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Math S-21b – Lecture #9 Notes 
The main topics in this lecture are orthogonal projection, the Gram-Schmidt orthogonalization 
process, QR factorization, isometries and orthogonal transformations, least-squares 
approximate solutions and applications to data-fitting. 

Some previous results: 

1) Suppose { }1Span , , kV = v v . Let 1 k

 ↑ ↑
 =
 
↓ ↓  

A v v . This is an n k×  matrix with 

im( )V = A  and T(im ) ker( )V ⊥ ⊥= =A A . 

2) Suppose { }1, , k= u uB   is an orthonormal (ON) basis for a subspace nV ⊆ R . Then for any 

n∈x R , 1 1 2 2Proj ( ) ( ) ( )V k k= ⋅ + ⋅ + + ⋅x x u u x u u x u u . If we write 1 k

 ↑ ↑
 =
 
↓ ↓  

B u u , then 

TProjV = BB  is the matrix for orthogonal projection onto V, and TRef 2V = −BB I  is the 
matrix for reflection through this subspace. 
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3) If nV = R  and { }1, , n= u uB   is an orthonormal basis for all of nR , then 1 n

 ↑ ↑
 =
 
↓ ↓  

B u u  

will be an n n×  matrix with ON columns (hence invertible), and TProjV = =BB I . Therefore 
in this special case we’ll have 1 T− =B B . Such a matrix is called an orthogonal matrix. 

4) If 1 k

 ↑ ↑
 =
 
↓ ↓  

B u u  is any n k×  matrix with orthonormal columns, then T
k=B B I . In the 

special case where B is an n n×  matrix with orthonormal columns, this gives T
n=B B I . 

Transpose Facts 
The following relations hold wherever the expressions are defined: 
(1) T T T( ) =AB B A  
(2) T T T( )+ = +A B A B  
(3) If A is an invertible n n×  matrix, then TA  is also invertible and T 1 1 T( ) ( )− −=A A  



 3 

The proofs are somewhat routine. For example, to establish (1), if A is an m n×  matrix and B is 

a n p×  matrix, then the ( , )i j  of AB will be 
1

n

ik kj
k

a b
=
∑ . This will then be the ( , )j i  entry of 

T( )AB . On the other hand, the ( , )j k  entry of TB  will be kjb  and the ( , )k i  entry of TA  will 

be ika , so the ( , )j i  entry of T TB A  will be 
1 1

n n

kj ik ik kj
k k

b a a b
= =

=∑ ∑  which coincides with the 

( , )j i  entry of T( )AB . Therefore T T T( ) =AB B A . 
Corollary: The matrix A for any orthogonal projection or reflection is always symmetric, i.e. 

T =A A . 
Proof: Using the previous results, any projection matrix can be expressed as T=A BB  and 

T T T T( )= = =A BB BB A , so the matrix is symmetric. Similarly, TRef 2V = −BB I  and 
T T T T T T(2 ) 2( ) 2− = − = −BB I BB I BB I , so this matrix is also symmetric. 

Gram-Schmidt Orthogonalization Process 
Suppose we begin with a basis { }1, , k= v vB   for a k-dimensional subspace nV ⊆ R . We 
would like to construct an orthonormal basis for this same subspace. The Gram-Schmidt 
orthogonalization process sequentially constructs such a basis. It should be emphasized that the 
resulting ON basis is very much dependent on the ordering of the original basis. We proceed as 
follows: 
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(1) Start with 1v  and normalize it by scaling, i.e. 1
1

1

=
vu
v

. For reasons that will soon become 

clear, we write 11 1r = v . We can also solve for 1 11 1r=v u . Let { } { }1 1 1Span SpanV = =v u . 

(2) Next, we take the second basis vector 2v , find its projection onto the subspace 1V , subtract 
this from the original to get a vector orthogonal to the first, then scale this to get a unit 
vector. We can calculate the projection as ( ) ( )

1 2 2 1 1ProjV = ⋅v v u u , so we take 

( )
( )

1

1

2 2
2

2 2

Proj

Proj
V

V

−
=

−

v v
u

v v
. Note that ( )

122 2 2ProjVr = −v v  is the perpendicular height of the 

parallelogram determined by the vectors { }1 2,v v  and the area of this parallelogram is 
therefore 11 22( )( )base height r r⊥ = . We can also solve for ( )2 2 1 1 22 2r= ⋅ +v v u u u . Let 

{ } { }2 1 2 1 2Span , Span ,V = =v v u u . 

(3) If 2k > , we continue with the third basis vector 3v . We find its projection onto the 
subspace 2V , subtract this from the original to get a vector orthogonal to 2V , then scale this 
to get a unit vector. We can calculate the projection as ( ) ( ) ( )

2 3 3 1 1 3 2 2ProjV = ⋅ + ⋅v v u u v u u , 
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so we take 
( )
( )

2

2

3 3
3

3 3

Proj

Proj
V

V

−
=

−

v v
u

v v
. Note that ( )

233 3 3ProjVr = −v v  is the perpendicular 

height of the parallelepiped determined by the vectors { }1 2 3, ,v v v  and the volume of this 
parallelepiped is therefore 11 22 33( )( )area of base height r r r⊥ = . We can also solve for 

( ) ( )3 3 1 1 3 2 2 33 3r= ⋅ + ⋅ +v v u u v u u u . Let { } { }3 1 2 3 1 2 3Span , , Span , ,V = =v v v u u u . 

We continue in this same manner until we exhaust our finite list of basis vectors. The last 

orthonormal vector will be 
( )
( )

1

1

Proj

Proj
k

k

k V k
k

k V k

−

−

−
=

−

v v
u

v v
 and if we write ( )

1
Proj

kkk k V kr
−

= −v v  

we can define the k-volume of the k-dimensional parallelepiped determined by the vectors 
{ }1 2, , , kv v v  as 11 22 kkr r r . We can also solve for 

( ) ( )1 1 1 1k k k k k kk kr− −= ⋅ + + ⋅ +v v u u v u u u . We then have 

{ } { }1 1Span , , Span , ,k kV = =v v u u  , and this completes the orthogonalization process. 
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QR factorization 
If we assemble the equations from the above process as 

( )
( ) ( )

( ) ( )

1 11 1

2 2 1 1 22 2

3 3 1 1 3 2 2 33 3

1 1 1 1k k k k k kk k

r
r

r

r− −

= 
 = ⋅ +
 

= ⋅ + ⋅ + 
 
 = ⋅ + + ⋅ + 

v u
v v u u u
v v u u v u u u

v v u u v u u u




 

we can express this as a product of matrices as follows: 

11 2 1 1

22 2
1 2 1 2

 matrix w/linearly  matrix
 upper triangularindependent columns w/orthonormal columns

0

0 0

k

k
k k

kk
n k n k

k k

r
r

r
× ×

×

⋅ ⋅    ↑ ↑ ↑ ↑ ↑ ↑  ⋅   = =       ↓ ↓ ↓ ↓ ↓ ↓         

v u v u
v uA v v v u u u





 

   



 

 matrix
with nonzero diagonal entries

= QR



 

The columns of the matrix A are the original basis vectors; the columns of the matrix Q are 
those of the Gram-Schmidt basis; and the entries of the matrix R capture all of the geometric 
aspects of the original basis, i.e. lengths, areas, etc. and the non-orthogonality of the original 
vectors. Note that the k-volume is just the product of the diagonal entries of R, i.e. 11 22 kkr r r . 
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Example: In 4R , let 1

1
1
1
1

 
 =  
  

v , 2

1
0
0
1

 
 =  
  

v , and 3

0
2
1
1

 
 =  
 − 

v , and let { }1 2 3Span , ,V = v v v . These 

vector form a basis for V, but not an orthonormal basis. Using the Gram-Schmidt process, we 

have 11 1 2r = =v , so 1
1
2

1
1
1
1

 
 =  
  

u . We next calculate: 

 

12 2
1 1 1 1
2 2 4 2

1 1 1 1 1 1 1 1 2 1 2 1
0 0 1 1 0 1 0 1 2 1 2 1Proj ( ) (2)0 0 1 1 0 1 0 1 2 1 2 1
1 1 1 1 1 1 1 1 2 1 2 1

V

                    
  − −                   − = − ⋅ = − = − = =                    − −
                                        

v v . 

 

Its magnitude is 
122 2 2Proj ( ) 1Vr = − =v v , so 2

1
2

1
1
1

1

 
− =  −
  

u . 
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We next calculate 

( ) ( )
23 3 3 3 1 1 3 2 2

1 1
2 2

0 1 1 1 2 1
2 1 1 1 2 1Proj ( ) 1 1 1 1 2 1
1 1 1 1 2 1

V

         
         −− = − ⋅ − ⋅ = − + = =         − − −         
− − −                  

v v v v u u v u u , and 

233 3 3Proj ( ) 1Vr = − =v v , so 3
1
2

1
1
1
1

 
 =  −
 − 

u . 

The 3-volume of the parallelepiped determined by { }1 2 3, ,v v v  is 11 22 33 (2)(1)(1) 2r r r = = . 

The corresponding QR-factorization is 

1 1 0 1 2 1 2 1 2 2 1 11 0 2 1 2 1 2 1 2 0 1 21 0 1 1 2 1 2 1 2 0 0 11 1 1 1 2 1 2 1 2

        −  = = − =   − −       − −      

A QR . 

Isometries and orthogonal transformations 
Given two spaces V  and W  where there’s a notion of distance (metric spaces), an isometry is a 
transformation :T V W→  that preserves distances. Familiar examples include rotations and 
reflections, but also “isometric embeddings” such as the transformation that places 2R  in 3R  
as either the xy-plane, xz-plane, yz-plane, or any other plane such that distances are preserved. 
In the case of linear transformations, we are more specific: 
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Definition: A linear transformation : n nT →R R  is called an orthogonal transformation if it 
preserves norms, i.e. ( )T =x x  for all x. Its matrix is called an orthogonal matrix. 

Proposition: If a linear transformation : n mT →R R  preserves norm, then ker( ) { }T = 0 . 
Proof: If ( )T =x 0 , then ( ) 0T = = =x x 0 , so =x 0 . 

Corollary: If : n nT →R R  is an orthogonal transformation, it must be invertible. 

Proposition: If : n nT →R R  is an orthogonal transformation, then T preserves dot products: 
( ) ( )T T⋅ = ⋅x y x y  for all , n∈x y R . 

Proof: By linearity, ( ) ( ) ( )T T T+ = +x y x y , so ( ) ( ) ( )T T T+ = +x y x y  and 
2 2( ) ( ) ( )T T T+ = +x y x y . Since T is an orthogonal transformation, 
2 2 2 2( ) ( ) ( ) 2T + = + = + ⋅ + = ⋅ + ⋅ + ⋅ + ⋅ = + + ⋅x y x y x y x y x x x y y x y y x y x y . Similarly, 

2 2 2 2 2( ) ( ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( )T T T T T T T T+ = + + ⋅ = + + ⋅x y x y x y x y x y . Comparing both 
sides we see that ( ) ( )T T⋅ = ⋅x y x y . 

Proposition: If : n nT →R R  is an orthogonal transformation, then T preserves angles. That is, 
if 1θ  is the angle between two nonzero vectors x and y, and if 2θ  is the angle between ( )T x  
and ( )T y , then 2 1θ θ= ± . 
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Proof: We know that 1cosθ⋅ =x y x y  and 2 2( ) ( ) ( ) ( ) cos cosT T T T θ θ⋅ = =x y x y x y , 
and ( ) ( )T T⋅ = ⋅x y x y . Therefore 1 2cos cosθ θ= , so 2 1θ θ= ± . 

Matrix of an orthogonal transformation 
Because the standard basis { }1 2, , , n= e e eE   is an orthonormal basis of nR  and since 
orthogonal transformations preserve length and angle, it follows that { }1 2( ), ( ), , ( )nT T Te e e  
must also be an orthonormal basis of nR . This includes rotations and reflections. The matrix of 
an orthogonal transformation must therefore be 

[ ] [ ]1 1 1( ) ( )n n nT T
 ↑ ↑    ↑ ↑ ↑ ↑
     = = =     

↓ ↓ ↓ ↓     ↓ ↓     

A e e Ae Ae u u
E E
  

, i.e. it must have orthonormal 

columns. It must also be the case that 

1 1 1 1
T

1

1

1 0

0 1

n

n n

n n n n

 ← → ↑ ↑ ⋅ ⋅     
      = = = =
      ← → ⋅ ⋅↓ ↓       

u u u u u
A A u u I

u u u u u

 

       

 

, so an orthogonal 

matrix has the special property that T 1−=A A , and any matrix that satisfies this property must 
be the matrix of an orthogonal transformation. Geometrically, these are all (compositions of) 
rotations and reflections. 
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Least-Squares approximate solutions 
Situation: We would like to solve a linear system =Ax b  where A is an m n×  matrix, but we 
find that the system is inconsistent. This means that im ∉b A , but this suggests the possibility 
that we might seek a vector ∗x  such that ∗Ax  is as close to the subspace im A  as possible. 
Orthogonal projection is a natural choice, so we seek ∗x  such that ProjV

∗ =Ax b  where 

im V = A . This means that we want (im ) V∗ ⊥ ⊥− ∈ =b Ax A . We have already shown that 
T(im ) ker( )⊥ =A A , so we want Tker( )∗− ∈b Ax A , i.e. ( )T ∗− =A b Ax 0  or T T∗ =A Ax A b . 

This is known as the normal equation (or normal equations). A solution ∗x  is called a least-
squares approximate solution. 

The name “least-squares solution” comes from an alternate way that it can be derived using 
multivariable calculus methods in the special case where we’re trying to find the line that best 
fits a given data set. That method involves minimizing the sum of the square deviations 
between values predicted by a best-fit line (also called a regression line) and actual values 
provided by the data set. 

The normal equation is easy to remember. If the original system is =Ax b , then you just have 
to apply the matrix TA  to both sides of the equation to get T T=A Ax A b . This system will 
always be consistent. If A is an m n×  matrix, then TA A  will be an n n×  (square) matrix. It 
will also be symmetric since T T T( ) =A A A A . 
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In the case where Tker( ) { }=A A 0 , the matrix TA A  will be invertible and there will be a unique 
least-squares solution T 1 T( )∗ −=x A A A b . Many students memorize this formula and apply it 
blindly, but it is often simplest to solve the consistent system T T=A Ax A b  using row reduction 
to find the least-squares solution. 

There is a simple way to determine when the normal equation will yield a unique least-squares 
solution. This is based on the following lemma: 

Lemma: For any matrix A, it is the case that Tker( ) ker=A A A . 
Proof: If ker∈x A , then =Ax 0 . So T T= =A Ax A 0 0  which means that Tker( )∈x A A . So 

Tker ker( )⊆A A A . On the other hand, if Tker( )∈x A A , then T =A Ax 0 . But this means that 
Tker( ) (im )⊥∈ =Ax A A . But it’s obvious that im ∈Ax A , so we have 

(im ) (im ) { }⊥∈ ∩ =Ax A A 0 . Therefore =Ax 0 , and therefore ker∈x A . So 
Tker( ) ker⊆A A A . Therefore Tker( ) ker=A A A . 

We also know that for any matrix A, ker { }=A 0  if and only if the columns of A are linearly 
independent. If we combine this fact and the previous results, we see that the matrix TA A  will 
be invertible and there will be a unique least-squares approximate solution to =Ax b  if and 
only if the columns of A are linearly independent. 
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There’s an unexpected benefit provided by the least-squares solution. If V is any subspace with 

basis { }1, , kv v , if we let 1 k

 ↑ ↑
 =
 
↓ ↓  

A v v , then im V = A  and A will have linearly 

independent columns. So for any n∈b R , T 1 TProj ( )V
∗ −= =b Ax A A A A b . Therefore 

T 1 T( )−A A A A  will be the matrix for orthogonal projection onto the subspace V. This is 
significant in that our previous method required the use of the Gram-Schmidt process to 
produce an orthonormal basis for the subspace V. This alternative method only requires that 
{ }1, , kv v  be a basis. It is perhaps worth noting that if { }1, , kv v  had been an orthonormal 

basis, then we would have T
k=A A I  and T 1 T T T( )− = =A A A A AIA AA  which coincides with 

our previous method. 

Data fitting 
It is common that data occurs in the form 
of ordered pairs (or ordered n-tuples). If 
we plot the data, the resulting graph is 
called a scatterplot. If the scatterplot 
suggests a roughly straight-line 
relationship, it is reasonable to ask which 
straight line might best fit the given data. 
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Suppose the data is { } 1
( , ) N

i i i
x y

=
. We can use our least-squares method by assuming the absurd, 

namely that all of the data fits a straight with equation y mx b= +  perfectly. If this is the case, 
then we get the system of linear equations: 

1 1 1 1

2 2 2 2

1
1

1N N N N

mx b y x y
mx b y x ym

b
mx b y x y

+ =     
     + =   ⇒ = ⇒ =           

+ =          

Ac y
   

 

This is, of course, a hopelessly inconsistent linear system, but we can find a least-squares 
approximate solution by solving T T=A Ac A y . We can calculate 

21

T 1 121 2

1

1
1

1 1 1
1

N N

i i
i iN

N

i
N i

x x x
xx x x

x Nx

= =

=

  
     = =      
     

∑ ∑

∑
A A 

 

 and 
1

T 121 2

1

1 1 1

N

i i
iN

N

i
N i

y x y
yx x x

yy

=

=

  
     = =      
     

∑

∑
A y 



, 

so the normal equations are 

2

1 1 1

1 1

N N N

i i i i
i i i

N N

i i
i i

x x x y
m
b

x N y

= = =

= =

   
       =     
      

∑ ∑ ∑

∑ ∑
. These can then be easily solved to 

find the slope m and the intercept b for the line of best fit. 



 15 

Best quadratic? 
It may be the case that the scatterplot suggests something other than a straight line relationship. 
If, for example, you suspect a quadratic relationship, start by writing this as 2y ax bx c= + + . If 
we again assume the absurd possibility that all the data fits this quadratic perfectly, we get the 
system of linear equations: 

2 2
1 1 1 1 1 1
2 2

22 2 2 2 2

2 2

1
1

1 NN N N N N

ax bx c y x x ya yax bx c y x x b
c yax bx c y x x

   + + =  
       + + =   ⇒ = ⇒ =             + + =      

Ac y


   

 

Once again, we solve the normal equation T T=A Ac A y  to get the least-squares approximate 
solution. This gives the system of equations: 

4 3 2 2

1 1 1 1

3 2

1 1 1 1

2

1 1 1

N N N N

i i i i i
i i i i
N N N N

i i i i i
i i i i
N N N

i i i
i i i

x x x x y
a

x x x b x y
c

x x N y

= = = =

= = = =

= = =

   
   
    
     =    

    
   
      

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑

 which we then solve to find the coefficients , ,a b c . 
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Example: Given the 5 data points {(1,1),(2,1),(3,1),(4,3),(5,5)} find (a) the line that best fits 
this data and (b) the quadratic that best fits this data. 

Solution: (a) It’s easiest to assemble the necessary information in a table (or spreadsheet): 

 x  y  2x  xy  
 1 1 1 1 
 2 1 4 2 
 3 1 9 3 
 4 3 16 12 
 5 5 25 25 
Σ  15 11 55 43 

If the line we seek has equation y mx b= + , the resulting normal equation is: 

55 15 43
15 5 11

m
b

     
=     

     
. 

We can easily solve this via row reduction or matrix inversion to get 1m = , .8b = − . So the 
line that best fits this data has equation .8y x= − . 
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(b) For the best-fitting quadratic we seek a parabola with equation 2y ax bx c= + + . It’s helpful 
to expand the previous table to get: 

 x  y  2x  xy  3x  4x  2x y  
 1 1 1 1 1 1 1 
 2 1 4 2 8 16 4 
 3 1 9 3 27 81 9 
 4 3 16 12 64 256 48 
 5 5 25 25 125 625 125 
Σ  15 11 55 43 225 979 187 

As previously described, the resulting normal equation becomes 
979 225 55 187
225 55 15 43
55 15 5 11

a
b
c

     
     =
     
     

. 

Solving this with matrix inversion gives 
5 30 35 187 301 130 187 231 43 110

70 7035 231 322 11 154

a
b
c

−       
       = − − = −
       −       

. So 

3 11 11
7 7 5, ,a b c= = − =  and the best-fitting quadratic has equation 23 11 11

7 7 5y x x= − + . 
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More general least-squares methods 
If a scatterplot suggests a relationship of the form py ax=  for some unknowns a and p, we can 
use logs to rewrite this as ln ln lny a p x= + . If we let lnY y= , lnA a= , and lnX x= , the 
relationship is then Y A pX= +  and we can use least-squares with the adjusted data to find A 
and p, and then exponentiate to find a and p. 

These same methods work if we have data in the form { } 1
( , , ) N

i i i i
x y z

=
 and we’re seeking the 

plane of best fit, or if we are trying to find the constants that provide a best fit for a relationship 
such as p qz ax y=  (in which case we would first take the log of both sides to get a relationship 
that yields a system of linear equations. 

 
Notes by Robert Winters 


