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Math S-21b – Lecture #5 Notes 
Today’s main topics are coordinates of a vector relative to a basis for a subspace and, once 
we understand coordinates, the matrix of a linear transformation relative to a basis. 

Coordinates relative to a basis 
Perhaps the single most important thing about having a basis for a subspace is that there is only 
one way to express any vector in the subspace in terms of the given basis. This brings us to the 
definition of coordinates. But first, we have to prove the following proposition: 

Proposition: Suppose nV ⊆ R  is a subspace (which could be all of nR  or any proper subspace) 
and let { }1 2, , , k= v v vB  be a basis for V (hence dim( )V k= ). Then any vector V∈x  can be 

uniquely expressed as 1 1 2 2 k kc c c= + + +x v v v  for some scalars { }1, , kc c . The scalars are 

called the coordinates of x relative to the basis { }1 2, , , k= v v vB . 

In terms of matrices, we have [ ]
1

1 k

k

c

c

 ↑ ↑  
   = =
   
↓ ↓    

x v v S x 

B
. This says simply that the system 

of linear equations [ ] =S x x
B

 must yield a unique solution [ ]x
B

, and we refer to this as the 
coordinate vector for x relative to the basis B . 
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Proof: Suppose there were two different ways to express a vector V∈x  in terms of the basis 
{ }1 2, , , k= v v vB . We could then write 1 1 2 2 1 1 2 2k k k kc c c d d d= + + + = + + +x v v v v v v  . 

But we can then transpose to rewrite this as 1 1 1 2 2 2( ) ( ) ( )k k kc d c d c d− + − + + − =v v v 0 . 
Because { }1 2, , , k= v v vB  is a basis, these vectors must be linearly independent. Therefore 

1 1 2 2( ) ( ) ( ) 0k kc d c d c d− = − = = − = , so 1 1 2 2, , , k kc d c d c d= = = . That is, there is only one 
way to express any vector in terms of a basis. 

Example 1: The plane in 3R  passing through the origin with normal vector  
1

1
4

− 
 =
 
 

n  is a subspace with { }1 2

2 1
, 2 , 1

1 0

        = = −         

v vB  as a basis. (There are infinitely 

many such choices for a basis. All you have to do is choose two nonparallel vectors in the 
plane, each of which must be perpendicular to n. The dot product of each of them with n 

must be 0.) You can easily verify that the vector 
1
7

2

 
 = −
 
 

x  is in this subspace. What are its 

coordinates relative to the basis { }1 2,= v vB , i.e. what is [ ]x
B

? 
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Solution: Our definition above tells us that [ ] =S x x
B

 where 
2 1
2 1

1 0

 
 = −
 
 

S , so we solve this 

inhomogeneous system as 
2 1 1 1 0 2
2 1 7 0 1 3

1 0 2 0 0 0

   
   − − → −
   
   

. Therefore  [ ] 2
3

 =  − 
x

B
, i.e. 

1 22 3= −x v v , and you can easily verify that this is the case. It’s worth noting that had we 
chosen V∉x , the system would have been inconsistent. 

The method described above for finding the coordinates of a vector relative to a given basis is 
completely general and should always be used in the case of proper subspaces (not the whole 
space). However, in the special case where the subspace is the whole space, i.e. nV = R  with 
basis { }1 2, , , n= v v vB , we have another method available for finding coordinates and for 
relating the coordinates. 
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Special case where nV = R  with basis { }1 2, , , n= v v vB : In this case, the “change of basis 

matrix” S is an n n×  matrix 1 n

 ↑ ↑
 =
 
↓ ↓  

S v v . Its columns are linearly independent and its rank 

is n, so it’s invertible. [Note that this would not have been meaningful for a subspace with 
dimension k n< .] So we have [ ]=x S x

B
 and [ ] 1−=x S x

B
. 

Example 2: Let 1

1
1
2

 
 =
 
 

v , 2

3
2
1

 
 =
 − 

v , and 3

2
0
1

 
 =
 
 

v . You can easily show that these three 

vectors are linearly independent and therefore form a basis { }1 2 3, ,= v v vB  for 3R . Find the 

coordinates of the vector 
7
1
2

 
 =
 
 

x  relative to this basis. 

Solution: You can solve this in (at least) two ways. First, we could use the general method for 

finding the coordinates of a vector relative to a basis: 
1 3 2 7 1 0 0 1 11
1 2 0 1 0 1 0 6 11
2 1 1 2 0 0 1 30 11

−   
   →
   −   

. 
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So 1 2 3
6 301

11 11 11= − + +x v v v . You can plug in the components and check this, if you like. 

Alternatively, let 
1 3 2
1 2 0
2 1 1

 
 =
 − 

S  be the change of basis matrix. You can calculate its inverse by 

hand or by calculator to get: 

1 1
11

2 5 4
1 3 2
5 7 1

−
− 
 = −
 − 

S .      So [ ] 1 1 1
11 11

2 5 4 7 1 1 11
1 3 2 1 6 6 11
5 7 1 2 30 30 11

−
− − −       
       = = − = =
       −       

x S x
B

. 

Matrix of a linear transformation relative to an alternate basis 
The fact that we can speak of the coordinates of a vector relative to a basis other than the 
standard basis allows us to think of the matrix of a linear transformation in a much richer 
(though possibly a little more abstract) way. Though we could develop this perspective more 
generally for any linear transformation : n mT →R R , we’ll specialize to the case where A is an 
n n×  (square) matrix representing a linear transformation : n nT →R R  by ( )T =x Ax . Up to 
this point, we have only had standard coordinates and the standard basis { }1 2, , , n= e e eE   and 
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our understanding of the entries of a matrix was greatly restricted by this. Specifically, relative 

to the basis { }1 2, , , n= e e eE   a matrix 
11 1

1

n

n nn

a a

a a

 
 =
 
 

A


  



 had the interpretation that: 

11

1 11 1 1

1

n n

n

a
a a

a

 
 = = +
 
 

Ae e e  ,  
12

2 12 1 2

2

n n

n

a
a a

a

 
 = = +
 
 

Ae e e  ,   …  ,
1

1 1

n

n n nn n

nn

a
a a

a

 
 = = +
 
 

Ae e e  . 

In other words, the entries in each column tell us the coordinates of the image of each standard 
basis vector relative to the standard basis. We can write this as: 

[ ] [ ]
11 1

1

1

n

n

n nn

a a

a a

 ↑ ↑ 
  = =   
   ↓ ↓ 

A Ae Ae
E E



   



. 

Expanding our viewpoint a bit, if we can do this all relative to the standard basis, why not do 
the same thing relative to an alternate basis { }1 2, , , n= v v vB  for nR ? 
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Definition: The matrix of a linear transformation : n nT →R R  relative to the basis 

{ }1 2, , , n= v v vB  is the matrix [ ] [ ] [ ]1( ) ( )nT T T
 ↑ ↑
 =  
 ↓ ↓ 

v v

B B B
. 

If the linear transformation T is represented by the matrix A relative to the standard basis 

{ }1 2, , , n= e e eE  , we often simply write [ ] [ ] [ ]1 n

 ↑ ↑
 =  
 ↓ ↓ 

A Av Av
B B B

 . 

Example 3: Let’s take another look at a previous example where we had 

{ }1 2

2 1
, 2 , 1

1 0

        = −         

v v  spanning a plane with normal vector 
1

1
4

− 
 =
 
 

n . If we let 3 =v n , we can 

include this with the other two vectors to form a basis { }1 2 3

2 1 1
, , 2 , 1 , 1

1 0 4

 −            = = −             

v v vB  for 

all of 3R . 
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Now consider the linear transformation that reflects any vector x in 3R  through the plane 
spanned by the first two vectors. What is the matrix of this linear transformation relative to the 
basis { }1 2 3, ,= v v vB ? 

Solution: This is actually extremely easy, perhaps we should even say obvious. Observe that: 

[ ] [ ] [ ] [ ] [ ]
1 1 1 2 3

2 2 1 2 3 1 2 3

3 3 1 2 3

1 0 0 1 0 0
0 1 0 ( ) ( ) ( ) 0 1 0

0 0 10 0 1

T

T

T
T T T T

 → = + + ↑ ↑ ↑  
   → = + + ⇒ = = =   −→− = + −    ↓ ↓ ↓ 

v v v v v
v v v v v v v v A
v v v v v

B B B B B
 

The simplicity of this transformation is reflected (pardon the pun) by the simplicity of its 
matrix relation to a well-chosen basis. 

Relating matrices of a linear transformation relative to different bases 
Now that we’ve opened the door to the possibility of representing a linear transformation by 
different matrices corresponding to different bases, it’s important to know how to relate these 
matrices. Though we can reason through this algebraically, there’s a much more elegant 
approach that uses what is known as a commutative diagram. In this case, think of a linear 
transformation as some kind of action and think of the choice of basis as analogous to the 
choice of a language. For example, let’s say we choose to think of the standard basis 

{ }1 2, , , n= e e eE  as English and an alternative basis { }1 2, , , n= v v vB  as Bulgarian. 
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In English, we might denote the action of the linear transformation as { } { }, ,n n→AR RE E . 
In Bulgarian, we might denote the action of the linear transformation as 

{ } [ ] { }, ,n n→AR RBB B . 
Note that the domain and codomain have been appended in each case by the chosen “language.” 
It’s best to think of the transformation as going from left to right in this formulation. Vectors in 

nR  are in each case expressed in coordinates relative to the specified basis. 

How do we relate vectors (either in the domain or the codomain) from one language to the 
other? This is where the relations [ ]=x S x

B
 and [ ] 1−=x S x

B
 come in. If we think of changing 

languages as moving up and down in the diagram with English on the top line and Bulgarian on 
the bottom line, we have: 

[ ]

[ ]

= ∈

∈

x x

x

E

B

{ } { }

{ } { }

, ,

, ,

n n

n n 
 

→

↑ ↑

→

A

A

R R
S S

R RB

E E

B B

 

Note, in particular, which way the vertical arrows go based on the fact that [ ] [ ]= =x x S x
E B

. 
If we start with a Bulgarian vector, we can either (a) translate it into English and then apply the 
English version of the matrix, or (b) carry out the transformation in Bulgarian and then change 
the language to English. The results should be the same if the transformation has any objective 
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meaning. Algebraically this gives [ ]=AS S A
B

, but we usually express this as either 

[ ] 1−=A S AS
B

 or [ ] 1−=A S A S
B

. 

Definition: Two n n×  matrices A and B are called similar if there is an invertible n n×  matrix 
S such that 1−=B S AS . 

Said differently, two matrices are similar if they represent the same linear transformation 
relative to two different bases. 

There’s another way to see this algebraic relationship without a diagrammatic roadmap. If we 
interpret the columns of the change of basis matrix S as well as the definition of [ ]A

B
 we 

observe that: 
( )

( )

( ) [ ]

( ) [ ]
[ ]

1 1
1 11 1 1 1

1 1

1
1 1

1

1

n n n n n n

n n

− −

− −

−

−

−

 == =        ⇒ ⇒     
     = = =     

 =
 

⇒ ⇒ = 
 = 

S ASe S AvSe v ASe Av

Se v ASe Av S ASe S Av

S AS e Av
S AS A

S AS e Av

B

B

B

  


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Example 4: Suppose we have the basis { }1 2 3

1 1 1
, , 1 , 2 , 2

1 1 3

 −            = =        − −      

v v vB  for 3R  and that a 

linear transformation is defined in terms of how it acts on these basis vectors with 
1 2

2 3

3 1 2

( ) 2
( )

( )

T
T

T

=  = − 
 = + 

v v
v v

v v v
. If we denote the matrix of this linear transformation relative to the standard 

basis by A and relative to the basis B  by [ ]A
B

, find the matrix A. 

Solution: There is no calculation necessary in determining the matrix [ ]A
B

. This is actually 
extremely easy, perhaps we should even say obvious. Observe that: 

[ ] [ ] [ ] [ ] [ ]
1 2

2 3 1 2 3

3 1 2

( ) 2 0 0 1
( ) ( ) ( ) ( ) 2 0 1

( ) 0 1 0

T
T T T T T

T

 ↑ ↑ ↑=        = − ⇒ = = =      = + −    ↓ ↓ ↓ 

v v
v v v v v A

v v v
B B B B B

 

The simplicity of how this linear transformation is defined relative to the basis B  yields a 
correspondingly simple matrix [ ]A

B
 relative to this basis. To determine the matrix A relative 

to the standard basis, we use [ ] 1−=A S AS
B

 and solve for [ ] 1−=A S A S
B

. 
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From the basis we have 
1 1 1
1 2 2
1 1 3

− 
 =
 − − 

S  and we can calculate 1 1
14

8 2 4
5 4 1

1 2 3

−
− 

 = − −
 
 

S , so 

1
14

1 1 1 0 0 1 8 2 4 11 14 4 7 9 14
1 2 2 2 0 1 5 4 1 45 14 3 7 5 14
1 1 3 0 1 0 1 2 3 3 14 10 7 5 14

− − − −       
       = − − = −
       − − − − −       

A . 

The moral is that if we choose to work only with the standard basis, and if a linear 
transformation does not act in a simple way relative to the standard basis, then its standard 
matrix will most likely not be very simple. Finding a basis relative to which a given linear 
transformation acts simply will be a central idea in the course in the coming weeks. 

Example 5: The basis B  in the above example is such that the 3rd basis vector is 
perpendicular (orthogonal) to the first two vectors. Suppose { }1 2span ,=V v v  is the plane 
spanned by the first two vectors. Find the matrix for orthogonal projection of any vector onto 
this plane. 
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Solution: Relative to the given basis, we observe that 
1 1

2 2

3

( )
( )
( )

T
T
T

=  = 
 = 

v v
v v
v 0

. So [ ]
1 0 0
0 1 0
0 0 0

 
 =
 
 

A
B

. As 

in the previous case, we have: 

[ ] 1 1 1
14 14

1 1 1 1 0 0 8 2 4 13 2 3
1 2 2 0 1 0 5 4 1 2 10 6
1 1 3 0 0 0 1 2 3 3 6 5

−
− − − −       

       = = − − = − −
       − − − −       

A S A S
B

. 

This matrix will have rank 2 because its image is 2-dimensional. Once again we see that the 
matrix is complicated relative to the standard basis but quite simple relative to a basis that is 
well-suited to the transformation. 

Notes by Robert Winters 


