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Math S-21b – Lecture #7-8 Notes 
We now take up in greater detail the ideas of inner products and orthogonality beyond the 
more basic constructions introduced earlier in the course. It should be noted that most of what 
we did in Rn and everything we’ve done so far with general vector spaces was based only on 
the ability to add and scale elements. The structure necessary to measure lengths and angles is a 
very useful additional structure. We’ll look at the basic properties of inner products, derive 
some algebraic facts, and define and focus on orthonormal bases and their advantages. 
Among these advantages are the simplicity of determining coordinates and producing the 
matrix for orthogonal projection. We’ll also define the orthogonal complement of a 
subspace and give a very simple method for finding it. 

Inner products and inner product spaces 
Definition: An inner product in a linear space V is a rule that assigns a scalar (denoted by 

,f g ) to any pair ,f g  of elements of V, such that the following properties hold for all 
, ,f g h V∈ , and all scalars c: 

a.  , ,f g g f=    (symmetry) c.  , ,cf g c f g=  

b.  , , ,f g h f g f h+ = +  and 

, , ,f g h f h g h+ = +  
(left and right distributive laws) 

d.  2, 0f f f= ≥  for all f V∈ , 

and , 0f f =  only if f is the zero 
element.   (positive definiteness) 
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A linear space endowed with an inner product is called an inner product space. Because the 
last property enables us to define the norm (or magnitude) f  of any element, this is also 
sometimes referred to as a normed linear space. 
Examples 
I. We will primarily focus on the dot product in nR , i.e. 1 1 2 2, n nx y x y x y= ⋅ = + + +x y x y  . 

This makes nR  not only a vector space but also an inner product space because the dot 
product enables us to define the length or norm of any vector as ,=x x x ). We have 

previous shown (using the Law of Cosines) that cosθ⋅ =x y x y  for any two vectors. 

[This is also consistent with the Cauchy-Schwarz inequality which states that 
⋅ ≤x y x y . (See text for proof.)] It should be noted that this is used to define angles in 

nR  and thus enables us to talk about orthogonality of vectors even in spaces that we cannot 
fully visualize. We can define acute angles and obtuse angles, but perhaps most valuable is 
the ability to say that two nonzero vector are orthogonal (or perpendicular) if and only if 
their dot product is zero. The inner product properties are easy to verify: 
a.  ⋅ = ⋅x y y x  
b.  ( )⋅ + = ⋅ + ⋅x y z x y x z  and 

( )+ ⋅ = ⋅ + ⋅x y z x z y z  

c.  ( ) ( ) ( )c c c⋅ = ⋅ = ⋅x y x y x y  

d.  2 0⋅ = ≥x x x  for all n∈x R , and 
2 0⋅ = =x x x  only if 0=x . 
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It’s an interesting fact that not only can we define length in terms of the dot product, we can 
also express the dot product in terms of length. Specifically: 

( )

2 2 2
2 2

2 2 2

2 21
4

( ) ( ) 2
4

( ) ( ) 2
+ = + ⋅ + = + + ⋅

⇒ + − − = ⋅
− = − ⋅ − = + − ⋅

⇒ ⋅ = + − −

x y x y x y x y x y
x y x y x y

x y x y x y x y x y

x y x y x y

 

II. In the linear space m n×R  consisting of all m n×  matrices with real entries, we can define 
T, trace( )=A B A B  where the trace is the sum of the diagonal entries of the n n×  matrix 

TA B . It’s not difficult to verify the four axioms for an inner product. One interesting aspect 
of this inner product is that it enables us to define a norm on the space of m n×  matrices, i.e. 

2 T, trace( )= =A A A A A . If we express 1 n

 ↑ ↑
 =
 
↓ ↓  

A v v , a quick calculation shows 

that 2 2 2
1 n= + +A v v . 
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III. Arguably the most useful inner products are those defined for various spaces of functions. 
If you think of the components of a vector as values of a function, i.e. 

1, , (1), , ( )nx x x x n= =x   , then the dot product is just the (finite, discrete) sum of the 
product of the respective values. If we have a real-valued function defined at all points in 
some interval [ , ]a b , then we might use integration as the analogous summation and define 

, ( ) ( )
b

a
f g f x g x dx= ∫ . This integral may not be defined for all functions, so we may have 

to restrict the class of function for which this inner product is defined. Common choices are 
to restrict to continuous functions or piecewise-continuous functions. We can easily establish 
the first three axioms for an inner product space. The fourth axiom follows in the case of 
continuous functions but requires some additional interpretation in the case of more general 
functions. An inner product in a linear space of functions enables us to define orthogonal 
functions and the norm of a function. We can also think of the “distance between two 
functions” as f g−  where 2 2[ ( ) ( )]

b

a
f g f x g x dx− = −∫ . We can also modify the inner 

product by scaling by a factor matched to the width of the interval [ , ]a b  and still satisfy all 
the necessary axioms. For example, when considering piecewise-continuous functions 
defined on the interval [ , ]π π− , one good choice is to define 1, ( ) ( )f g f x g x dx

π

ππ −
= ∫ . This 

choice is the foundation for understanding Fourier Series based on the orthogonality of 
trigonometric functions with respect to this inner product. 
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Back to nR : 
Definition: A collection of vectors { }1 2, , , mu u u  is called orthonormal if it consists of 

mutually orthogonal unit vectors. That is, 1 if 
0 if i j

i j
i j
= ⋅ =  ≠ 

u u . 

Example: The standard basis { }1 2, , , n= e e eE   for nR  is orthonormal. Any subset of this is 
also orthonormal. 

Proposition: Orthonormal vectors are always linearly independent. 
Proof: Let { }1 2, , , mu u u  be orthonormal and suppose that 1 1 2 2 m mc c c+ + + =u u u 0 . Then 

for any k we have: 
( ) ( )1 1 2 2 0 0 for all k m m k k k k kc c c c c k⋅ + + + = ⋅ = ⇒ ⋅ = =u u u u u 0 u u . 

So the vectors { }1 2, , , mu u u  are linearly independent. 

Corollary: If { }1 2, , , nu u u  are orthonormal in nR , then they form an orthonormal basis for 
nR . 

An orthonormal basis (for either a subspace or all of nR ) is advantageous in several ways. In 
particular, such a basis makes the calculation of coordinates relative to an orthonormal basis 
simple, and it provides a simple way to define and calculate the orthogonal projection of a 
vector onto a subspace. This begins with the definition of the orthogonal complement of a 
subspace. 
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Definition: If nV ⊆ R  is a subspace, its orthogonal complement is 
{ : 0 for all }nV V⊥ = ∈ ⋅ = ∈x R x v v . This is also a subspace (with complementary 

dimension). In words, the orthogonal complement of a subspace consists of all vectors that 
are orthogonal to (every vector in) this subspace. 

Finding V ⊥ : Suppose { }1Span , , kV = v v . Ideally this should be a basis for V, but this is not 

essential. If we let 1 k

 ↑ ↑
 =
 
↓ ↓  

A v v , then A will be an n k×  matrix with im( )V = A  and 

rank( ) dim( )V=A . The transpose of A is defined to be the k n×  matrix whose rows are the 

columns of A, i.e. 
1

T

k

← → 
 =
 ← → 

v
A

v
 . Note that: 

1 1
T T

0 0
ker

0 0k k

V ⊥
 ⋅ = ← → ↑           ∈ ⇔ ⇔ = = ⇔ = ⇔ ∈       ⋅ = ← → ↓       

v x v
x x 0 A x 0 x A

v x v
    

So Tker( )V ⊥∈ ⇔ ∈x x A . This argument also establishes the fact that T(im ) ker( )⊥ =A A  
for any matrix A. 
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Definition: Given a subspace nV ⊆ R , the orthogonal projection of a vector x onto this 
subspace is the unique vector ProjV x  such that ProjV V ⊥− ∈x x . (Drawing a picture helps 
here.) 

Why should such a vector be unique? How do we know that this is well-defined? If we have an 
orthonormal basis for the subspace V, this follows from the next proposition. 

Proposition: Suppose { }1, , k= u uB   is an orthonormal (ON) basis for a subspace nV ⊆ R . 

Then for any n∈x R , 1 1 2 2Proj ( ) ( ) ( )V k k= ⋅ + ⋅ + + ⋅x x u u x u u x u u . That is, the coordinates 
of the projection are just the scalar projections of x in the direction of the respective unit 
vectors of the ON basis. 

Proof: Suppose 1 1 2 2ProjV k kc c c= + + +x u u u . By definition, 

1 1 2 2ProjV k kc c c V ⊥− = − − − − ∈x x x u u u . Therefore, for all i, 

1 1 2 2( ) 0i k k i ic c c c⋅ − − − − = ⋅ − =u x u u u u x . So i i ic = ⋅ = ⋅u x x u  for all i. This not only 
gives us the formula as stated in the proposition, the fact that coordinates relative to a basis 
are unique establishes the uniqueness of the projection. 

It is important, however, to note that this demonstration was based on the existence of an ON 
basis for any subspace. We’ll soon see a method for constructing such a basis out of any 
given basis. 



 8 

Formula for the matrix of orthogonal projection 
It’s not obvious, but the formula 1 1 2 2Proj ( ) ( ) ( )V k k= ⋅ + ⋅ + + ⋅x x u u x u u x u u  enables us to 
find the matrix for orthogonal projection onto any subspace nV ⊆ R  with ON basis 

{ }1, , k= u uB  . We write: 

1

1 1 1

1
T

1

Proj ( ) ( )V k k k

k

k

k

 ↑ ↑ ⋅ 
   = ⋅ + + ⋅ =
   ⋅↓ ↓    

   ↑ ↑ ← → ↑ 
    = =
    ← →↓ ↓ ↓       

u x
x x u u x u u u u

u x

u
u u x BB x

u

  

 

 

where B is the n k×  matrix with ON columns given by the ON basis. So T=A BB  is the 
matrix for ProjV . 

Corollary: The matrix for reflection through the subspace V is given by T2 −BB I . 

Proof: We have already seen (and a picture makes clear) that if ProjV=p x , then 
T TRef 2( ) 2 2 (2 )V = + − = − = − = −x x p x p x BB x x BB I x , so TRef 2V = −BB I . 
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Example: Let L be the line in 3R  spanned by the vector 
1
2
2

 
=  
 − 

v . If we normalize this, then 

1
3

1
2
2

 
=  

 − 
u  provides an ON basis for this line (subspace). We have 

[ ]T T 1 1
9 9

1 1 2 2
Proj 2 1 2 2 2 4 4

2 2 4 4
V

−   
= = = − = −   

   − − −   
BB uu  and 

T 2 1
9 9

1 2 2 1 0 0 7 4 4
Ref 2 2 4 4 0 1 0 4 1 8

2 4 4 0 0 1 4 8 1
V

− − −     
     = − = − − = − −
     − − − − −     

BB I . 

We can easily construct an orthonormal basis for the plane S L⊥= , namely 

1 1
2 18

0 4
1 , 1
1 1

     = −    
        

B . 
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If we write 
0 4 18

1 2 1 18
1 2 1 18

 
 

= − 
 
 

B , then: 

T

1
9

0 4 18
0 1 2 1 2Proj 1 2 1 18

4 18 1 18 1 181 2 1 18

8 9 2 9 2 9 8 2 2
2 9 5 9 4 9 2 5 4

2 9 4 9 5 9 2 4 5

S

 
  

= = −    −  
 
− −   

   = − = −
   
   

BB

. 

T 2 1
9 9

8 2 2 1 0 0 7 4 4
Ref 2 2 5 4 0 1 0 4 1 8

2 4 5 0 0 1 4 8 1
S

− −     
     = − = − − = −
     
     

BB I . 
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Special Case: If nV = R  and { }1, , n= u uB   is an orthonormal basis for all of nR , then 

Proj IdentityV =  and 1 n

 ↑ ↑
 =
 
↓ ↓  

B u u  will be an n n×  matrix with ON columns (hence 

invertible), and TProjV = =BB I . Therefore in this special case we’ll have 1 T− =B B . Such a 
matrix is called an orthogonal matrix. We’ll take a different approach to this in the next 
lecture when we discuss isometries and orthogonal transformations. 

Note: If 1 k

 ↑ ↑
 =
 
↓ ↓  

B u u  is any n k×  matrix with orthonormal columns, it’s easy to calculate 

that 
1 1 1 1

T
1

1

1 0

0 1

k

k k

k k k k

 ← → ↑ ↑ ⋅ ⋅     
      = = = =
      ← → ⋅ ⋅↓ ↓       

u u u u u
B B u u I

u u u u u

 

   B   B 

 

. 

In the special case where B is an n n×  matrix with orthonormal columns, this gives T
n=B B I . 

 
Notes by Robert Winters 


