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Math S-21b – Lecture #14 Notes 
In the previous lecture, we explored how to interpret the presence of a complex conjugate pair 
of eigenvalues for an n n×  matrix A and discovered that in this case there exists a 2-
dimensional invariant subspace within which the linear transformation acts as a rotation-
dilation relative to an appropriately chosen basis. We’ll continue this discussion this week with 
another example or two and also interpret what the eigenvalues have to say about stability if the 
linear transformation is applied repeatedly in a discrete dynamical system. We’ll also take a 
look at how to handle repeated eigenvalues in the case where the geometric multiplicity is 
strictly less that the algebraic multiplicity. We will then also answer the question of under what 
conditions a matrix will be not only diagonalizable, but also with an orthonormal basis of 
eigenvectors. This is the subject of the Spectral Theorem. 

3× 3  example with complex eigenvalues: Consider the matrix 
0 0 1
1 0 0
0 1 0

 
 =
 
 

A . This matrix 

permutes the standard basis vectors (and hence the coordinate axes) taking the x-axis to the y-

axis, the y-axis to the z-axis, and the z-axis to the x-axis. We write 
0 1

1 0
0 1

λ
λ λ

λ

− 
 − = −
 − 

I A  and 

find the characteristic polynomial to be 3 21 ( 1)( 1) 0λ λ λ λ− = − + + = . This gives the three 
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eigenvalues 1µ = , 31
2 2iλ = − + , and 31

2 2iλ = − − . These eigenvalues all have modulus 1, 
one real eigenvalue and a complex conjugate pair with arguments 120± ° . They are equally 
spaced on the unit circle in the complex plane. 

The eigenvalue 1µ =  gives the eigenvector 1

1
1
1

 
 =
 
 

v , which is, in fact, the axis of rotation for 

this linear transformation. 

The eigenvalue 31
2 2iλ = − +  gives 

31
2 2

31
2 2

31
2 2

0 1 0

1 0 0

0 1 0

i

i

i

 − + −
 
 − − +
 

− − +  

. Rather than follow the 

usual row reduction procedure, it’s usually easier to simply write down what conditions this 

imposes on any eigenvector 
α
β
γ

 
 =
 
 

w . The first row gives that 

( ) ( ) ( )3 31 1
2 2 2 20 1 3 2i i iα γ α γ α γ− + − = ⇒ − + = ⇒ − + = . Since we have one degree of 
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freedom here, let’s simply choose 2α =  which then gives 1 3iγ = − + . The third row gives 

( ) ( ) ( ) ( )3 3 31 1 1
2 2 2 2 2 20 1 3 1 3i i i i iβ γ β γ− + − + = ⇒ = − + = − + − + = − − . 

So 
2 02

1 3 1 3
11 3 3

i i i
i

    
    = − − = − + − = +    −− +       

w u v , and we choose the basis { },v u  as basis for the 2-

dimensional subspace within which this transformation acts as rotation through arg( ) 120λ = °  
with no scaling ( 1λ = ). 

If we put all the eigenvectors together as { }1, ,= v v uB  and let 
1 0 2
1 3 1
1 3 1

 
 = − − 

−  

S , we’ll have: 

[ ] 1

120

31
2 2
3 1
2 2

1 0 0 1 0 0
00
00

R
−

°

      = = − − =      − −  

A S AS
B
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In this form, we see exactly the 120° rotation associated with this matrix. Furthermore, the 
vectors { },v u  are a basis for the plane perpendicular to the axis of rotation, a plane that 
remains invariant under this transformation. This is much like the subspace spanned by a real 
eigenvector, which is a fixed direction. For a typical 3 3×  matrix with one real eigenvalue and 
a pair of complex conjugate eigenvalues, the invariant direction corresponding to the real 
eigenvalue need not be perpendicular to the rotational plane associated with a complex 
conjugate pair of eigenvalues. 

Diagonalization over the complex numbers 
Technically, if we are willing to allow vectors and matrices to have complex entries, we can 
indeed diagonalize any matrix with distinct eigenvalues, including complex eigenvalues. We 
can also do this in the case of any repeated eigenvalues as long as the geometric multiplicities 

match the algebraic multiplicities. For example, the matrix 2 1
3 2

− =   
A  from the previous 

class had eigenvalues 2 3iλ = +  and 2 3iλ = − . The eigenvalue 2 3iλ = +  produced the 

complex eigenvector 
1

3i
 

=  − 
w , and 2 3iλ = −  will have the complex conjugate of w  as 
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its eigenvector, 
1

ˆ
3i

 
=  
 

w . If we let 
1 1

3 3i i
 

=  − 
S , then 

1 02 3 0
00 2 3

i
i

λ
λ

−  +  = = =   −   
S AS D . 

Though the rotation-dilation form provides insight into the structure and dynamics of a matrix 
with complex eigenvalues, it can often be simpler from a computational point of view to use 
this diagonal form (even though it has complex entries). 

Repeated eigenvalues 
When the algebraic multiplicity k of an eigenvalue λ  of A is greater than 1, we will usually not 
be able to find k linearly independent eigenvectors corresponding to this eigenvalue. This is the 
case where the geometric multiplicity is strictly less than the algebraic multiplicity of this 
eigenvalue. The next best thing to an eigenvector is often referred to as a “generalized 
eigenvector”. 

If, for example, a matrix A had λ  as an eigenvalue with algebraic multiplicity 2, but the 
geometric multiplicity was 1, we could certainly find an actual eigenvector 1v  such that 

1 1λ=Av v , but we would not be able to product a 2nd linearly independent eigenvector. 
However, it can be shown (and we’ll demonstrate this in an example) that we will be able to 
find a vector 2v  such that 2 1 2λ= +Av v v . Another way of stating this is that 1( )λ − =I A v 0  
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and 2 1( )λ − = −I A v v , so 2
2 1( ) ( )λ − = − λ − =I A v I A v 0 . If an eigenvector is a vector in 

ker( )λ −I A , then a generalized eigenvector would be in 2ker( )λ −I A . 

[ ]1 1

2 1 2

1
0

λ λ
λ λ

=   ⇒ = =   = +   
Av v A BAv v v B

 

In the case where the algebraic multiplicity was 3 and the geometric multiplicity was only 1, 
we’d also seek a vector in 3ker( )λ −I A , namely a vector 3v  such that 3 2 3= + λAv v v . The 
idea is that a generalized eigenvector is a vector such that the transformation acts on it by 
scaling together with a shift by the previously found vector. 

[ ]
1 1

2 1 2

3 2 3

1 0
0 1
0 0

λ λ
λ λ

λ λ

=      = + ⇒ = =    = +   

Av v
Av v v A B
Av v v

B
 

It can be shown that this process will always yield k linearly independent vectors corresponding 
to the eigenvalue λ, the first few vectors of which will be actual eigenvectors of A. If a matrix 
A has all real eigenvalues and if we carry out this process for all eigenvalues of A, we’ll 
produce a complete basis { }1, , n= v vB   where we assume that all vectors corresponding to a 
given eigenvalue are grouped together and ordered in the way in which they were found. 
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For example, if A is a 10 10×  matrix with nonrepeating eigenvalues 1λ , 2λ , and 3λ ; with 
eigenvalue 4λ  of multiplicity 3 with only one eigenvector; and with eigenvalue 5λ  with 
multiplicity 4 with just two linearly independent eigenvectors; then we’ll be able to produce a 
basis { }1 10, ,= v vB   where 1v , 2v , and 3v  correspond, respectively, to 1λ , 2λ , and 3λ ; 4v , 

5v , and 6v  correspond to 4λ ; 
and where 7v , 8v , 9v  and 10v  
correspond to 5λ ; and where 
the matrix relative to this 
special basis is of the form 
shown at left where S is the 
change of basis matrix. 

If we arrange things so that, for 
example, the eigenvalues are 
listed in increasing order, the 
resulting matrix is called the 
Jordan canonical form of the 

matrix. It follows that any matrix A with all real eigenvalues is similar to a matrix in Jordan 
canonical form, with Jordan blocks (as indicated by the dotted lines) associated with each 
eigenvalue. If A and B are similar matrices, they necessarily have the same characteristic 

[ ]

1

2

3

4

41

4

5

5

5

5

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

−

λ 
 λ 
 λ
 λ 
 λ

= =  
λ 

 λ
 

λ 
 λ 
 λ 

A S AS
B
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polynomials, the same eigenvalues with the same algebraic and geometric multiplicities, and 
hence the same Jordan canonical forms. In other words, they represent the “same” linear 
transformation relative to two different bases. 

Example: Consider the matrix 0 4
1 4

 =  − 
A . We write 4

1 4
λ − λ − =  λ − 

I A . The characteristic 

polynomial is 2 24 4 ( 2) 0λ − λ + = λ − = , so there is only the one eigenvalue 2λ =  with 
algebraic multiplicity 2. 

In seeking eigenvectors, we have 2 4 0 1 2 0
1 2 0 0 0 0

− −   →   −   
, so any eigenvector α

β
 =   

v  would 

have 2 0α β− =  or 2α β= . We can choose the eigenvector 1
2
1
 =   

v . 

We next want a vector 2v  such that 2 1 2= + λAv v v . This translates into 2 1( )λ − = −I A v v  or 

the augmented matrix 2 4 2 1 2 1
1 2 1 0 0 0

− − − −   →   − −   
. All solutions are of the form 1 2t

t
− + 
  

. 

Any choice of t will yield a generalized vector. If we take 1t = , we get the generalized 
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eigenvector 2
1
1
 =   

v . Using the basis { }1 2,= v vB , the change of basis matrix will be 

2 1
1 1
 =   

S  and 1 1 1
1 2

− − =  − 
S , and we have: 

1 1 1 0 4 2 1 1 1 4 4 2 1
1 2 1 4 1 1 1 2 2 3 0 2

− − −           = = = =           − − −           
S AS B  

(not diagonal, but upper triangular with a 1 on the superdiagonal) 

An easy calculation shows that for any matrix of the form 1
0
λ =  λ 

B , we’ll have 

2
2

2
2

0
 λ λ=  λ 

B , 
3 2

3
3

3
0

 λ λ=  λ 
B , and, for any positive integer t, 

1

0

t t
t

t
t − λ λ=  λ 

B . This is not as 

simple as would be the case for a diagonal matrix, but it’s still relatively simple. There are 
similar results for high multiplicity cases. 
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Example: Consider the matrix 
1 1 1
1 1 0
2 2 3

− 
 =
 − 

A . Its characteristic polynomial is 

3 25 8 4λ λ λ− + −  which can be factored as 2 2( 1)( 4 4) ( 1)( 2) 0λ λ λ λ λ− − + = − − = , so the 
eigenvalues are 1λ =  with multiplicity 1, and 2λ =  with algebraic multiplicity 2. 

The eigenvalue 1λ =  yields the eigenvector 1

0
1
1

 
 =
 
 

v , and the repeated eigenvalue 2λ =  

yields the single linearly independent eigenvector 2

1
1
0

 
 =
 
 

v . 

Following the procedure outlined earlier, we can find a third basis vector 3v  such that 

3 2 3 2 32λ= + = +Av v v v v . One such vector is the vector 3

1
0
2

 
 =
 − 

v . Using the basis 

{ }1 2 3, ,= v v vB , and the matrix 
0 1 1
1 1 0
1 0 2

 
 =
 − 

S , we’ll get 1
1 0 0
0 2 1
0 0 2

−
 
 = =
 
 

S AS B . 
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If we should need to calculate any powers of the matrix A, we can simply calculate 1−=A SBS  

and deduce from this that 1 1 1
1 0 0
0 2 2
0 0 2

n n n n

n
n− − −

 
 = =
 
  

A SB S S S . 

Summary 
Any n n×  matrix will yield n eigenvalues, including any complex conjugate pairs and any 
repeated eigenvalues. We will always be able to find a preferred basis relative to which the 
matrix will take on a very simple form. If all the eigenvalues are real and the geometric and 
algebraic multiplicities match for all eigenvalues, then the matrix can be diagonalized. Even in 
the case where there are complex eigenvalues the matrix can still be put in diagonal form if you 
are willing to live with complex numbers on the diagonal. The alternative is to have 2 2×  
rotation-dilation blocks straddling the diagonal. In the case of repeated eigenvalues with 
geometric multiplicity less than the algebraic multiplicity, we can almost diagonalize except for 
some 1’s on the superdiagonal. This is the essence of the Jordan Canonical Form of a matrix. 
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Stability and powers of a matrix (discrete linear dynamical systems) 
We have seen that in the case of a discrete linear dynamical system where ( 1) ( )t t+ =x Ax , so 

( ) (0)tt =x A x , the location of the eigenvalues in the complex plane give essentially all the 
qualitative information about the evolution of the system. Basically, it’s just this: 

(a) If all of the eigenvalues of A have 1iλ < , then all (discrete) trajectories will tend toward 0. 
We would call such a system a stable system. 

(b) If even one eigenvalue has 1iλ > , then for almost all initial states (0)x , the trajectories 
will grow without bound. We would call this an unstable system. 

(c) If there are any complex conjugate pairs of eigenvalues, then any trajectory within the 
invariant 2-dimensional subspace associated with this pair of eigenvalues will exhibit 
rotation. If the modulus of these eigenvalues is greater than 1 the trajectory will spiral out; 
and if the modulus of the eigenvalues is less than 1 it will spiral in. These will be discrete 
spirals, of course. If the modulus is equal to one, the trajectory will move around an ellipse 
in this invariant plane. 
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Orthogonal diagonalizability and the Spectral Theorem 

Now that we’ve addressed the issue of when an n n×  matrix A can be diagonalized (there 
exists a basis consisting of eigenvectors of A), we now ask: 

Q: When is it possible to diagonalize an n n×  matrix A and also have the basis of 
eigenvectors be an orthonormal basis? 

Definition: A (real) n n×  matrix A is called orthogonally diagonalizable if there exists an 
orthonormal basis for nR  consisting of eigenvectors of the matrix A. 

We have previously established, for example, that eigenvectors corresponding to distinct 
eigenvalues must be linearly independent, but they certainly did not also have to be orthogonal. 
The necessary and sufficient condition for a matrix to be orthogonally diagonalizable is the 
subject of the Spectral Theorem. 

Spectral Theorem: A (real) n n×  matrix A is orthogonally diagonalizable if and only if A is 
symmetric. 

Note: The name of this theorem (as well as the name spectrum for the set of 
eigenvalues of a given matrix) derives from the analogous theorem for linear 
operators acting on a space of functions. Specifically, in Hilbert Space (an inner 
product space used in the study of quantum mechanics), the Schrödinger operator 
(denoted by H) acts on wave functions (denoted by ψ ) in the same way that a 
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matrix acts on vectors. Instead of seeking eigenvectors such that = λAv v  where λ  
is an eigenvalue, in Hilbert space we would seek wave functions such that 
H Eψ = ψ  where E is the energy level. Energy is proportional to frequency, so the 
set of all energy levels is in proportion with the set of all frequencies, hence the 
appropriateness of the name spectrum. The analogue of a matrix being symmetric is 
that the operator H be self-adjoint. In this context, we are then assured that a self-
adjoint operator will yield orthonormal eigenfunctions. 

The proof of the Spectral Theorem for matrices is quite simple in one direction, but more 
involved (and more interesting) in the other direction. We’ll address them separately. 

Prop: If A is orthogonally diagonalizable, then A is symmetric. 
Proof: If A is orthogonally diagonalizable, then it admits an orthonormal basis of eigenvectors 

{ }1, , n= v vB   with corresponding eigenvalues { }1, , nλ λ . All of these eigenvalues will be 
real numbers, and there may be multiplicity greater than 1 for some eigenvalues. The crucial 

fact is that in this case the change-of-basis matrix 1 n

 ↑ ↑
 =
 
↓ ↓  

S v v  will be an orthogonal 

matrix because it has orthonormal columns, so 1 T− =S S . Since 1 T− = =S AS S AS D , a diagonal 
matrix, we have that T=A SDS , so T T T T T T( )= = = =A SDS SD S SDS A  (where we used the 
fact that T =D D  for any diagonal matrix). So A is symmetric. 
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Projections and Reflections: The Spectral Theorem gives us another way of understanding 
why the matrix of any orthogonal projection or reflection must necessarily be symmetric. (The 
converse is false, by the way.) Simply note that if V is any subspace of nR , we can use Gram-
Schmidt to produce an orthonormal basis { }1, , kv v  for V, and an orthonormal basis 

{ }1, ,k n+v v  for V ⊥ . In the case of orthogonal projection, V will be the eigenspace associated 

with the eigenvalue 1, and V ⊥  will be the eigenspace associated with the eigenvalue 0. 
Combining these basis vectors, { }1, , n= v vB   will then be an orthonormal basis for nR  
consisting of eigenvectors, so orthogonal projection will therefore be orthogonally 
diagonalizable. The Spectral Theorem then says that its matrix must be symmetric. We can use 
this same basis to draw the same conclusion for reflection across the subspace V. The only 
difference will be that V ⊥  will be the eigenspace associated with the eigenvalue 1− . 

Note: We came up with this same conclusion earlier by noting that if  1 k

 ↑ ↑
 =
 
↓ ↓  

B v v  where 

{ }1, , kv v  is an orthonormal basis for V, then T=A BB  will be the matrix for orthogonal 

projection onto the subspace V. We easily compute that T T T T( )= = =A BB BB A . The matrix 
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for reflection across the subspace V is given by T2 2= − = −R A I BB I , and we compute that 
T T T T(2 ) 2 2= − = − = − =R A I A I A I R . 

Example: Given the symmetric matrix 8 2
2 5

− =  − 
A , find its eigenvalues and (an 

orthonormal basis of) eigenvectors. 

Solution: 8 2
2 5

λ − λ − =  λ − 
I A , so 2( ) 13 36 ( 9)( 4)p λ = λ − λ + = λ − λ −A . This yields 

eigenvalues 1 9λ =  and 2 4λ = . We can easily produce the corresponding eigenvectors 2
1

 
 − 

 

and 1
2
 
  

 for these eigenvalues, but in the context of the Spectral Theorem we want to 

normalize these to be unit vectors. So we choose 1
1
5

2
1

 =  − 
v  and 2

1
5

1
2
 =   

v . It’s clear that 

{ }1 2,v v  is then an orthonormal basis of eigenvectors. The change-of-basis matrix 

1
5

2 1
1 2

 =  − 
S  is an orthogonal matrix and, due to our choice of orientation of the vectors, a 

simple rotation matrix. 
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Example: Given the symmetric matrix 
1 1 1
1 1 1
1 1 1

 
 =
 
 

B , find its eigenvalues and (an orthonormal 

basis of) eigenvectors. 

Solution: 
1 1 1

1 1 1
1 1 1

λ − − − 
 λ − = − λ − −
 − − λ − 

I B , so 

2 3 2 2( ) ( 1)( 2 ) 1( ) 1( ) 3 ( 3)p λ = λ − λ − λ + −λ − λ = λ − λ = λ λ −B . The eigenvalues are 1 3λ =  
(multiplicity 1) and 2 3 0λ = λ =  (multiplicity 2). For the eigenvalue 1 3λ = , we have: 

2 1 1 0 1 0 1 0
1 2 1 0 0 1 1 0
1 1 2 0 0 0 0 0

RREF
− − −   

   − − → −
   − −   

. 

This gives the (normalized) eigenvector 1
1
3

1
1
1

 
 =
 
 

v . 
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For the repeated eigenvalue 2 3 0λ = λ = , we have 
1 1 1 0 1 1 1 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0

RREF
− − −   
   − − − →
   − − −   

. 

This yields eigenvectors of the form 
1 1

1 0
0 1

s t
s s t
t

− − − −     
     = +
     
     

. Though it’s tempting to choose 

these two spanning vectors as our basis vectors, they are not orthogonal, and in the context of 
the Spectral Theorem we are seeking an orthonormal basis or eigenvectors. We can start by 

(arbitrarily) choosing 2
1
2

1
1
0

− 
 =
 
 

v  and then seek a vector 
s t
s
t

− − 
 
 
 

 that’s orthogonal to 2v . 

This gives that 2 0s t+ = , so if we were to pick 1s = , we’ll get 2t = − , so the (normalized) 

eigenvector will be 3
1
6

1
1
2

 
 =
 − 

v . You can then check that { }1 2 3, ,v v v  is an orthonormal basis.  
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The change-of-basis matrix in this case will be 
1 1 1

3 2 6
1 1 1

3 2 6
1 2

3 60

 −
 =  

−  

S . It may not be pretty, 

but it is orthogonal, and 1 T− =S S . It’s a rotation with a reflection, hence reverses orientation. 
That is, although { }1 2 3, ,e e e  is right-handed, { }1 2 3, ,v v v  is left-handed. Also 

1 T
3 0 0
0 0 0
0 0 0

−
 
 = = =
 
 

S BS S BS D . 

Now, back to the other half of the proof of the Spectral Theorem. 

Prop: If A is symmetric, then A is orthogonally diagonalizable. 

We prove this as a series of three separate facts. By default, we treat vectors as column vectors. 

(a) If A is symmetric, then all the eigenvalues of A must be real. 

Proof of (a): Suppose one of the eigenvalues of A was a ibλ = +  with eigenvector i= +v x y . 
We have previously shown that the eigenvalue a ibλ = −  will then have eigenvector ˆ i= −v x y . 

Consider the dot product 2 2ˆ ˆ( ) ( ) ( ) ( ) ( )i i⋅ = λ ⋅ = λ + ⋅ − = λ +Av v v v x y x y x y . 
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But 2 2T T T T T Tˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )⋅ = = = = = ⋅ = λ ⋅ = λ +Av v v Av v Av v A v v Av Av v v v x y , where we 

used the fact that Tv̂ Av  is a 1 1×  matrix and is therefore symmetric. Equating these expressions, 
we see that 2 2 2 2( ) ( )λ + = λ +x y x y , so 2 2( )( ) 0λ −λ + =x y . Since i= +v x y  is a 

nonzero eigenvector, 2 2 0+ ≠x y . So it must be the case that 0λ −λ = . Therefore λ = λ , 
and λ  must be real. 

(b) If A is symmetric and if 1 2λ ≠ λ  are two distinct (real) eigenvalues with (nonzero) 
eigenvectors 1v  and 2v , then 1v  and 2v  must be orthogonal. 

Proof of (b): The proof is very similar to the previous one, except we begin by considering 
T

1 2 2 1 1 1 2 1 1 2( ) ( ) ( )⋅ = = λ ⋅ = λ ⋅Av v v Av v v v v . The boxed expression is a 1 1×  matrix and is 
therefore symmetric, so 

T T T T T T
2 1 2 1 1 2 1 2 2 1 2 2 1 2 1 2( ) ( )= = = = ⋅ = λ ⋅ = λ ⋅v Av v Av v A v v Av Av v v v v v . 

Therefore 1 1 2 2 1 2( ) ( )λ ⋅ = λ ⋅v v v v , so 1 2 1 2( )( ) 0λ −λ ⋅ =v v . Since 1 2λ ≠ λ  it follows that 

1 2 0⋅ =v v , i.e. that the eigenvectors are orthogonal. We can then normalize them to get 
orthonormal eigenvectors. 
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If all the eigenvalues are distinct, then we can use this to produce an orthonormal basis of 
eigenvectors. The only remaining potential problem is the case of repeated eigenvalues. We 
saw in the previous example that we were still able to construct an orthonormal basis in this 
case, but how would you prove this in general? Well, it’s complicated. A proof by induction 
follows. 

(c) Generally, if A is symmetric, then A is orthogonally diagonalizable – even in the case of 
eigenvalues with multiplicity greater than 1. 

Proof of (c): The 1 1×  case is obvious. [ ]a=A  is symmetric and is already diagonal. 

Assume the conclusion is true for any symmetric ( 1) ( 1)n n− × −  matrix B. We want to prove 
that it’s also true for any n n×  symmetric matrix A. To this end, let λ  be an eigenvalue of A 
with unit eigenvector 1v . Extend this to an orthonormal basis { }1, , n= v vB   for nR  (not 

necessarily consisting of eigenvectors other than 1v ). Then 1 n

 ↑ ↑
 =
 
↓ ↓  

P v v  will be an 

orthogonal matrix. Consider the matrix 1 T [ ]− = =P AP P AP A B . 
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By construction, the 1st column of TP AP  is 1
0

0

λ 
 

λ =  
 
  

e


. But T T T T T( ) = =P AP P A P P AP , so 

TP AP  is symmetric. It must therefore be of the form T

0 0
0

0

λ 
 

=  
 
  

P AP B





 where B is a 

symmetric ( 1) ( 1)n n− × −  matrix. By the induction hypothesis, B is orthogonally diagonalizable, 
so there exists an orthogonal ( 1) ( 1)n n− × −  matrix Q such that T

1n−=Q BQ D , a diagonal 
( 1) ( 1)n n− × −  matrix. 

If we let 

1 0 0
0

0

 
 

=  
 
  

R Q





, then R will be an orthogonal matrix. 

If we then let =S PR , we have: 
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T T T T
T

T
1

1 0 0 0 0 1 0 0
0 0 0( ) ( ) ( )

0 00

0 0 0 0
0 0

00
n−

λ     
     

= = =      
     

         
λ λ   
   

= = =   
   

     

S AS PR A PR R P AP R B QQ

DDQ BQ


 

 








 

So A is orthogonally diagonalizable. This completes the proof by induction. 

In the next class we’ll apply the Spectral Theorem to prove the Principal Axes Theorem 
which can be used to understand quadratic forms. 

Notes by Robert Winters 


