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Math S-21b – Lecture #3 Notes 
Today’s lecture features a continuation of geometrically-defined linear transformations – 
specifically projections and reflections, conditions for invertibility of a matrix and how to find 
an inverse matrix, and the basic rules of matrix algebra. We use the understanding of a matrix 
as a linear transformation to define the product of two appropriately-sized matrices as the 
matrix of the composition of the respective functions. This approach makes a number of the 
facts about matrix algebra remarkably simple to prove and to understand. 

Notes on the dot product and orthogonal projection 
An important tool for working with vectors in Rn (and in abstract vector spaces) is the dot 
product (or, more generally, the inner product). The algebraic definition of the dot product in 
Rn is quite simple: Just multiply corresponding components and add. 

1 2 1 2 1 1 2 2, , , , , ,n n n nu u u v v v u v u v u v⋅ = ⋅ = + + +u v     

However, the true value of the dot product is realized when you relate this to the measurement 
of angles using trigonometry and the Law of Cosines. 

Here are a couple of classic facts: 

I. The Pythagorean Theorem: If a right triangle has legs of length a and b and the hypotenuse 
has length c, then 2 2 2a b c+ = . 

Proof of the Pythagorean Theorem – Perhaps the easiest way to prove this is with areas: 
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The area of the larger square is the sum of 
the areas of the smaller square and the 
four right triangles. This gives us: 
 

( )2 2 1
2

2 2 2

2 2 2

( ) 4

2 2

a b c ab

a ab b c ab
a b c

+ = +

+ + = +

+ =

 

II. The Law of Cosines: Given any triangle with sides of length A and B adjacent to an angle θ 
and with the side opposite this angle of length C, then 2 2 2C A B 2ABcosθ= + − . 

Proof of the Law of Cosines – Referring to the variables in the diagram, this is a 
straightforward application of the Pythagorean Theorem and basic trigonometry. The case for 
an acute angle shown. The proof is similar for an obtuse angle. 

 

2 2 2B m h= +  and 2 2 2C h n= +  
A m n= + , so we can write n A m= − . 

If we substitute this, we get: 
2 2 2 2 2 2

2 2

2 2

C h (A m) h A 2Am m
B A 2A(Bcos )
A B 2ABcos

θ

θ

= + − = + − +

= + −

= + −
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Measuring angles using the dot product: 
Referring to the “vectorized” diagram to the 
right, we can restate the Law of Cosines in 
terms of the lengths of the respective vectors 
as: 

2 2 2 2 cosθ− = + −u v u v u v . 

In order to relate this to the dot product, we need to use a few easy-to-show facts about the dot 
product, namely: Given vectors , , n∈u v w R  and any scalar r: 

a) ⋅ = ⋅v u u v  (commutative law) 
b) ( ) ( ) ( )r r r⋅ = ⋅ = ⋅u v u v u v  
c) ( )⋅ + = ⋅ + ⋅u v w u v u w  and ( )+ ⋅ = ⋅ + ⋅u v w u w v w  (left and right distributive laws). 

d) 2 0⋅ = ≥u u u  for all u, and 2 0⋅ = =u u u  only if =u 0  (the zero vector). Here u  
denotes the length of the vector u. 

Using these facts, the left-hand side of our vectorized Law of Cosines reads:  
2 2 2( ) ( ) 2− = − ⋅ − = ⋅ − ⋅ − ⋅ + ⋅ = + − ⋅u v u v u v u u u v v u v v u v u v . 

Comparing this to the original expression, we get the all-important property that 
cosθ⋅ =u v u v  where θ is the angle between the two vectors u and v. 

The significance of this property is that the left-hand side is purely algebraic and the right-hand 
side is purely geometric. This opens the possibility that we can use basic algebraic operations to 
calculate geometric quantities like lengths and angles. For example, we can rewrite this result 
as: 

v u–v 

u 
θ 
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cosθ ⋅
=

u v
u v

. 

The relation cosθ⋅ =u v u v  can also be used to provide a simple way of calculating the 
scalar projection of one vector in the direction of another. If we let l denote the orthogonal 
(perpendicular) projection of v in the direction of a another vector u, then from the diagram we 
see that cosl θ= v . We can solve for this in the previous relation to get: 

cos (unit vector in the direction of )l θ ⋅
= = = ⋅ = ⋅

u v uv v v u
u u

. 

In other words, if you want to find out “how much” of a vector v is in a given direction, you 
“dot v with a unit vector in that direction”. 

We can further adapt this to find an expression for the vector projection of v in the direction of 
u. Simply take a unit vector in the direction of u and scale it by the scalar projection of v in the 
u-direction to construct this vector projection, a vector in the same direction as u, but with 
length equal to the scalar projection. That is: 

2Proj
   ⋅

= ⋅ =         
u

u u v uv v u
u u u

. 

In the special case where the vector u is a unit vector, i.e. where 1=u , this simplifies to: 

( )Proj = ⋅uv v u u . 
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The scalar projection of a vector in a given direction is also known as the component of the 
vector in the given direction. It’s easy to see that this coincides with the usual x, y, and z 
components in the case of a vector in R3. Simply calculate the dot product of the vector 

, ,x y z  with unit vectors in these respective directions. However, with the dot product you can 
now easily calculate the component of a vector in any direction. 

The ability to decompose a vector into its component parts is a fundamental theme in linear 
algebra. In the case of a more abstract vector space such as a 
space of functions, this will form the basis of Fourier analysis and 
other methods for deconstructing functions. These methods play 
significant roles in fields such as quantum mechanics and digital 
audio and video recording. 

Orthogonal projection onto a line L (through the origin) in 
nR : We can use the above results to calculate the orthogonal 

projection of any vector onto a line in nR . This is, in fact, a linear transformation defined by an 
n n×  matrix. If the direction of the line L is determined by a unit vector u, then for any vector 

n∈x R , we’ll have ( )Proj ProjL = = ⋅ux x x u u . 

Example: Suppose we want to find the 2 2×  matrix for orthogonal projection in 2R  onto the 
30° line. Looking at a standard 30°-60°-90° triangle, we see that this line is in the direction of 

the vector 33,1
1

 
= =  

 
w . We scale to get the unit vector 1

2
3

1
 

=  
 

u . We can proceed in 

two different ways here. 

v 
 

u 
 

θ l 
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We can find the columns of the matrix by calculating 

( )1 1 1
1 1
2 2

3 43( ) ( 3)
1 3 4

T    
= ⋅ = = =   

   
e e u u v  and 

( )2 2 2
1 1
2 2

3 3 4( ) (1)
1 1 4

T    
= ⋅ = = =   

   
e e u u v .           So the matrix is 3 4 3 4

3 4 1 4
 

=  
 

A . 

We can also find the rows of the matrix by calculating ( )T x  for any x and then just read off the 
coefficients to get the entries in each row of the matrix. That is: 

( ) 1
1 2

2

1 2 1

21 2

1 1 1
2 2 4

3 33 3
4 4 4 4
3 31 1
4 4 4 4

3 3 3( ) Proj ( 3 )
1 1 1

xT x xx

x x x
xx x

       = = ⋅ = ⋅ = +               
   +     = = =      +   

ux x x u u

Ax

. 

So we again see that 3 4 3 4
3 4 1 4

 
=  

 
A . 

Reflection through a line (through the origin) in nR : This builds on orthogonal projection. 
It’s easy to see (if you draw a picture) that if we denote by ( )ProjL= = ⋅p x x u u  for the 
orthogonal projection of a vector x onto the line L (in the direction of the unit vector u), then 
the reflection of x through this line will be: 

Ref ( ) 2( ) 2 2Proj 2 2 (2 )= + − = − = − = − = − = −ux x p x p x x x Ax x Ax Ix A I x  
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The last part of this calculation uses a little matrix algebra that we’ll discuss momentarily, but 
the point is that if you can find the matrix A representing orthogonal projection onto a line L, 
you can then calculate the matrix for reflection (which is also a linear transformation) as 2 −A I . 
[This same fact will hold true when we talk about subspaces and orthogonal projection onto 
subspaces.] 

In our 30° line example above, we found the matrix 3 4 3 4
3 4 1 4

 
=  

 
A  for orthogonal 

projection onto the line, so the matrix for reflection across this same line will be: 

3 4 3 4 1 0 1 2 3 22 2 0 13 4 1 4 3 2 1 2
    − = − =        

A I . 

These calculations for matrices of rotations, projections, and reflections are relatively easy in 
2R . They’re not so much more difficult in 3R , especially if you think geometrically. Several 

homework problems will require you to do this. 

Another important geometric linear transformation is called a shear. You should read about 
this in the text. 

Inverse of a linear transformation 
Definition: We call a linear transformation : n nT →R R  invertible (also called nonsingular) if 
it is both one-to-one (if ( ) ( )T T=x y  then necessarily =x y ) and onto the codomain (for every 
vector n∈z R  there is a (unique) n∈x R  such that ( )T =x z ). 
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It’s relatively easy to see why invertibility will only make sense for linear transformations 
: n nT →R R  given by (square) n n×  matrices, ( )T =x Ax ; and certainly not all such 

transformations will have inverses. 

This is the same notion of invertibility we have for functions elsewhere. However, in the 
context of linear transformations given by ( )T =x Ax  we have a simple algorithmic way of not 
only determining if this linear transformation is invertible, but also for determining the matrix 
of this inverse function (referred to as its inverse matrix 1−A ) if it exists. It all comes down to 
an enhanced view of row reduction and what invertibility means in terms of rank and the 
reduced row-echelon form of an associated 2n n×  matrix. 

Some of you may already know about inverse matrices and may be tempted to use 
them to solve arbitrary systems of linear equations. This is a very bad idea! Linear 
systems can be inconsistent, and they can also have infinitely many solutions. If you 
restrict yourself to using inverse matrices for solving all linear systems, you will 
very soon come to regret this. Row reduction is universally valid. 

Consider a simple example like ( )T =x Ax  where 3 1
2 1

 =  − 
A . Given any input vector 

1

2

x
x

 =   
x , this transformation will give the output vector 1 1

2 2

3 1( ) 2 1
x yT x y

    = = = =    −     
x Ax y . 

To be invertible, given any vector 1

2

y
y

 =   
y , we would have to be able to solve uniquely for 

1

2

x
x

 =   
x  in terms of the components of y . 
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What does this mean in terms of algebra? 

1 1 2 1

2 1 2 2

33 1( ) 22 1
x x x yT x x x y

+      = = = =       −−       
x Ax . 

I’ve staggered the right-hand-sides a bit to suggest the approach. All we have to do is augment 
the matrix a little more and represent these two equations by entering the coefficients on both 

the left-hand-side and the right-hand side. This gives [ ]3 1 1 0
2 1 0 1

  = − 
A I  where I is the 

appropriate Identity matrix. If it’s possible to solve uniquely for 1

2

x
x

 =   
x , we’ll discover this 

by row reduction. That is: 

1

3 1 1 0 1 2 1 1 1 2 1 1
2 1 0 1 2 1 0 1 0 5 2 3

1 2 1 1 1 0 1 5 1 5
0 1 2 5 3 5 0 1 2 5 3 5

−

− −     → →     − − − −     
−     → → =     − −   

I A
. 

This last array reads:  
1 1

1 1 25 5
32

2 1 25 5

x y y
x y y

= + 
 = − 

 

We discover two things from this example: 

(1) If the matrix A has full rank, then we will be able to solve uniquely for 1

2

x
x

 =   
x . 

(2) If the matrix A has full rank, the matrix of its inverse will appear in the right half of 
[ ] 1rref nn

− =  A I I A . 
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The situation in general is no different. If : n nT →R R  is given by a (square) n n×  matrix, 
( )T =x Ax , and if we write ( )T = =x Ax y , then we write the 2n n×  matrix [ ]nA I  and carry 

out row reduction to determine whether this has full rank n. If it doesn’t have full rank, then we 
can’t solve uniquely for x , and the transformation (and its matrix) is not invertible. However, 

(1) If the matrix A has full rank n, then we will be able to solve uniquely for  
1

n

x

x

 
 =
 
 

x   in terms of 
1

n

y

y

 
 =
 
 

y  . 

(2) If the matrix A has full rank n, the matrix of its inverse will appear in the right half of 
[ ] 1rref nn

− =  A I I A . 

Note: This is generally the simplest way to find the inverse of a matrix by hand. There is a 
formulaic way of doing this using determinants (based on Cramer’s Rule), but it’s impractical 
for matrices larger than 3 3× . 

There is an ever-so-simple way to find the inverse of a 2 2×  matrix a b
c d

 =   
A . First, 

calculate its determinant det( ) ad bc= −A . You can easily show using our row reduction 
method that if det( ) 0ad bc= − =A , then the matrix A will not have full rank and will not be 
invertible. If det( ) 0ad bc= − ≠A , then A will have full rank and will be invertible, and 

1 1 1
det( )

d b d b
c a c aad bc

− − −   = =   − −−   
A

A
. 
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For example, if 3 1
2 1

 =  − 
A , then det( ) (3)( 1) (1)(2) 5 0= − − = − ≠A  and 

1
5

1 1 1 5 1 5
2 3 2 5 3 5

− −   = − =   − −   
A . 

The corresponding method for 3 3×  matrices has similar elements to this, but involves far more 
calculation. 

Matrix algebra 

Definition: Given any scalar k ∈ R  and an m n×  matrix 
11 1

1

n

m mn

a a

a a

 
 =
 
 

A


  



, we define the 

scalar multiple of the matrix as 
11 1

1

n

m mn

ka ka
k

ka ka

 
 =
 
 

A


  



. In the case of an 1m×  matrix (a column 

vector) or a 1 n×  matrix (a row vector), this is the same as the ordinary scaling of a vector. 

Example: 2 1 6 33 1 5 3 15
   =   − −   

 

Definition: Given two m n×  matrices 
11 1

1

n

m mn

a a

a a

 
 =
 
 

A


  



 and 
11 1

1

n

m mn

b b

b b

 
 =
 
 

B


  



, we define 

the sum of these two like matrices by adding their respective entries. That is: 
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11 1 11 1 11 11 1 1

1 1 1 1

( ) ( )

( ) ( )

n n n n

m mn m mn m m mn mn

a a b b a b a b

a a b b a b a b

+ +     
     + = + =
     + +     

A B
  

        

  

. 

Example: 2 1 1 0 6 3 5 0 11 33 51 5 3 1 3 15 15 5 12 10
         + = + =         − − − −         

 

Proposition: For any m n×  matrix A , any scalar k, and any 1 n×  column vector x, 
( ) ( )k k=A x Ax . 

Proof: This is a straightforward calculation. Writing 1 n

 ↑ ↑
 =
 

↓ ↓  

A v v  in terms of its column 

vectors, we have 

1 1

1 1 1 1

1

1 1 1

( ) ( ) ( )

( ) ( ).

n n n n

n n

n n n

n

x x
k k k k x k x k

x x

x
k x x k k

x

    ↑ ↑ ↑ ↑   
       = = = + +        ↓ ↓ ↓ ↓          

  ↑ ↑  
    = + + = =     ↓ ↓     

A x v v v v v v

v v v v Ax

    

  

 

Proposition: For any m n×  matrices A and B and any 1 n×  column vector x, 
( )+ = +A B x Ax Bx . 
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Proof: If we write 1 n

 ↑ ↑
 =
 

↓ ↓  

A v v  and 1 n

 ↑ ↑
 =
 

↓ ↓  

B w w , and 
1

n

x

x

 
 =
 
 

x  , then 

( ) ( )

( ) ( )

1 1

1 1 1 1

1 1 1 1 1 1 1

1

1 1 1 1 1

( ) n n n n

n n

n n n n n n n

n n n n n

n

x x

x x

x x x x x x

x
x x x x

x

   ↑ ↑   ↑ ↑ ↑ ↑    
          + = + = + +           ↓ ↓ ↓ ↓    ↓ ↓          

= + + + + = + + + +

 ↑ ↑ 
  = + + + + + =
 

↓ ↓   

A B x v v w w v w v w

v w v w v w v w

v v w w v v

    

 

   

1

1 .n

n

x

x

 ↑ ↑  
   + = +
    

↓ ↓    

w w Ax Bx 

 

Matrix products 
Though it’s possible to take a formulaic approach to the multiplication of matrices, it’s much 
better to think of each matrix as representing a linear transformation and to define matrix 
product by considering the composition of these linear transformations. 

Proposition: Where defined, the composition of linear transformations is a linear 
transformation. 
Proof: Suppose A is an m n×  matrix that corresponds to a linear transformation : n mT →A R R , 
i.e. ( )T =A y Ay . Also, suppose B is an n p×  matrix that corresponds to a linear transformation 

: p nT →B R R , i.e. ( )T =B x Bx . We can then define the composition : p mT T →A B R R  by 
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( ) ( )( ) ( )T T T T=A B A Bx x . Since both of these functions are linear, for any scalars 1 2,c c  and 

vectors 1 2, p∈v v R , we have: 

( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

( ) ( ) ( ) ( )

( ) ( )

T T c c T T c c T c T c T

c T T c T T c T T c T T

+ = + = +

= + = +
A B A B A B B

A B A B A B A B

v v v v v v

v v v v



 

 

So : p mT T →A B R R  is also linear and is represented by an m p×  matrix. Call this matrix AB. 

Corollary (really a restatement of the definition): For any vector p∈x R  , ( ) ( )=AB x A Bx . 

This statement look very much like an associative law for multiplication, but it’s really just the 
statement that AB is defined to be the matrix of the composition. 

Calculation of the matrix product 
How do we actually calculate the matrix product AB (where defined)? Perhaps the simplest 
way to do this is to recall the meaning of the columns of any matrix. The columns tell us where 
the corresponding linear function takes the elementary vectors { }1, , pe e , so 

1 1( ) ( ) ( ) ( )p p

   ↑ ↑ ↑ ↑
   = =   
   ↓ ↓ ↓ ↓   

AB AB e AB e A Be A Be  . 

But if we write 1 1( ) ( )p p

   ↑ ↑ ↑ ↑
   = =   
   ↓ ↓ ↓ ↓   

B B e B e v v  , we then see that: 
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1( ) ( )p

 ↑ ↑
 =  
 ↓ ↓ 

AB A v A v .          That is, 1 1p p

   ↑ ↑ ↑ ↑
   = =   
   ↓ ↓ ↓ ↓   

AB A v v Av Av  . 

In other words, the matrix A simply individually multiplies each of the column vectors of B. 

Example: If 2 1
1 5

− =   
A  and 1 0 4

1 2 1
 =  − 

B , then the product AB is defined (though BA is 

not), and 2 1 1 0 4 3 2 7
1 5 1 2 1 4 10 9

− −     = =     − −     
AB . 

It should be relatively easy to see that each entry is calculated as 
( ) ( ) ( )th row of th column of 

ij
i j=AB A B . This dot product is only defined when the number 

of columns of A matches the number of rows of B. 

Matrix multiplication (where defined) is not commutative: ≠AB BA  
It’s easy to understand why matrix multiplication cannot be commutative even in the case 
where both products are defined. Matrix product is just the composition of functions, and 
composing functions in reverse order does not generally give the same functions, i.e. 
f g g f≠  . This is most simply understood by thinking about it in less mathematical terms. 

For example, if you put on your socks and then put on your shoes, this is clearly different than 
first putting on your shoes and then putting on your socks. Sometimes you can get the same 
result, just as it is the case that there are some matrices A and B such that =AB BA , but this 
will not generally be the case. 

Matrix multiplication (where defined) is associative: ( ) ( )=AB C A BC  
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This follows from the corresponding fact about composition of functions, namely that 
( ) ( )f g h f g h=    . 

The Identity matrix acts as a multiplicative identity: For an m n×  matrix A,  

m =I A A  and n =AI A . 

Though this is easy to see by calculation, it follows from the general fact about functions that 
Id f f=  and f Id f= , i.e. for any x in the domain of f, we have 
( ) ( ) ( ( )) ( )Id f x Id f x f x= =  and ( ) ( ) ( ( )) ( )f Id x f Id x f x= = . 

Proposition: If A is an invertible n n×  matrix with inverse matrix 1−A , then  
1− =A A I  and 1− =AA I . 

Proof: These follow directly from the fact that matrix product represents the composition of 
linear functions and the fact that a function composed with its inverse (in either order) yields 
the identity function. 
Proposition: If both A and B are invertible n n×  matrices, then AB is also invertible and 

1 1 1( )− − −=AB B A . 

Proof: This also follows directly from the general fact about functions, i.e. ( ) 1 1 1f g g f− − −=  . 
In nonmathematical terms, if you first put on your socks and then put on your shoes, the inverse 
of this is to first take off your shoes and then take off your socks. 

More easy-to-prove matrix algebra facts: For any scalar k and appropriate sized matrices 
( )+ = +A C D AC AD    (left-hand distributive law) 

( )+ = +A B C AC BC   (right-hand distributive law) 
( ) ( )k k=A C AC  
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These and the facts previously stated are not meant to be exhaustive. Except for the fact that 
matrix multiplication is not commutative, most of the familiar algebraic rules are also true for 
matrices. 

An application to trigonometry:  Sum of angle formulas for sine and cosine 
We previously showed that counterclockwise rotation in 2R  through an angle θ  is a linear 

transformation represented by the rotation matrix cos sin
sin cosθ

θ θ
θ θ

− =   
R . It is geometrically 

clear that the composition of rotation through angle φ  and rotation through angle θ  is just 
rotation through the angle ( )θ φ+ , so θ φ θ φ+=R R R . Therefore: 

cos sin cos sin cos cos sin sin (sin cos cos sin )
sin cos sin cos sin cos cos sin cos cos sin sin

cos( ) sin( ) cos( ) cos cos sin sin
sin( ) cos( ) sin( )

θ θ φ φ θ φ θ φ θ φ θ φ
θ θ φ φ θ φ θ φ θ φ θ φ

θ φ θ φ θ φ θ φ θ φ
θ φ θ φ θ φ

− − − − +     =     + −     

+ − + + = − = ⇒ + + + =  sin cos cos sinθ φ θ φ+

 

Notes by Robert Winters 


	Notes on the dot product and orthogonal projection

