Math S-21b - Lecture \#15 Notes

In this class we'll apply the Spectral Theorem and the Principal Axes Theorem to understand quadratic forms. We'll also discuss the Singular Value Decomposition of any matrix.
Definition: A quadratic form is a homogeneous polynomial of degree 2, i.e. a polynomial function $q(\mathbf{x})$ such that $q(t \mathbf{x})=t^{2} \mathbf{x}$, a pure quadratic expression in n variables.. For example:
(a) $q(x, y)=8 x^{2}-4 x y+5 y^{2}$
(b) $q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-2 x_{2}^{2}+4 x_{3}^{2}+2 x_{1} x_{2}-x_{1} x_{3}+4 x_{2} x_{3}$

Observation: Any quadratic form can be expressed as $\mathbf{x}^{\mathrm{T}} \mathbf{A x}$ where \mathbf{x} is an $n \times 1$ (column) vector and \mathbf{A} is a symmetric $n \times n$ matrix. For example:
(a)

$$
\begin{aligned}
& q(x, y)=8 x^{2}-4 x y+5 y^{2}=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{cc}
8 & -2 \\
-2 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} \\
& q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-2 x_{2}^{2}+4 x_{3}^{2}+2 x_{1} x_{2}-x_{1} x_{3}+4 x_{2} x_{3}
\end{aligned}
$$

(b)

$$
=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & -\frac{1}{2} \\
1 & -2 & 2 \\
-\frac{1}{2} & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}
$$

Principal Axes Theorem: Any quadratic form $q(\mathbf{x})=\mathbf{x}^{\mathrm{T}} \mathbf{A x}$ may be expressed without cross terms in new coordinates via an orthonormal change of basis. That is, there exists an orthonormal basis $\mathscr{B}=\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ and scalars $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$ such that if $\left\{y_{1}, \cdots, y_{n}\right\}$ are the coordinates relative to the basis $\mathscr{B}=\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$, then $q(\mathbf{x})=\mathbf{x}^{\mathrm{T}} \mathbf{A x}=\mathbf{y}^{\mathrm{T}} \mathbf{D} \mathbf{y}=\lambda_{1} y_{1}{ }^{2}+\cdots+\lambda_{n} y_{n}{ }^{2}$.

Proof: By the Spectral Theorem, since \mathbf{A} is symmetric it is orthogonally diagonalizable, i.e. it has real eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$ and associated orthonormal eigenvectors $\mathscr{B}=\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ for the matrix \mathbf{A} such that if is the orthogonal change of basis matrix $\mathbf{S}=\left[\begin{array}{ccc}\uparrow & & \uparrow \\ \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \\ \downarrow & & \downarrow\end{array}\right]$, then $[\mathbf{A}]_{\mathscr{B}}=\mathbf{S}^{-1} \mathbf{A} \mathbf{S}=\mathbf{S}^{\mathrm{T}} \mathbf{A S}=\mathbf{D}=\left[\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right]$, a diagonal matrix.
We may therefore write $\mathbf{A}=\mathbf{S D S}^{\mathrm{T}}$, so:

$$
q(\mathbf{x})=\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}=\mathbf{x}^{\mathrm{T}} \mathbf{S D}^{\mathrm{T}} \mathbf{x}=\left(\mathbf{S}^{\mathrm{T}} \mathbf{x}\right)^{\mathrm{T}} \mathbf{D}\left(\mathbf{S}^{\mathrm{T}} \mathbf{x}\right)=\left(\mathbf{S}^{-1} \mathbf{x}\right)^{\mathrm{T}} \mathbf{D}\left(\mathbf{S}^{-1} \mathbf{x}\right)=\mathbf{y}^{\mathrm{T}} \mathbf{D} \mathbf{y}=\lambda_{1} y_{1}{ }^{2}+\cdots+\lambda_{n} y_{n}{ }^{2} .
$$

Definitions: A quadratic form $q(\mathbf{x})=\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$ with symmetric matrix \mathbf{A} is called:
(a) positive definite if all of the eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$ are strictly positive.
(b) negative definite if all of the eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$ are strictly negative.
(c) positive semi-definite if all of the eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$ are greater than or equal to 0 .
(d) negative semi-definite if all of the eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$ are less than or equal to 0 .
(e) indefinite if some eigenvalues are positive and some or negative (and some may be equal to 0).

Some immediate applications are in identifying the graphs of quadratic functions $q(x, y)$ and identifying level sets of the form $q(x, y)=C$ (conic sections such as ellipses and hyperbolas) and $q(x, y, z)=C$ (quadric sections such as ellipsoids and hyperboloids of one or two sheets).
Example: The graph of the function $q(x, y)=8 x^{2}-4 x y+5 y^{2}=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{cc}8 & -2 \\ -2 & 5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$ can be easily identified by calculating the eigenvalues of \mathbf{A} as $\lambda_{1}=9$ and $\lambda_{2}=4$ with orthonormal eigenbasis $\mathbf{u}_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}2 \\ -1\end{array}\right], \mathbf{u}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2\end{array}\right]$. In (rotated) coordinates $\{u, v\}$ relative to this new basis, the graph $q=9 u^{2}+4 v^{2}$ can be identified as an (upward, rotated) paraboloid.

Similarly, the level set $q(x, y)=8 x^{2}-4 x y+5 y^{2}=36$ may be re-expressed as
$q=9 u^{2}+4 v^{2}=36$ or $\left(\frac{u}{2}\right)^{2}+\left(\frac{v}{3}\right)^{2}=1$, a (rotated) ellipse with semi-major axis 3 and semiminor axis 2 . Note that the longer axis corresponds to the smaller eigenvalue (slower growth) and the shorter axis corresponds to the larger eigenvalue (faster growth) to reach the given level set.

In the case of a level set of a quadratic function in 3 variables, if $q\left(x_{1}, x_{2}, x_{3}\right)=C>0$. If the eigenvalues have signs $\{+,+,+\}$, the level set will be a (rotated) ellipsoid. If the eigenvalues have signs $\{+,+,-\}$, the level set will be a (rotated) hyperboloid of one sheet. If the eigenvalues have signs $\{+,-,-\}$, the level set will be a (rotated) hyperboloid of two sheets.

Singular Values and the Singular Value Decomposition (SVD)

Given any $m \times n$ matrix A, it's possible to find an orthonormal basis $\mathscr{B}=\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ for the domain (\mathbf{R}^{n}) as well as an orthonormal basis $\boldsymbol{\mathcal { C }}=\left\{\mathbf{w}_{1}, \cdots, \mathbf{w}_{m}\right\}$ for the codomain (\mathbf{R}^{m}) such that the images $\left\{\mathbf{A u}_{1}, \cdots, \mathbf{A u}_{n}\right\}$ are orthogonal (some may be $\mathbf{0}$) and are scalar multiples, respectively, of the vectors $\left\{\mathbf{w}_{1}, \cdots, \mathbf{w}_{m}\right\}$ in the codomain. The scalars $\left\|\mathbf{A} \mathbf{u}_{i}\right\|=\sigma_{i}$ are called the singular values of the matrix \mathbf{A} (and the linear transformation that it represents).

This observation follows by considering the symmetric $n \times n$ matrix $\mathbf{A}^{\mathrm{T}} \mathbf{A}$. By the Spectral Theorem, this matrix yields an orthonormal basis of eigenvectors $\mathscr{B}=\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ with real eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$. Furthermore,

$$
\left(\mathbf{A} \mathbf{u}_{i}\right) \cdot\left(\mathbf{A} \mathbf{u}_{j}\right)=\left\langle\mathbf{A} \mathbf{u}_{i}, \mathbf{A} \mathbf{u}_{j}\right\rangle=\left(\mathbf{A} \mathbf{u}_{i}\right)^{\mathrm{T}} \mathbf{A} \mathbf{u}_{j}=\mathbf{u}_{i}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{u}_{j}=\lambda_{j} \mathbf{u}_{i}^{\mathrm{T}} \mathbf{u}_{j}=\lambda_{j}\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle .
$$

In the case where $i \neq j$, this yields that $\left\langle\mathbf{A} \mathbf{u}_{i}, \mathbf{A} \mathbf{u}_{j}\right\rangle=0$, i.e. that these images are orthogonal (or one or both could be $\mathbf{0}$). In the case where $i=j$, this yields that $\left\langle\mathbf{A} \mathbf{u}_{j}, \mathbf{A} \mathbf{u}_{j}\right\rangle=\left\|\mathbf{A} \mathbf{u}_{j}\right\|^{2}=\lambda_{j}$, so all of these eigenvalues must be greater than or equal to 0 . Furthermore, $\left\|\mathbf{A} \mathbf{u}_{j}\right\|=\sqrt{\lambda_{j}}=\sigma_{j}$ are the singular values. If we order the eigenvalues (and the singular values) in decreasing order, and if we create the orthogonal $n \times n$ matrix $\mathbf{P}=\left[\begin{array}{ccc}\uparrow & & \uparrow \\ \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \\ \downarrow & & \downarrow\end{array}\right]$ from the orthonormal basis for the domain and if we create the $m \times m$ matrix $\mathbf{Q}=\left[\begin{array}{ccc}\uparrow & & \uparrow \\ \mathbf{w}_{1} & \cdots & \mathbf{w}_{m} \\ \downarrow & & \downarrow\end{array}\right]$ from the orthonormal basis for the codomain, we can create the following commuting diagram describing of vectors are transformed relative to the standard bases and these preferred orthonormal bases:

$$
\begin{aligned}
& \left\{\mathbf{R}^{n}, \mathcal{E}_{n}\right\} \xrightarrow{\mathbf{A}}\left\{\mathbf{R}^{m}, \mathcal{E}_{m}\right\} \\
& \mathbf{P} \uparrow \quad \mathbf{Q} \uparrow \\
& \left\{\mathbf{R}^{n}, \mathscr{B}\right\} \xrightarrow{\Sigma}\left\{\mathbf{R}^{m}, \boldsymbol{e}\right\}
\end{aligned}
$$

Since \mathbf{P} and \mathbf{Q} are orthogonal matrices, $\mathbf{P}^{-1}=\mathbf{P}^{\mathrm{T}}$ and $\mathbf{Q}^{-1}=\mathbf{Q}^{\mathrm{T}}$, so we get $\mathbf{A}=\mathbf{Q} \boldsymbol{\Sigma} \mathbf{P}^{\mathrm{T}}$. This is known as the Singular Value Decomposition (SVD). If $m=n$, i,e, if A is a square matrix, then the matrix $\mathbf{\Sigma}$ will be diagonal with the singular values on the diagonal. However the SVD also applies to any matrix - in which case the singular values will still appear along the "diagonal" starting at the upper-left position with 0's everywhere else.
Example: Consider the matrix $\mathbf{A}=\left[\begin{array}{cc}6 & 2 \\ -7 & 6\end{array}\right]$. We calculate
$\mathbf{A}^{\mathrm{T}} \mathbf{A}=\left[\begin{array}{cc}6 & -7 \\ 2 & 6\end{array}\right]\left[\begin{array}{cc}6 & 2 \\ -7 & 6\end{array}\right]=\left[\begin{array}{cc}85 & -30 \\ -30 & 40\end{array}\right]=\mathbf{B}$. This yields the eigenvalues (in decreasing order) $\lambda_{1}=100$ and $\lambda_{2}=25$. These yield, respectively, the orthonormal basis vectors $\mathbf{u}_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}2 \\ -1\end{array}\right]$, $\mathbf{u}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2\end{array}\right]$. We then calculate $\mathbf{A} \mathbf{u}_{1}=10\left(\frac{1}{\sqrt{5}}\left[\begin{array}{c}1 \\ -2\end{array}\right]\right)=10 \mathbf{w}_{1}, \mathbf{A} \mathbf{u}_{2}=5\left(\frac{1}{\sqrt{5}}\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)=5 \mathbf{w}_{2}$. This yields the orthogonal matrices $\mathbf{P}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right]$ and $\mathbf{Q}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]$ and $\boldsymbol{\Sigma}=\left[\begin{array}{cc}10 & 0 \\ 0 & 5\end{array}\right]$.

Example: Consider the matrix $\mathbf{A}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$. We calculate
$\mathbf{A}^{\mathrm{T}} \mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1\end{array}\right]=\mathbf{B}$. This yields the eigenvalues (in decreasing order)
$\lambda_{1}=3, \lambda_{2}=1$, and $\lambda_{3}=0$. These yield, respectively, the orthonormal basis vectors
$\mathbf{u}_{1}=\frac{1}{\sqrt{6}}\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \mathbf{u}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$, and $\mathbf{u}_{3}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$. We then calculate $\mathbf{A} \mathbf{u}_{1}=\sqrt{3}\left(\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\sqrt{3} \mathbf{w}_{1}$,
$\mathbf{A} \mathbf{u}_{2}=1\left(\frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right)=1 \mathbf{w}_{2}$, and $\mathbf{A u _ { 3 }}=\mathbf{0}$. This yields the orthogonal matrices
$\mathbf{P}=\left[\begin{array}{ccc}1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\ 2 / \sqrt{6} & 0 & -1 / \sqrt{3} \\ 1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3}\end{array}\right]$ and $\mathbf{Q}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ and $\boldsymbol{\Sigma}=\left[\begin{array}{ccc}\sqrt{3} & 0 & 0 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{ccc}\sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0\end{array}\right]$. So
$\mathbf{A}=\mathbf{Q} \mathbf{\Sigma} \mathbf{P}^{\mathrm{T}}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ccc}\sqrt{3} & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{ccc}1 / \sqrt{6} & 2 / \sqrt{6} & 1 / \sqrt{6} \\ 1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\ 1 / \sqrt{3} & -1 / \sqrt{3} & 1 / \sqrt{3}\end{array}\right]$ is the singular value decomposition.

