | 1N N
inz X; in Yi
= {m}_ =
N b

so the normal equations are | ' = '
Z Yi
i=1

" . These can then be easily solved to
find the slope m and the intercept b for the line of best fit.
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Best quadratic?
It may be the case that the scatterplot suggests something other than a straight line relationship.
If, for example, you suspect a quadratic relationship, start by writing this as y = ax* +bx+c. If

we again assume the absurd possibility that all the data fits this quadratic perfectly, we get the
system of linear equations:

ax” +bx +c=y, X’ Lrgg [ %

ax22+bx'2+C=y2 N X?Z X 1 bl=| V2| = Ac=y
o - 5 :

ax,” +bx, +c=y, X' Xy 1 In

Once again, we solve the normal equation ATAc = ATy to get the least-squares approximate
solution. This gives the system of equations:

L

2
i D2y,
i=1 i=1
N

a

X2 D% [ b]=| D%y, | which we then solve to find the coefficients a,b,c.
i c i=1

N N

;:Yi

L i i=1 i

X

<
w

=<
N

1

M=zl

1]
4N
1]
=
||
N

7
=

1]
-
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Example: Given the 5 data points {(1,1),(2,1),(3,1),(4,3),(5,5)} find (a) the line that best fits
this data and (b) the quadratic that best fits this data.

Solution: (a) It’s easiest to assemble the necessary information in a table (or spreadsheet):

Y | x2 | Xy
1 1
4 2
9 3
16
25

12
25
5|11 ]55] 43

OB IWIN | X

1
1
1
3
5

[

)

If the line we seek has equation y = mx + b, the resulting normal equation is:

55 15|Im| |43

15 5| b| |11]
We can easily solve this via row reduction or matrix inversion to get m=1, b=-.8. So the
line that best fits this data has equation |y = X —.8|.
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(b) For the best-fitting quadratic we seek a parabola with equation y = ax® +bx+c. It’s helpful
to expand the previous table to get:

xy | x* | x* | xPy

X
11 1 1 1
4 | 2 8 |16 | 4
9| 3|27 |81 9
16 | 12 | 64 | 256 | 48
25| 25 [ 125|625 | 125

Ol PB|WIN| | X
Wk R P

¥ | 15|11 | 55| 43 | 225|979 | 187
979 225 55
As previously described, the resulting normal equation becomes | 225 55 15
5 15 5
a 5 -30 187
Solving this with matrix inversion gives | b [=—| -30 187 —231 —110 So
c| 70|35 -231 322
=3 b=-1 ¢ =4 and the best-fitting quadratic has equation |y %xz ~Lx+ % .
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More general least-squares methods

If a scatterplot suggests a relationship of the form y = ax” for some unknowns a and p, we can
use logs to rewrite thisas Iny=Ina+ pInx.IfweletY =Iny, A=Ina,and X =Inx, the
relationship is then Y = A+ pX and we can use least-squares with the adjusted data to find A
and p, and then exponentiate to find a and p.

These same methods work if we have data in the form {(xi Vi zi)}iN=l and we’re seeking the
plane of best fit, or if we are trying to find the constants that provide a best fit for a relationship
such as z=ax"y? (in which case we would first take the log of both sides to get a relationship
that yields a system of linear equations.

Notes by Robert Winters
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