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Math S-21b – Lecture #13 Notes 
We continue the discussion of eigenvalues, eigenvectors, and diagonalizability of matrices. We 
want to know what conditions will assure that a matrix can be diagonalized and what the 
obstructions are to this being possible. We’ll look at some algebraic invariants of a linear 
transformation, namely its trace and determinant, and relate these to the eigenvalues of a matrix 
representing the transformation. We’ll discuss what the presence of a complex conjugate pair of 
eigenvalues means in terms of invariant subspaces and how the transformation acts within such 
a subspace. 
Summary of results 
If A is an n n×  matrix, we call a vector v an eigenvector of A if ( )T λ= =v Av v  for some 
scalar λ . This scalar λ  is called the eigenvalue associated with the eigenvector. The existence 
of an eigenvector depends upon whether there are any solutions to the equation ( )λ − =I A v 0 , 
and this is only possible if the matrix λ −I A  is not invertible. A necessary and sufficient 
condition for this is that ( ) det( ) 0Ap λ λ= − =I A . This will always be an nth degree polynomial 
in λ  called the characteristic polynomial of A. So λ −I A  will have a nontrivial kernel if and 
only if λ  is a root of this characteristic polynomial. The eigenvalues are therefore the roots of 
the characteristic polynomial. The set of all eigenvalues of a matrix A is called the spectrum of 
A. By the Fundamental Theorem of Algebra, this can always be factored as a product of linear 
factors and irreducible quadratic factors. The linear factors yield real roots, and the irreducible 
quadratic factors yield (by the quadratic formula) complex conjugate pairs of roots. 
If an eigenvalue λ  occurs as a repeated root of the characteristic polynomial of A, we refer to 
the multiplicity of the root as the algebraic multiplicity of the eigenvalue. For any eigenvalue 
λ  of A, the subspace ker( )λ −I A  is called the eigenspace of λ , or Eλ . The geometric 
multiplicity is dim[ker( )]λ −I A , i.e. the number of linearly independent eigenvectors 
associated with this eigenvalue. 
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If, for an n n×  matrix A, we are able to construct a basis 1{ , , }n= v vB   for all of nR  
consisting of eigenvectors, we call this an eigenbasis and say that the matrix is diagonalizable. 

If A is diagonalizable with eigenbasis 1{ , , }n= v vB   and 
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↓ ↓  
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If a matrix A is diagonalizable and we write [ ] 1−= =A S AS D
B

 for some change of basis 

matrix S, then 1−=A SDS  and 1 1 1 1( )( ) ( )t t− − − −= =A SDS SDS SDS SD S  where 
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0
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 =
 
  

D B . 

We proved that eigenvectors corresponding to distinct eigenvalues are linearly 
independent which yielded the corollary that if A is an n n×  matrix with distinct, real 
eigenvalues, then A must be diagonalizable. This also means that for a matrix A to fail to be 
diagonalizable, its spectrum must contain either repeated eigenvalues, complex eigenvalues, or 
possibly both. 

It is possible for a matrix with repeated eigenvalues to still be diagonalizable. In the case where 
all of the eigenvalues of a matrix are real but with some multiplicity, as long as 

( ) ( )i iGM AMλ λ=  for each eigenvalue iλ  (that is, the geometric and algebraic multiplicities 
are the same), the matrix will still be diagonalizable. So the only obstructions to being able to 
diagonalize an n n×  matrix are the existence of complex eigenvalues or having a repeated 
eigenvalue where its geometric multiplicity is strictly less than its algebraic multiplicity. 
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Example: Find the eigenvalues and eigenvectors for the matrix 
2 3 3
3 2 3
3 3 4

− − 
 = − −
 − − 

A  and 

determine whether this matrix is diagonalizable. Find an expression for 0
tA x  for the vector 

0

6
1
2

 
 =
 
 

x . 

Solution: We first write 
2 3 3

3 2 3
3 3 4

λ
λ λ

λ

+ − 
 − = + −
 − 

I A . The characteristic polynomial is then: 

2

3 2

( ) det( ) ( 2)( 2 1) 3(3 3) 3(3 3 )

3 2 ( 1) ( 2) 0
Ap λ λ λ λ λ λ λ

λ λ λ λ

= − = + − + − − − −

= − + = − + =

I A
 

This gives the eigenvalues 1 1λ =  with algebraic multiplicity 2, and 2 2λ = −  with algebraic 
multiplicity 1. 

Taking 1 1λ = , we seek eigenvectors: 
3 3 3 0 1 1 1 0
3 3 3 0 0 0 0 0
3 3 3 0 0 0 0 0

− −   
   − →
   −   

. Because this has rank 1, 

its kernel will have dimension 2, so the geometric multiplicity will be 2. For eigenvectors we 

can parameterize the kernel as 
1

2

3

x s t
x s
x t

= − +  = 
 = 

, 
1 1

1 0
0 1

s t
−   
   = +
   
   

x , so the eigenspace is spanned 
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by 
1 1

1 , 0
0 1

 −                 

. Taking 2 2λ = − , we seek eigenvectors: 
0 3 3 0 1 0 1 0
3 0 3 0 0 1 1 0
3 3 6 0 0 0 0 0

− −   
   − → −
   −   

. This 

has rank 2 and the geometric multiplicity is 1. For eigenvectors we can parameterize the kernel 

as 
1

2

3

x t
x t
x t

=  = 
 = 

, 
1
1
1

t
 
 =
 
 

x , so the eigenspace is spanned by 
1
1
1

         

. 

Taken together, 
1 1 1

1 , 0 , 1
0 1 1

 −            =              

B  is a basis of eigenvectors, so the matrix is diagonalizable 

even though there was a repeated eigenvalue. 

If we let 
1 1 1

1 0 1
0 1 1

− 
 =
 
 

S , then we can calculate 1
1 0 1
1 1 2

1 1 1

−
− 
 = − −
 − 

S  and 1
1 0 0
0 1 0
0 0 2

−
 
 = =
 − 

S AS D . 

We can then write 1−=A SDS  and 1t t −=A SD S , so: 

1
0 0

1 1 1 1 0 0 1 0 1 6
1 0 1 0 1 0 1 1 2 1
0 1 1 1 1 1 20 0 ( 2)

1 1 ( 2) 1 5( 2)4
1 0 ( 2) 3 4 5( 2)

50 1 ( 2) 3 5( 2)

t t

t

t t

t t

t t

−
 − −     
      = = − −
      −−      

   − − + −− 
    = − − = − + −    

− − + −       

A x SD S x

. 
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Proposition: If two matrices A and B are similar, i.e. if 1−=B S AS  for some invertible matrix 
S, then they have the same characteristic polynomial and therefore the same eigenvalues with 
the same algebraic multiplicities. 

Proof: 1 1 1 1( ) det( ) det( ) det( ) det[ ( ) ]p λ λ λ λ λ− − − −= − = − = − = −B I B I S AS S IS S AS S I A S  
1det( )det( )det( ) det( ) ( )pλ λ λ−= − = − = AS I A S I A . 

Proposition: If two matrices A and B are similar, then they have the same eigenvalues with the 
same algebraic multiplicities and the same geometric multiplicities. 

Proof: 1 1 1 1( )λ λ λ λ− − − −− = − = − = −I B I S AS S IS S AS S I A S . Therefore, if ker( )λ∈ −v I B , 
we’ll have ( )λ − =I B v 0 , so 1( ) ( ) ker( )λ λ λ− − = ⇒ − = ⇒ ∈ −S I A Sv 0 I A Sv 0 Sv I A . 
Similarly any ker( )λ∈ −w I A  will give 1 ker( )λ− ∈ −S w I B . Because S is invertible this 
correspondence is an isomorphism, so the subspaces must have the same dimension. Therefore, 
if λ  is an eigenvalue of A (and hence B), then its geometric multiplicity will be the same for 
both A and B. The eigenvectors, however, will not be the same. 

Trace and determinant 
If two matrices A and B are similar, we have already shown that det det=A B . A homework 
exercise also shows that trace trace =A B , where for an n n×  matrix A its trace is the sum of 

its diagonal elements 
1

n

ii
i

a
=
∑ . In the case of a diagonalizable matrix, this means that its trace 

must be the sum of its eigenvalues, and its determinant must be the product of its eigenvalues. 
In fact, these statements are true generally: 
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Theorem: If A is any n n×  matrix with eigenvalues { }1, , nλ λ , including any repeated 
eigenvalues, then 1tr( ) nλ λ= + +A   and 1det( ) nλ λ=A  . 
Proof: This is easy to show for 2 2×  matrices. The general case is left as an exercise. 

Complex eigenvalues 
If an n n×  matrix A has any complex eigenvalues, we will not be able to produce any real 
eigenvectors. However, as in the case of real eigenvalues, the algebra can still formally proceed 
in the same manner. Our goal will be to produce basis vectors associated with any complex 
eigenvalues such that the matrix relative to this basis has a simple, if not diagonal, canonical 
form. In order to do this, we have to temporarily wander off into the world of complex numbers, 
complex eigenvalues, and complex eigenvectors. 

You should not attempt to visualize a vector whose components are complex numbers. This is 
merely an algebraically consistent extension of the idea of real vectors and real matrices where 
all the rules of linear algebra are still in effect. This temporary excursion will yield real vectors 
relative to which the matrix acts in an easy-to-describe fashion, namely as a rotation-dilation, 
i.e. it rotates vectors in a 2-dimensional (invariant) 
subspace and scales them by the modulus of the 
complex eigenvalue. 

Basics of complex numbers 
First, we need a few basic definitions associated 
with complex numbers. A complex number 
z x iy= + , where i2 = -1 can be viewed in vector-like 
terms in the complex plane as shown in this diagram 
to the right. We define: 

. z = x + iy

θ
x = Re(z)

y = Im(z)|z|

Re

Im
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modulus(z) = mod(z) = 2 2z x y= +             argument(z) = arg(z) = ( )1tan y
xθ −= . 

We add complex numbers by adding their respective real and imaginary parts, in much the 
same way as vector addition was defined. We multiply complex numbers via the distributive 
law and the fact that 2 1i = − . For example: 

2(3 2 )( 1 4 ) 3 2 12 8 ( 3 8) ( 2 12) 5 14i i i i i i i+ − − = − − − − = − + + − − = −  

If we note that cosx z θ=  and siny z θ= , then we can write 

cos sin (cos sin ) iz x iy z i z z i z e θθ θ θ θ= + = + = + =  (polar form, using Euler’s Formula). 

A short calculation shows that when we multiply two complex numbers, we multiply their 
moduli and add their arguments. Specifically, 1 2 1 2( )

1 2 1 2 1 2
i i iz z z e z e z z eθ θ θ θ+= = . You may 

want to try this out with some simple complex numbers to convince yourself of this fact. 

The complex conjugate of z x iy= +  is defined to be z x iy= − . In the complex plane, z and z  
are reflections of each other across the real axis. It’s not hard to show that z z z z1 2 1 2= .

 

The Fundamental Theorem of Algebra guarantees that, at least in theory, any polynomial of 
degree n can be factored into n linear factors and will therefore produce n roots, including 
multiplicity. Some roots may have multiplicity greater than 1 and some of the roots may be 
complex. It is also the case that for a polynomial with all real coefficients, any complex roots 
will necessarily occur in complex conjugate pairs λ  and λ  (this follows from the quadratic 
formula, resulting from an irreducible quadratic factor). 
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Let A be a matrix which has a complex conjugate pair of eigenvalues λ  and λ . We can 
proceed just as in the case of real eigenvalues and find a complex vector v such that 
( )λ − =I A v 0 . The components of such a vector v will have complex numbers for its 
components. If we write a ibλ = + , and decompose v into its real and imaginary vector 
components as i= +v x y  (where x and y and real vectors), we can calculate that: 

(1)  ( )( ) ( ) ( )i a ib i a b i b aλ= + = = + + = − + +Av Ax Ay v x y x y x y  

If we define the vector ˆ i= −v x y  and use the easy-to-prove fact that for a matrix A with all real 
entries we’ll have ˆ ˆλ λAv = Av = v = v , we see that ˆ i= −v x y  will also be an eigenvector with 
eigenvalue λ , and: 

(2)  ˆ ˆ ( )( ) ( ) ( )i a ib i a b i b aλ= − = = − − = − − +Av Av = Ax Ay v x y x y x y  

The true value of this excursion into the world of complex numbers and complex vectors is 
seen when we add and subtract equation (1) and (2). We get: 

2 2( )a b= −Ax x y  

2 2 ( )i i b a= +Ay x y  

After cancellation of the factors of 2 and 2i in the respective equations and rearranging, we get: 

a b= +Ay y x  

b a= − +Ax y x  
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Note that we are now back in the “real world”: all vectors and scalars in the above equations 
are real. If we use the two vectors y and x as basis vectors associated with the two complex 
conjugate eigenvalues, grouped together in the full basis 1{ , , }n= v vB  , we’ll produce a 2 2×  
(Jordan) block in the matrix [ ]A

B
 of the form: 

2 2 2 2
2 2

2 2 2 2

cos sin
sin cos

a b
a b a b a ba bb a b a

a b a b
θ

θ θλ λθ θ

− 
− −    + += + = =        + + 

R  

where θR  is the rotation matrix corresponding to the angle arg( )θ λ= . 

In other words, the Jordan block associated with the basis vectors { },y x  is a rotation-dilation 
matrix where the angle of rotation is the same as the argument of the complex eigenvalue 
and where the scaling factor is just the modulus (magnitude) of the complex eigenvalue. 
Again, the very nature of the complex eigenvalues tells us much about the way the matrix acts, 
at least if we choose the right basis with which to view things. 

Example: Consider the matrix 0 1
1 0

− =   
A . You’ll recognize this as the matrix corresponding 

to counterclockwise rotation in the plane through an angle of 90°. The characteristic 
polynomial is 2 1 0λ + = , with complex eigenvalues iλ = ± . Note that with iλ = + , we have 
arg( ) 90λ = °  and modulus( ) 1λ λ= = . The preceding discussion says that this matrix is 
similar to a rotation-dilation matrix which does no scaling and which rotates by an angle of 90°. 
But this should come as no surprise at all. The given matrix is already in the form of exactly 
this rotation-dilation matrix, i.e. Jordan form. 



 10 

Example: Consider the matrix 2 1
3 2

− =   
A . We have 2 1

3 2
λλ λ
− − =  − − 

I A , and the 

characteristic polynomial is 2 4 7 0λ λ− + = . Its eigenvalues are 2 3iλ = +  and 2 3iλ = − . 

If we substitute 2 3iλ = +  into 2 1
3 2

λλ λ
− − =  − − 

I A , we get that if α
β
 =   

v  is to be an 

eigenvector, we must have 3 1 0
03 3

i
i

α
β

     =     −     
. This means that ( 3) 0i α β+ = . (The 

second equation is redundant, even though this might not immediately appear to be the case.) 
One choice for α  and β  is 1α = , 3iβ = − . This gives us the complex eigenvector 

1 01
03 3

i i
i

    = = + = +    − −    
v x y . Using { } 0 1, , 03

    = =     −    
y xB  as a basis, and calling 

0 1
3 0

 
=  − 

S , we have that [ ] 1 2 3 cos sin7 sin cos3 2
Rθ

θ θ λθ θ
−  − − = = = =     

A S AS
B

 where 

θR  is the rotation matrix corresponding to the angle 1arg( ) tan ( 3 2) 40.89θ λ −= = ≅ ° . 
If we have need to consider the powers tA  for any positive integer power t, we’ll have that 

[ ] 1−=A S A S
B

 and [ ]( ) 1 1 1t t tt
t tθ θλ λ− − −= = =A S A S S R S SR S

B
. That is, except for the 

change of basis, tA  corresponds to rotation through the angle tθ  and scaling by the factor tλ . 

We’ll look at a few more detailed examples next time. We’ll also take up the discussion of the 
Spectral Theorem. Notes by Robert Winters 


