Math S-21b - Lecture \#9 Notes

The main topics in this lecture are orthogonal projection, the Gram-Schmidt orthogonalization process, QR factorization, isometries and orthogonal transformations, least-squares approximate solutions and applications to data-fitting.

Some previous results:

1) Suppose $V=\operatorname{Span}\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}$. Let $\mathbf{A}=\left[\begin{array}{ccc}\uparrow & & \uparrow \\ \mathbf{v}_{1} & \cdots & \mathbf{v}_{k} \\ \downarrow & & \downarrow\end{array}\right]$. This is an $n \times k$ matrix with
$V=\operatorname{im}(\mathbf{A})$ and $V^{\perp}=(\operatorname{im} \mathbf{A})^{\perp}=\operatorname{ker}\left(\mathbf{A}^{\mathrm{T}}\right)$.
2) Suppose $\mathscr{B}=\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right\}$ is an orthonormal (ON) basis for a subspace $V \subseteq \mathbf{R}^{n}$. Then for any $\mathbf{x} \in \mathbf{R}^{n}, \operatorname{Proj}_{V} \mathbf{x}=\left(\mathbf{x} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{x} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}+\cdots+\left(\mathbf{x} \cdot \mathbf{u}_{k}\right) \mathbf{u}_{k}$. If we write $\mathbf{B}=\left[\begin{array}{ccc}\uparrow & & \uparrow \\ \mathbf{u}_{1} & \cdots & \mathbf{u}_{k} \\ \downarrow & & \downarrow\end{array}\right]$, then $\operatorname{Proj}_{V}=\mathbf{B B}^{\mathrm{T}}$ is the matrix for orthogonal projection onto V, and $\operatorname{Ref}_{V}=2 \mathbf{B B}^{T}-\mathbf{I}$ is the matrix for reflection through this subspace.
3) If $V=\mathbf{R}^{n}$ and $\mathscr{B}=\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ is an orthonormal basis for all of \mathbf{R}^{n}, then $\mathbf{B}=\left[\begin{array}{ccc}\uparrow & & \uparrow \\ \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \\ \downarrow & & \downarrow\end{array}\right]$ will be an $n \times n$ matrix with ON columns (hence invertible), and $\operatorname{Proj}_{V}=\mathbf{B B}^{\mathrm{T}}=\mathbf{I}$. Therefore in this special case we'll have $\mathbf{B}^{-1}=\mathbf{B}^{\mathrm{T}}$. Such a matrix is called an orthogonal matrix.
4) If $\mathbf{B}=\left[\begin{array}{ccc}\uparrow & & \uparrow \\ \mathbf{u}_{1} & \cdots & \mathbf{u}_{k} \\ \downarrow & & \downarrow\end{array}\right]$ is any $n \times k$ matrix with orthonormal columns, then $\mathbf{B}^{\mathrm{T}} \mathbf{B}=\mathbf{I}_{k}$. In the special case where \mathbf{B} is an $n \times n$ matrix with orthonormal columns, this gives $\mathbf{B}^{\mathrm{T}} \mathbf{B}=\mathbf{I}_{n}$.

Transpose Facts

The following relations hold wherever the expressions are defined:
(1) $(\mathbf{A B})^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$
(2) $(\mathbf{A}+\mathbf{B})^{\mathrm{T}}=\mathbf{A}^{\mathrm{T}}+\mathbf{B}^{\mathrm{T}}$
(3) If \mathbf{A} is an invertible $n \times n$ matrix, then \mathbf{A}^{T} is also invertible and $\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}$

The proofs are somewhat routine. For example, to establish (1), if \mathbf{A} is an $m \times n$ matrix and \mathbf{B} is a $n \times p$ matrix, then the (i, j) of $\mathbf{A B}$ will be $\sum_{k=1}^{n} a_{i k} b_{k j}$. This will then be the (j, i) entry of
$(\mathbf{A B})^{\mathrm{T}}$. On the other hand, the (j, k) entry of \mathbf{B}^{T} will be $b_{k j}$ and the (k, i) entry of \mathbf{A}^{T} will be $a_{i k}$, so the (j, i) entry of $\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$ will be $\sum_{k=1}^{n} b_{k j} a_{i k}=\sum_{k=1}^{n} a_{i k} b_{k j}$ which coincides with the (j, i) entry of $(\mathbf{A B})^{\mathrm{T}}$. Therefore $(\mathbf{A B})^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$.
Corollary: The matrix \mathbf{A} for any orthogonal projection or reflection is always symmetric, i.e. $\mathbf{A}^{\mathrm{T}}=\mathbf{A}$.
Proof: Using the previous results, any projection matrix can be expressed as $\mathbf{A}=\mathbf{B B}^{\mathrm{T}}$ and $\mathbf{A}^{\mathrm{T}}=\left(\mathbf{B B}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathbf{B} \mathbf{B}^{\mathrm{T}}=\mathbf{A}$, so the matrix is symmetric. Similarly, $\operatorname{Ref}_{V}=2 \mathbf{B B}^{\mathrm{T}}-\mathbf{I}$ and $\left(2 \mathbf{B B}^{\mathrm{T}}-\mathbf{I}\right)^{\mathrm{T}}=2\left(\mathbf{B B}^{\mathrm{T}}\right)^{\mathrm{T}}-\mathbf{I}^{\mathrm{T}}=2 \mathbf{B B}^{\mathrm{T}}-\mathbf{I}$, so this matrix is also symmetric.

Gram-Schmidt Orthogonalization Process

Suppose we begin with a basis $\mathscr{B}=\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}$ for a k-dimensional subspace $V \subseteq \mathbf{R}^{n}$. We would like to construct an orthonormal basis for this same subspace. The Gram-Schmidt orthogonalization process sequentially constructs such a basis. It should be emphasized that the resulting ON basis is very much dependent on the ordering of the original basis. We proceed as follows:
(1) Start with \mathbf{v}_{1} and normalize it by scaling, i.e. $\mathbf{u}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}$. For reasons that will soon become clear, we write $r_{11}=\left\|\mathbf{v}_{1}\right\|$. We can also solve for $\mathbf{v}_{1}=r_{11} \mathbf{u}_{1}$. Let $V_{1}=\operatorname{Span}\left\{\mathbf{v}_{1}\right\}=\operatorname{Span}\left\{\mathbf{u}_{1}\right\}$.
(2) Next, we take the second basis vector \mathbf{v}_{2}, find its projection onto the subspace V_{1}, subtract this from the original to get a vector orthogonal to the first, then scale this to get a unit vector. We can calculate the projection as $\operatorname{Proj}_{V_{1}}\left(\mathbf{v}_{2}\right)=\left(\mathbf{v}_{2} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}$, so we take $\mathbf{u}_{2}=\frac{\mathbf{v}_{2}-\operatorname{Proj}_{V_{1}}\left(\mathbf{v}_{2}\right)}{\left\|\mathbf{v}_{2}-\operatorname{Proj}_{V_{1}}\left(\mathbf{v}_{2}\right)\right\|}$. Note that $r_{22}=\left\|\mathbf{v}_{2}-\operatorname{Proj}_{V_{1}}\left(\mathbf{v}_{2}\right)\right\|$ is the perpendicular height of the parallelogram determined by the vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and the area of this parallelogram is therefore (base) $(\perp$ height $)=r_{11} r_{22}$. We can also solve for $\mathbf{v}_{2}=\left(\mathbf{v}_{2} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+r_{22} \mathbf{u}_{2}$. Let $V_{2}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.
(3) If $k>2$, we continue with the third basis vector \mathbf{v}_{3}. We find its projection onto the subspace V_{2}, subtract this from the original to get a vector orthogonal to V_{2}, then scale this to get a unit vector. We can calculate the projection as $\operatorname{Proj}_{V_{2}}\left(\mathbf{v}_{3}\right)=\left(\mathbf{v}_{3} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{v}_{3} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}$,
so we take $\mathbf{u}_{3}=\frac{\mathbf{v}_{3}-\operatorname{Proj}_{V_{2}}\left(\mathbf{v}_{3}\right)}{\left\|\mathbf{v}_{3}-\operatorname{Proj}_{V_{2}}\left(\mathbf{v}_{3}\right)\right\|}$. Note that $r_{33}=\left\|\mathbf{v}_{3}-\operatorname{Proj}_{V_{V_{2}}}\left(\mathbf{v}_{3}\right)\right\|$ is the perpendicular height of the parallelepiped determined by the vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and the volume of this parallelepiped is therefore (area of base) $(\perp$ height $)=r_{11} r_{22} r_{33}$. We can also solve for $\mathbf{v}_{3}=\left(\mathbf{v}_{3} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{v}_{3} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}+r_{33} \mathbf{u}_{3}$. Let $V_{3}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.

We continue in this same manner until we exhaust our finite list of basis vectors. The last orthonormal vector will be $\mathbf{u}_{k}=\frac{\mathbf{v}_{k}-\operatorname{Proj}_{V_{k-1}}\left(\mathbf{v}_{k}\right)}{\left\|\mathbf{v}_{k}-\operatorname{Proj}_{V_{k-1}}\left(\mathbf{v}_{k}\right)\right\|}$ and if we write $r_{k k}=\left\|\mathbf{v}_{k}-\operatorname{Proj}_{V_{k-1}}\left(\mathbf{v}_{k}\right)\right\|$ we can define the k-volume of the k-dimensional parallelepiped determined by the vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$ as $r_{11} r_{22} \cdots r_{k k}$. We can also solve for $\mathbf{v}_{k}=\left(\mathbf{v}_{k} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{v}_{k} \cdot \mathbf{u}_{k-1}\right) \mathbf{u}_{k-1}+r_{k k} \mathbf{u}_{k}$. We then have $V=\operatorname{Span}\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right\}$, and this completes the orthogonalization process.

QR factorization

If we assemble the equations from the above process as

$$
\left\{\begin{array}{l}
\mathbf{v}_{1}=r_{11} \mathbf{u}_{1} \\
\mathbf{v}_{2}=\left(\mathbf{v}_{2} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+r_{22} \mathbf{u}_{2} \\
\mathbf{v}_{3}=\left(\mathbf{v}_{3} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{v}_{3} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}+r_{33} \mathbf{u}_{3} \\
\quad \vdots \\
\mathbf{v}_{k}=\left(\mathbf{v}_{k} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{v}_{k} \cdot \mathbf{u}_{k-1}\right) \mathbf{u}_{k-1}+r_{k k} \mathbf{u}_{k}
\end{array}\right\}
$$

we can express this as a product of matrices as follows:

$$
\mathbf{A}=\underbrace{\left[\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{k} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right]}_{\substack{n \times k \text { matrix } \text { wlinearly } \\
\text { independent columns }}}=\underbrace{\left[\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{k} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right]}_{\substack{n \times k \text { matrix } \\
\text { w/orthonormal columns }}} \underbrace{\left[\begin{array}{cccc}
r_{11} & \mathbf{v}_{2} \cdot \mathbf{u}_{1} & \cdots & \mathbf{v}_{k} \cdot \mathbf{u}_{1} \\
0 & r_{22} & \cdots & \mathbf{v}_{k} \cdot \mathbf{u}_{2} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & u_{k}
\end{array}\right]}_{\substack{k \times \text { upper triangular matrix } \\
\text { with nonzero diagonal entries }}}=\mathbf{Q R}
$$

The columns of the matrix \mathbf{A} are the original basis vectors; the columns of the matrix \mathbf{Q} are those of the Gram-Schmidt basis; and the entries of the matrix \mathbf{R} capture all of the geometric aspects of the original basis, i.e. lengths, areas, etc. and the non-orthogonality of the original vectors. Note that the k-volume is just the product of the diagonal entries of \mathbf{R}, i.e. $r_{11} r_{22} \cdots r_{k k}$.

Example: In \mathbf{R}^{4}, let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]$, and $\mathbf{v}_{3}=\left[\begin{array}{c}0 \\ 2 \\ 1 \\ -1\end{array}\right]$, and let $V=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. These vector form a basis for V, but not an orthonormal basis. Using the Gram-Schmidt process, we have $r_{11}=\left\|\mathbf{v}_{1}\right\|=2$, so $\mathbf{u}_{1}=\frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$. We next calculate:

Its magnitude is $r_{22}=\left\|\mathbf{v}_{2}-\operatorname{Proj}_{V_{1}}\left(\mathbf{v}_{2}\right)\right\|=1$, so $\mathbf{u}_{2}=\frac{1}{2}\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]$.

We next calculate

$$
\mathbf{v}_{3}-\operatorname{Proj}_{V_{2}}\left(\mathbf{v}_{3}\right)=\mathbf{v}_{3}-\left(\mathbf{v}_{3} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}-\left(\mathbf{v}_{3} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}=\left[\begin{array}{c}
0 \\
2 \\
1 \\
-1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right] \text {, and }
$$

$$
r_{33}=\left\|\mathbf{v}_{3}-\operatorname{Proj}_{V_{2}}\left(\mathbf{v}_{3}\right)\right\|=1 \text {, so } \mathbf{u}_{3}=\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right] .
$$

The 3-volume of the parallelepiped determined by $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is $r_{11} r_{22} r_{33}=(2)(1)(1)=2$.
The corresponding QR-factorization is $\mathbf{A}=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & -1\end{array}\right]=\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2 & -1 / 2\end{array}\right]\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right]=\mathbf{Q R}$.

Isometries and orthogonal transformations

Given two spaces V and W where there's a notion of distance (metric spaces), an isometry is a transformation $T: V \rightarrow W$ that preserves distances. Familiar examples include rotations and reflections, but also "isometric embeddings" such as the transformation that places \mathbf{R}^{2} in \mathbf{R}^{3} as either the $x y$-plane, $x z$-plane, $y z$-plane, or any other plane such that distances are preserved. In the case of linear transformations, we are more specific:

Definition: A linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is called an orthogonal transformation if it preserves norms, i.e. $\|T(\mathbf{x})\|=\|\mathbf{x}\|$ for all \mathbf{x}. Its matrix is called an orthogonal matrix.
Proposition: If a linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ preserves norm, then $\operatorname{ker}(T)=\{\mathbf{0}\}$.
Proof: If $T(\mathbf{x})=\mathbf{0}$, then $\|T(\mathbf{x})\|=\|\mathbf{x}\|=\|\mathbf{0}\|=0$, so $\mathbf{x}=\mathbf{0}$.
Corollary: If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is an orthogonal transformation, it must be invertible.
Proposition: If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is an orthogonal transformation, then T preserves dot products: $T(\mathbf{x}) \cdot T(\mathbf{y})=\mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}$.
Proof: By linearity, $T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y})$, so $\|T(\mathbf{x}+\mathbf{y})\|=\|T(\mathbf{x})+T(\mathbf{y})\|$ and $\|T(\mathbf{x}+\mathbf{y})\|^{2}=\|T(\mathbf{x})+T(\mathbf{y})\|^{2}$. Since T is an orthogonal transformation, $\|T(\mathbf{x}+\mathbf{y})\|^{2}=\|\mathbf{x}+\mathbf{y}\|^{2}=(\mathbf{x}+\mathbf{y}) \cdot(\mathbf{x}+\mathbf{y})=\mathbf{x} \cdot \mathbf{x}+\mathbf{x} \cdot \mathbf{y}+\mathbf{y} \cdot \mathbf{x}+\mathbf{y} \cdot \mathbf{y}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+2 \mathbf{x} \cdot \mathbf{y}$. Similarly, $\|T(\mathbf{x})+T(\mathbf{y})\|^{2}=\|T(\mathbf{x})\|^{2}+\|T(\mathbf{y})\|^{2}+2 T(\mathbf{x}) \cdot T(\mathbf{y})=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+2 T(\mathbf{x}) \cdot T(\mathbf{y})$. Comparing both sides we see that $T(\mathbf{x}) \cdot T(\mathbf{y})=\mathbf{x} \cdot \mathbf{y}$.

Proposition: If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is an orthogonal transformation, then T preserves angles. That is, if θ_{1} is the angle between two nonzero vectors \mathbf{x} and \mathbf{y}, and if θ_{2} is the angle between $T(\mathbf{x})$ and $T(\mathbf{y})$, then $\theta_{2}= \pm \theta_{1}$.

Proof: We know that $\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta_{1}$ and $T(\mathbf{x}) \cdot T(\mathbf{y})=\|T(\mathbf{x})\|\|T(\mathbf{y})\| \cos \theta_{2}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta_{2}$, and $T(\mathbf{x}) \cdot T(\mathbf{y})=\mathbf{x} \cdot \mathbf{y}$. Therefore $\cos \theta_{1}=\cos \theta_{2}$, so $\theta_{2}= \pm \theta_{1}$.

Matrix of an orthogonal transformation

Because the standard basis $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is an orthonormal basis of \mathbf{R}^{n} and since orthogonal transformations preserve length and angle, it follows that $\left\{T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right), \ldots, T\left(\mathbf{e}_{n}\right)\right\}$ must also be an orthonormal basis of \mathbf{R}^{n}. This includes rotations and reflections. The matrix of an orthogonal transformation must therefore be

$$
\mathbf{A}=\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
{\left[T\left(\mathbf{e}_{1}\right)\right]_{\varepsilon}} & \cdots & {\left[T\left(\mathbf{e}_{n}\right)\right]_{\varepsilon}} \\
\downarrow & & \downarrow
\end{array}\right]=\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
\mathbf{A} \mathbf{e}_{1} & \cdots & \mathbf{A \mathbf { e } _ { n }} \\
\downarrow & & \downarrow
\end{array}\right]=\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
\mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \\
\downarrow & & \downarrow
\end{array}\right] \text {, i.e. it must have orthonormal }
$$

columns. It must also be the case that

$$
\mathbf{A}^{\mathrm{T}} \mathbf{A}=\left[\begin{array}{cc}
\leftarrow & \mathbf{u}_{1} \\
\vdots & \rightarrow \\
\leftarrow & \mathbf{u}_{n}
\end{array} \rightarrow\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
\mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \\
\downarrow & & \downarrow
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{u}_{1} \cdot \mathbf{u}_{1} & \cdots & \mathbf{u}_{1} \cdot \mathbf{u}_{n} \\
\vdots & \ddots & \vdots \\
\mathbf{u}_{n} \cdot \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \cdot \mathbf{u}_{n}
\end{array}\right]=\left[\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right]=\mathbf{I}_{n}\right. \text {, so an orthogonal }
$$

matrix has the special property that $\mathbf{A}^{\mathrm{T}}=\mathbf{A}^{-1}$, and any matrix that satisfies this property must be the matrix of an orthogonal transformation. Geometrically, these are all (compositions of) rotations and reflections.

Least-Squares approximate solutions

Situation: We would like to solve a linear system $\mathbf{A x}=\mathbf{b}$ where \mathbf{A} is an $m \times n$ matrix, but we find that the system is inconsistent. This means that $\mathbf{b} \notin \operatorname{im} \mathbf{A}$, but this suggests the possibility that we might seek a vector \mathbf{x}^{*} such that $\mathbf{A} \mathbf{x}^{*}$ is as close to the subspace im \mathbf{A} as possible. Orthogonal projection is a natural choice, so we seek \mathbf{x}^{*} such that $\mathbf{A \mathbf { x } ^ { * }}=\operatorname{Proj}_{V} \mathbf{b}$ where $V=i m \mathbf{A}$. This means that we want $\mathbf{b}-\mathbf{A x}^{*} \in(\operatorname{im} \mathbf{A})^{\perp}=V^{\perp}$. We have already shown that $(\operatorname{im} \mathbf{A})^{\perp}=\operatorname{ker}\left(\mathbf{A}^{\mathrm{T}}\right)$, so we want $\mathbf{b}-\mathbf{A} \mathbf{x}^{*} \in \operatorname{ker}\left(\mathbf{A}^{\mathrm{T}}\right)$, i.e. $\mathbf{A}^{\mathrm{T}}\left(\mathbf{b}-\mathbf{A} \mathbf{x}^{*}\right)=\mathbf{0}$ or $\mathbf{A}^{\mathrm{T} \mathbf{A}} \mathbf{x}^{*}=\mathbf{A}^{\mathrm{T}} \mathbf{b}$.
This is known as the normal equation (or normal equations). A solution \mathbf{x}^{*} is called a leastsquares approximate solution.
The name "least-squares solution" comes from an alternate way that it can be derived using multivariable calculus methods in the special case where we're trying to find the line that best fits a given data set. That method involves minimizing the sum of the square deviations between values predicted by a best-fit line (also called a regression line) and actual values provided by the data set.

The normal equation is easy to remember. If the original system is $\mathbf{A x}=\mathbf{b}$, then you just have to apply the matrix \mathbf{A}^{T} to both sides of the equation to get $\mathbf{A}^{\mathrm{T}} \mathbf{A x}=\mathbf{A}^{\mathrm{T}} \mathbf{b}$. This system will always be consistent. If \mathbf{A} is an $m \times n$ matrix, then $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ will be an $n \times n$ (square) matrix. It will also be symmetric since $\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{T}}=\mathbf{A}^{\mathrm{T}} \mathbf{A}$.

In the case where $\operatorname{ker}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)=\{\mathbf{0}\}$, the matrix $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ will be invertible and there will be a unique least-squares solution $\mathbf{x}^{*}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b}$. Many students memorize this formula and apply it blindly, but it is often simplest to solve the consistent system $\mathbf{A}^{\mathrm{T}} \mathbf{A x}=\mathbf{A}^{\mathrm{T}} \mathbf{b}$ using row reduction to find the least-squares solution.
There is a simple way to determine when the normal equation will yield a unique least-squares solution. This is based on the following lemma:

Lemma: For any matrix \mathbf{A}, it is the case that $\operatorname{ker}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)=\operatorname{ker} \mathbf{A}$.
Proof: If $\mathbf{x} \in \operatorname{ker} \mathbf{A}$, then $\mathbf{A x}=\mathbf{0}$. So $\mathbf{A}^{\mathrm{T}} \mathbf{A x}=\mathbf{A}^{\mathrm{T}} \mathbf{0}=\mathbf{0}$ which means that $\mathbf{x} \in \operatorname{ker}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)$. So $\operatorname{ker} \mathbf{A} \subseteq \operatorname{ker}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)$. On the other hand, if $\mathbf{x} \in \operatorname{ker}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)$, then $\mathbf{A}^{\mathrm{T}} \mathbf{A x}=\mathbf{0}$. But this means that $\mathbf{A x} \in \operatorname{ker}\left(\mathbf{A}^{\mathrm{T}}\right)=(\mathrm{im} \mathbf{A})^{\perp}$. But it's obvious that $\mathbf{A x} \in \operatorname{im} \mathbf{A}$, so we have $\mathbf{A x} \in(\operatorname{im} \mathbf{A})^{\perp} \cap(\operatorname{im} \mathbf{A})=\{\mathbf{0}\}$. Therefore $\mathbf{A x}=\mathbf{0}$, and therefore $\mathbf{x} \in \operatorname{ker} \mathbf{A}$. So $\operatorname{ker}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right) \subseteq \operatorname{ker} \mathbf{A}$. Therefore $\operatorname{ker}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)=\operatorname{ker} \mathbf{A}$.

We also know that for any matrix $\mathbf{A}, \operatorname{ker} \mathbf{A}=\{\mathbf{0}\}$ if and only if the columns of \mathbf{A} are linearly independent. If we combine this fact and the previous results, we see that the matrix $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ will be invertible and there will be a unique least-squares approximate solution to $\mathbf{A x}=\mathbf{b}$ if and only if the columns of \mathbf{A} are linearly independent.

There's an unexpected benefit provided by the least-squares solution. If V is any subspace with basis $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}$, if we let $\mathbf{A}=\left[\begin{array}{ccc}\uparrow & & \uparrow \\ \mathbf{v}_{1} & \cdots & \mathbf{v}_{k} \\ \downarrow & & \downarrow\end{array}\right]$, then $V=\operatorname{im} \mathbf{A}$ and \mathbf{A} will have linearly independent columns. So for any $\mathbf{b} \in \mathbf{R}^{n}, \operatorname{Proj}_{V} \mathbf{b}=\mathbf{A x}=\mathbf{A}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b}$. Therefore $\mathbf{A}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}}$ will be the matrix for orthogonal projection onto the subspace V. This is significant in that our previous method required the use of the Gram-Schmidt process to produce an orthonormal basis for the subspace V. This alternative method only requires that $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}$ be a basis. It is perhaps worth noting that if $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}$ had been an orthonormal basis, then we would have $\mathbf{A}^{\mathrm{T}} \mathbf{A}=\mathbf{I}_{k}$ and $\mathbf{A}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}}=\mathbf{A I} \mathbf{A}^{\mathrm{T}}=\mathbf{A} \mathbf{A}^{\mathrm{T}}$ which coincides with our previous method.

Data fitting

It is common that data occurs in the form of ordered pairs (or ordered n-tuples). If we plot the data, the resulting graph is called a scatterplot. If the scatterplot suggests a roughly straight-line relationship, it is reasonable to ask which straight line might best fit the given data.

Suppose the data is $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$. We can use our least-squares method by assuming the absurd, namely that all of the data fits a straight with equation $y=m x+b$ perfectly. If this is the case, then we get the system of linear equations:

$$
\left\{\begin{array}{c}
m x_{1}+b=y_{1} \\
m x_{2}+b=y_{2} \\
\vdots \\
m x_{N}+b=y_{N}
\end{array}\right\} \Rightarrow\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{N} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right] \Rightarrow \mathbf{A c}=\mathbf{y}
$$

This is, of course, a hopelessly inconsistent linear system, but we can find a least-squares approximate solution by solving $\mathbf{A}^{\mathrm{T}} \mathbf{A c}=\mathbf{A}^{\mathrm{T}} \mathbf{y}$. We can calculate
$\mathbf{A}^{\mathrm{T}} \mathbf{A}=\left[\begin{array}{cccc}x_{1} & x_{2} & \cdots & x_{N} \\ 1 & 1 & \cdots & 1\end{array}\right]\left[\begin{array}{cc}x_{1} & 1 \\ x_{2} & 1 \\ \vdots & \vdots \\ x_{N} & 1\end{array}\right]=\left[\begin{array}{cc}\sum_{i=1}^{N} x_{i}^{2} & \sum_{i=1}^{N} x_{i} \\ \sum_{i=1}^{N} x_{i} & N\end{array}\right]$ and $\mathbf{A}^{\mathrm{T}} \mathbf{y}=\left[\begin{array}{cccc}x_{1} & x_{2} & \cdots & x_{N} \\ 1 & 1 & \cdots & 1\end{array}\right]\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{N}\end{array}\right]=\left[\begin{array}{c}\sum_{i=1}^{N} x_{i} y_{i} \\ \sum_{i=1}^{N} y_{i}\end{array}\right]$,
so the normal equations are $\left[\begin{array}{cc}\sum_{i=1}^{N} x_{i}^{2} & \sum_{i=1}^{N} x_{i} \\ \sum_{i=1}^{N} x_{i} & N\end{array}\right]\left[\begin{array}{c}m \\ b\end{array}\right]=\left[\begin{array}{c}\sum_{i=1}^{N} x_{i} y_{i} \\ \sum_{i=1}^{N} y_{i}\end{array}\right]$. These can then be easily solved to
find the slope m and the intercept b for the line of best fit.

Best quadratic?

It may be the case that the scatterplot suggests something other than a straight line relationship. If, for example, you suspect a quadratic relationship, start by writing this as $y=a x^{2}+b x+c$. If we again assume the absurd possibility that all the data fits this quadratic perfectly, we get the system of linear equations:

$$
\left\{\begin{array}{c}
a x_{1}^{2}+b x_{1}+c=y_{1} \\
a x_{2}{ }^{2}+b x_{2}+c=y_{2} \\
\vdots \\
a x_{N}{ }^{2}+b x_{N}+c=y_{N}
\end{array}\right\} \Rightarrow\left[\begin{array}{ccc}
x_{1}{ }^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
\vdots & \vdots & \vdots \\
x_{N}{ }^{2} & x_{N} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right] \Rightarrow \mathbf{A c}=\mathbf{y}
$$

Once again, we solve the normal equation $\mathbf{A}^{\mathrm{T}} \mathbf{A c}=\mathbf{A}^{\mathrm{T}} \mathbf{y}$ to get the least-squares approximate solution. This gives the system of equations:
$\left[\begin{array}{lll}\sum_{i=1}^{N} x_{i}^{4} & \sum_{i=1}^{N} x_{i}{ }^{3} & \sum_{i=1}^{N} x_{i}^{2} \\ \sum_{i=1}^{N} x_{i}^{3} & \sum_{i=1}^{N} x_{i}{ }^{2} & \sum_{i=1}^{N} x_{i} \\ \sum_{i=1}^{N} x_{i}^{2} & \sum_{i=1}^{N} x_{i} & N\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}\sum_{i=1}^{N} x_{i}{ }^{2} y_{i} \\ \sum_{i=1}^{N} x_{i} y_{i} \\ \sum_{i=1}^{N} y_{i}\end{array}\right]$ which we then solve to find the coefficients a, b, c.

Example: Given the 5 data points $\{(1,1),(2,1),(3,1),(4,3),(5,5)\}$ find (a) the line that best fits this data and (b) the quadratic that best fits this data.

Solution: (a) It's easiest to assemble the necessary information in a table (or spreadsheet):

	x	y	x^{2}	$x y$
	1	1	1	1
	2	1	4	2
	3	1	9	3
	4	3	16	12
	5	5	25	25
Σ	15	11	55	43

If the line we seek has equation $y=m x+b$, the resulting normal equation is:

$$
\left[\begin{array}{cc}
55 & 15 \\
15 & 5
\end{array}\right]\left[\begin{array}{l}
m \\
b
\end{array}\right]=\left[\begin{array}{l}
43 \\
11
\end{array}\right]
$$

We can easily solve this via row reduction or matrix inversion to get $m=1, b=-.8$. So the line that best fits this data has equation $y=x-.8$.
(b) For the best-fitting quadratic we seek a parabola with equation $y=a x^{2}+b x+c$. It's helpful to expand the previous table to get:

	x	y	x^{2}	$x y$	x^{3}	x^{4}	$x^{2} y$
	1	1	1	1	1	1	1
	2	1	4	2	8	16	4
	3	1	9	3	27	81	9
	4	3	16	12	64	256	48
	5	5	25	25	125	625	125
Σ	15	11	55	43	225	979	187

As previously described, the resulting normal equation becomes $\left[\begin{array}{ccc}979 & 225 & 55 \\ 225 & 55 & 15 \\ 55 & 15 & 5\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}187 \\ 43 \\ 11\end{array}\right]$.
Solving this with matrix inversion gives $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\frac{1}{70}\left[\begin{array}{ccc}5 & -30 & 35 \\ -30 & 187 & -231 \\ 35 & -231 & 322\end{array}\right]\left[\begin{array}{c}187 \\ 43 \\ 11\end{array}\right]=\frac{1}{70}\left[\begin{array}{c}30 \\ -110 \\ 154\end{array}\right]$. So $a=\frac{3}{7}, b=-\frac{11}{7}, c=\frac{11}{5}$ and the best-fitting quadratic has equation $y=\frac{3}{7} x^{2}-\frac{11}{7} x+\frac{11}{5}$.

More general least-squares methods

If a scatterplot suggests a relationship of the form $y=a x^{p}$ for some unknowns a and p, we can use logs to rewrite this as $\ln y=\ln a+p \ln x$. If we let $Y=\ln y, A=\ln a$, and $X=\ln x$, the relationship is then $Y=A+p X$ and we can use least-squares with the adjusted data to find A and p, and then exponentiate to find a and p.

These same methods work if we have data in the form $\left\{\left(x_{i}, y_{i}, z_{i}\right)\right\}_{i=1}^{N}$ and we're seeking the plane of best fit, or if we are trying to find the constants that provide a best fit for a relationship such as $z=a x^{p} y^{q}$ (in which case we would first take the \log of both sides to get a relationship that yields a system of linear equations.

