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Math S-21b – Lecture #2 Notes 
Today’s lecture focuses on the vector and matrix formulations for a system of linear equations, 
linear transformations defined by matrices, the meaning of the columns of a matrix, and how to 
find matrices for several important geometrically defined linear transformations. 

Vector form of a system of linear equations 

Any system of m linear equations in n unknowns is of the form 
11 1 1 1

1 1

n n

m mn n m

a x a x b

a x a x b

+ + =  
 
 + + = 



  



. If we 

choose to represent vectors in Rm as columns and use only the definitions of scalar 

multiplication of a vector and vector addition, i.e. 
1 1

m m

x tx
t

x tx

   
   =
   
   
   and 

1 1 1 1

m m m m

x y x y

x y x y

+     
     + =
     +     
   , 

we can express these linear equations in the form: 

11 1 1

1

1

n

n

m mn m

a a b
x x

a a b

     
     + + =
     
     
      (vector form of the linear system} 
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If we denote the column vectors as 
11 1

1

1

, ,
n

n

m mn

a a

a a

   
   = =
   
   

v v    and 
1

m

b

b

 
 =
 
 

b  , we can then 

rewrite this more succinctly as 1 1 n nx x+ + =v v b . 

This can be understood geometrically. What this says is that this system will have a solution (or 
many solutions) if the vector b on the right-hand-side can be expressed as a linear 
combination of the vectors 1{ , , }nv v , i.e. the vector b can be “built” out of these vectors by 
appropriate scaling and vector addition. 

Example: The linear system 3 4
2 3

x y
x y
+ = 

 − = 
 can be written in 

vector form as 3 1 4
2 1 3x y     + =     −     

. With 1
3
2
 =   

v  (in red) 

and 2
1
1

 =  − 
v  (in blue), and 4

3
 =   

b  (in black), we want to 

know what x and y must be so that 1 2x y+ =v v b . Visually, 
we might guess that this can be done with x between perhaps 1 
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and 1.5, and y a small negative number. We solve for these values using row reduction methods: 

3 1 4 1 2 1 1 2 1 1 2 1 1 0 1.4
2 1 3 2 1 3 0 5 1 0 1 0.2 0 1 0.2
         → → → →         − − − − −         

 

So 1.4x =  and 0.2y = − , and this agrees with our expectations. 

Example #2: If we write the system 3 2 2 4
4 4 3
x y z
x y z
− + = 

 + + = 
 in 

vector form, we have 3 2 2 4
4 4 1 3x y z−       + + =              

. If we 

write 1
3
4
 =   

v  (in red) and 2
2

4
− =   

v  (in blue) and 

3
2
1
 =   

v  (in green), and 4
3
 =   

b  (in black), we are then 

seeking values for , ,x y z  so that 1 2 3x y z b+ + =v v v . There are (infinitely) many ways to do 
this. 

This agrees with what we found when we solved a similar system using row reduction: 
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11
101 11

2 10 7
2071

4 20

21 03 2 2 4
4 4 1 3 0 1 4

t

x t
y t
z t

∈

= − 
−      → ⇒ = − +    − −     =  R

. 

Every choice of t gives a different way to construct the vector b out of these three spanning 
vectors (see picture at right). 

Example #3: The system 
3 2 5

7
2 1

x y
x y
x y

+ =  − + = 
 + = 

 can be written in vector form as 
3 2 5
1 1 7

2 1 1
x y
     
     − + =
     
     

. 

Writing 1

3
1

2

 
 = −
 
 

v , 2

2
1
1

 
 =
 
 

v , and 
5
7
1

 
 =
 
 

b  as vectors in R3, there is 

some doubt as to whether it’s possible to do this, and this agrees 
with the fact that we previously found this system to be inconsistent. 
This situation is illustrated in the diagram at right (where the axes 
have been rotated for a better view). The red and blue vectors, v1 
and v2, span a plane, and the third vector, b, does not lie in this 
plane. We will soon express this by saying 1 2span{ , }∉b v v . 
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Matrix form of a linear system 
If we take the vector form above and assemble the vectors { }1, , nv v  side-by-side to form an 

m n×  matrix 
11 1

1

1

n

n

m mn

a a

a a

 ↑ ↑  
   = =
   
↓ ↓    

A v v


   



, and if we write 
1

n

x

x

 
 =
 
 

x  , we can define the 

product of this matrix and the vector as 
1

1 1 1n n n

n

x
x x

x

 ↑ ↑  
   = ≡ + +
   
↓ ↓    

Ax v v v v   . Using this 

definition, we can express the linear system 
11 1 1 1

1 1

n n

m mn n m

a x a x b

a x a x b

+ + =  
 
 + + = 







 simply as =Ax b . This is 

called the matrix form of the linear system. 
This can also be understood in terms of (linear) functions. Note that if we write ( )T =x Ax , we 
have the input vector n∈x R  and the output vector ( ) mT = = ∈x Ax b R . We can therefore 
understand such a system of linear equations in terms of the function : n mT →R R . We also 
sometimes represent this by writing either: 

Tn m→R R      or     n m→AR R      or     n m∈ → = ∈Ax R Ax b R  
A function defined in this manner is called a linear transformation. 
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Definition: A function : n mT →R R  is called a linear transformation if for all vectors 
1 2, n∈v v R  and for all scalars 1 2,c c ∈R , T satisfies the linearity property 

1 1 2 2 1 1 2 2( ) ( ) ( )T c c c T c T+ = +v v v v . This can also be expressed more geometrically by saying 
that T preserves vector addition, i.e. 1 2 1 2( ) ( ) ( )T T T+ = +v v v v , 
and T preserves scalar multiplication, i.e. ( ) ( )T c cT=v v . 

We call the input space nR  the domain (as expected), and we refer to the output space mR  as 
the codomain. 
Note 1: One thing worth mentioning is that this notion of a linear function may not agree with 
previous usage of the term “linear” as seen in calculus courses and before. Specifically, any 
function of the form ( )L x ax b= +  is first-order, but it is not linear unless b = 0. Note that 

( ) ( ) ( ) ( )L x y a x y b L x L y+ = + + ≠ + . Also, preservation of scalar multiplication means that it 
would have to be the case that (0) 0L b= = , so in order to be linear it must be the case that 

( )L x ax=  (the graph of this line would have to pass through the origin). In particular, note that 
a function like ( ) 2 3f x x= +  is not a linear function! 

More generally, a linear function 1: nT →R R  would have to be of the form 
1 1 1( , , )n n nT x x c x c x= + +  , i.e. a pure first-order expression without constant term. For a 

linear function : n mT →R R , all m (output) components of the value of this function would 
have to be of this form. 
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Note 2: In the case of a function defined by ( )T =x Ax  for an m n×  matrix A, the linearity 
property simply becomes the distributive law: 1 1 2 2 1 1 2 2( ) ( ) ( )c c c c+ = +A x x A x A x . 
Proposition: ( )T =x Ax  (for an m n×  matrix A) is a linear transformation. 

Proof: If we write the matrix A in terms of its columns, 1 n

 ↑ ↑
 =
 
↓ ↓  

A v v  and let 
1

n

x

x

 
 =
 
 

x  , 

1

n

y

y

 
 =
 
 

y  and let ,α β ∈R , then 
1 1 1 1 1 1

n n n n n n

x y x y x y

x y x y x y

α β α β
α β α β

α β α β

+         
         + = + = + =
         +         

x y       

using basic facts about scaling and adding vectors. 
Using our definition of the product of a matrix and a vector, we have: 

1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n n n

n n

n n n n n n n n

n n n n

x y
T x y x y

x y

x y x y x x y y
x x y y T T

α β
α β α β α β α β

α β

α β α β α α β β
α β α β α β

 ↑ ↑ + 
   + = + = = + + + +
   +↓ ↓    

= + + + + = + + + + +

= + + + + + = + = +

x y A x y v v v v

v v v v v v v v
v v v v Ax Ay x y

  

  

 

 

As you can see, the linearity property ultimately flows from the distributive law for vector 
addition. 
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Important Note: We began by looking at systems of linear equations and introduced matrices 
initially as a convenient way of keeping track of the manipulation of equations en route to a 
solution of the system. A matrix was effectively just “a box of numbers”. We now have a very 
different and extremely important new view of a matrix as a linear function. This functional 
view of an m n×  matrix as a linear function from nR  to mR  will be with us from now on. 

Meaning of the columns of a matrix 
Now that we are able to think of a matrix as a function, it’s possible to provide a simple 
interpretation of the columns of a matrix that will allow us to construct matrices based on 
information about how they act on vectors. 
In nR  we introduce the standard or elementary basis vectors  

1

1
0

0

 
 

=  
 
  

e


, 2

0
1

0

 
 

=  
 
  

e


, …, 

0
0

1
n

 
 

=  
 
  

e


. 

You have probably seen these vectors before under different names. For example, in R2, we 

have 1
1
0
 = =  

e i  and 2
0
1
 = =  

e j , and we can write any vector in R2 as: 

1 0
0 1

x x y x yy
     = = + = +          

x i j . 
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Similarly, in R3, we have 1

1
0
0

 
 = =
 
 

e i , 2

0
1
0

 
 = =
 
 

e j , and 3

0
0
1

 
 = =
 
 

e k , and we can write any 

vector in R3 as 
1 0 0
0 1 0
0 0 1

x
y x y z x y z
z

       
       = = + + = + +
       
       

x i j k . 

 
 
 

This same decomposition can be done in nR  as 
1

1 1 n n

n

x
x x

x

 
 = = + +
 
 

x e e  . Using our definition 

of the product of a matrix and a vector, we see that: 
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1 1 1 2 1

2 1 1 2 2

1

1
0 1 0 0 {1st column of the matrix }

0

0
1 0 1 0 {2nd column of the matrix }

0

0
0

1

n n

n n

n n

  ↑ ↑   = = + + + = =    ↓ ↓     
  ↑ ↑   = = + + + = =    ↓ ↓     

 ↑ ↑
 =
 
↓ ↓   

Ae v v v v v v A

Ae v v v v v v A

Ae v v

 



 









1 20 0 1 { th column of the matrix }n n n


 

= + + + = = 
 
 

v v v v A

 

In other words, the columns of a matrix tell us how the corresponding linear function acts on 
the basic vectors { }1, , ne e  and, quite significantly, these completely determine the matrix. In 
fact, for any vector 1 1 n nx x= + +x e e , we have 

1 1 1 1 1 1( )n n n n n nx x x x x x= + + = + + = + +Ax A e e Ae Ae v v   . 

We can now begin writing down some important examples of matrices. 
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Identity in nR : The identity function : n nId →R R  is simply ( )Id =x x . This is clearly linear 
(it preserves everything, including scaling and addition of vectors) and we have all we need to 
determine its corresponding n n×  (square) matrix, denoted by nI  (often just as I), and called 
the n n×  Identity matrix. 

1 1

2 2
1

( ) {1st column of the matrix}
1 0( ) {2nd column of the matrix}

0 1
( ) { th column of the matrix}

n n

n n

Id
Id

Id n

= =
 ↑ ↑  = =    ⇒ = =
   
↓ ↓    

= =

e e
e e

I e e

e e

 

   







 

This matrix has 0’s everywhere except on the main diagonal, and all of the diagonal entries are 
equal to 1. 

Dilation (scaling) in nR : This is a transformation of the form ( )T r=x x  for some fixed scalar 
r. We have: 

1 1

2 2
1

( ) {1st column of the matrix}
0( ) {2nd column of the matrix}

0
( ) { th column of the matrix}

n

n n

T r
rT r

r r
r

T r n

= =
 ↑ ↑  = =    ⇒ = =
   
↓ ↓    

= =

e e
e e

A e e

e e

 

   







. 

This also yields another diagonal matrix, once again with equal entries on the main diagonal. 
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Counterclockwise rotation in 2R : The transformation that rotates any vector in 2R  
counterclockwise through a fixed angle θ  is, in fact, a linear transformation (think about it in 
terms of preserving vector addition and scalar multiplication). We can determine its 2 2×  
(square) matrix by drawing a picture and using basic trigonometry. (It’s best to draw the angle 
relatively small to most easily see things.) We see that rotation of the basic vectors 1e  and 2e  

give:         1
cos
sin

θ
θ

 →   
e  and 2

sin
cos

θ
θ

− →   
e , so its matrix is cos sin

sin cosθ
θ θ
θ θ

− =   
R . 

Rotation-dilation in 2R : If we combine counterclockwise rotation through a fixed angle θ  

and scaling by a fixed scalar r, we have  1
cos
sin

r
r

θ
θ

 →   
e  and 2

sin
cos
r

r
θ
θ

− →   
e , so its matrix is 

cos sin
sin cos

r r
r r

θ θ
θ θ

− =   
A . If we let cosa r θ=  and sinb r θ=  we see that any matrix of the form 

a b
b a

− =   
A  will represent a rotation-dilation where the scaling is by 2 2r a b= +  and angle 

of rotation determined by tan b aθ =  (in the appropriate quadrant determined by the signs). 

For example, the matrix 2 3
3 2
− − =  − 

A  represents a rotation-dilation with scalar 13r =  with 

angle of rotation determined by tan 3 2θ = −  in the 2nd quadrant. This gives 123.69θ ≅ ° .  RW 


