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Math S-21b – Lecture #12 Notes 
Today’s lecture focuses on what might be called the structural analysis of linear 
transformations. What are the intrinsic properties of a linear transformation? Are there any 
fixed directions? The discussion centers on the eigenvalues and eigenvectors associated with an 
n n×  matrix – the definitions, calculations, and applications. 
Invariant directions, eigenvectors, and eigenvalues 
Let A be an n n×  matrix representing a linear transformation : n nT →A R R . Are there any 
invariant directions for this linear transformation? That is, can we find a vector v such that 

( )T v  is parallel to v? This is an example of an intrinsic property of the transformation – 
something that exists independent of what basis is used or the coordinates relative to that basis. 
For example, a rotation in 3R  has an axis of rotation regardless what basis is used to describe 
the rotation. For an orthogonal projection onto some subspace nV ⊆ R , vectors in V remain 
unchanged, and vectors in its orthogonal complement are sent to the zero vector. Again, this 
has nothing to do with what basis is used to represent this linear transformation. 
The question of whether we find a vector v such that ( )T v  is parallel to v can be rephrased as 
whether there’s a vector v such that ( )T λ= =v Av v  for some scalar λ . This leads to the 
following definition: 

Definition: If A is an n n×  matrix, we call a vector v an eigenvector of A if ( )T λ= =v Av v  
for some scalar λ . This scalar λ  is called the eigenvalue associated with the eigenvector. 
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Finding the eigenvalues and eigenvectors 
We can rewrite λ=Av v  as λ=Av Iv  which is more conducive to using algebra. We can then 
write this as λ − =Iv Av 0  or ( )λ − =I A v 0 . In order for a vector v to be an eigenvector, it 
must be in the kernel of λ −I A  for some appropriate choice of λ . This can only happen if this 
kernel is nontrivial which means that the matrix λ −I A  would have to not be invertible, and we 
know from our discussion of determinants that a necessary and sufficient condition for a matrix 
to not be invertible is that its determinant must be equal to 0. That is: 

v is an eigenvector of A ( ) det( ) 0λ λ⇔ − = ⇔ − =I A v 0 I A  

As we’ll see, if A is an n n×  matrix ( ) det( )Ap λ λ= −I A  will be an nth degree polynomial in 
λ  called the characteristic polynomial of A. So λ −I A  will have a nontrivial kernel if and 
only if λ  is a root of this characteristic polynomial. The eigenvalues are therefore the roots of 
the characteristic polynomial. 

Definition: The set of all eigenvalues of a matrix A is called the spectrum of A. Since the 
eigenvalues are the roots of an nth degree polynomial, the spectrum will consist of at most n 
values. These may be real numbers or complex numbers, possibly with repetition, and any 
complex eigenvalues must occur in complex conjugate pairs. [This follows from the 
Fundamental Theorem of Algebra – any polynomial with real coefficients can, in theory, 
always be factored into a product of linear factors an irreducible quadratic factors, and these 
irreducible quadratic factors will yield complex conjugate pairs (by the quadratic formula).] 
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If an eigenvalue λ  occurs as a repeated root of the characteristic polynomial, we refer to the 
multiplicity of the root as the algebraic multiplicity of the eigenvalue. 

Definition: If λ  is an eigenvalue of A, then ker( )λ −I A  will be a subspace called the 
eigenspace of λ , or Eλ . As with any subspace it must be closed under scaling and vector 
addition. This yields the following two corollaries: 

Corollary 1: If v is an eigenvector associated with an eigenvalue λ , then tv  will also be an 
eigenvector for any scalar t. 

Corollary 2: If 1v  and 2v  are eigenvectors associated with the same eigenvalue λ , then 

1 1 2 2c c+v v  will also be an eigenvector for any scalars 1 2,c c . 

Definition: The geometric multiplicity of an eigenvalue λ  of a matrix A is dim[ker( )]λ −I A , 
i.e. the number of linearly independent eigenvectors associated with this eigenvalue. 

Example: Find the eigenvalues and eigenvectors of the matrix 3 1
1 3
 =   

A . 
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Solution: We calculate 1 0 3 1 0 3 1 3 1
0 1 1 3 0 1 3 1 3

λ λλ λ λ λ
− −         − = − = − =         − −         

I A , so the 

characteristic polynomial is 2 23 1( ) det( ) det ( 3) 1 6 81 3Ap λλ λ λ λ λλ
− − = − = = − − = − + − − 

I A . 

This is easily factored to give ( ) ( 4)( 2) 0Ap λ λ λ= − − = , so the eigenvalues are 1 4λ =  and 

2 2λ = . How you order these doesn’t matter, but you should keep the indexing consistent. For 
each eigenvalue, we next its eigenvectors, i.e. ker( )iλ −I A  for each eigenvalue iλ : 

1 4λ =  gives 4 3 1 1 1
1 4 3 1 1λ − − −   − = =   − − −   

I A , so ker( )λ −I A  is found by row reduction 

1 1 0 1 1 0
1 1 0 0 0 0

 −  −→   −   
. This gives 1

2

x t
x t
= 

 = 
 or 1

1t  =   
x , so if we let 1

1
1
 =   

v , this 

spans the eigenspace 4E . 

1 2λ =  gives 1 1
1 1λ − − − =  − − 

I A , so ker( )λ −I A  is found by row reduction 

1 1 0 1 1 0
1 1 0 0 0 0

 − −  →   − −   
. This gives 1

2

x t
x t
= − 

 = 
 or 1

1t − =   
x , so if we let 2

1
1
− =   

v , this 

spans the eigenspace 2E . 
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In the example, we had two distinct, real eigenvalues which produced two linearly independent 
eigenvectors which may be used as a basis for 2R , an eigenbasis. What is the matrix of this 
linear transformation relative to the special basis? The relations 

[ ]1 1 1

2 2 2

4 04 0
2 00 2

λ
λ

=    ⇒ = = =    =     
Av v A DAv v B

, a diagonal matrix. If we write 

1 2
1 1
1 1

 ↑ ↑
−  = =     ↓ ↓  

S v v , then 1 1
2

1 1
1 1

−  =  − 
S , and [ ] 1−= =A S AS D

B
. This will be the case for 

any matrix for which we can produce an entire basis consisting exclusively of eigenvectors. 
This motivates the following: 

Definition: An n n×  matrix A is called diagonalizable if it is possible to find a basis for nR  
consisting of eigenvectors of A. 

If A is diagonalizable with eigenbasis 1{ , , }n= v vB   and if we write 1 n

 ↑ ↑
 =
 
↓ ↓  

S v v , 

then [ ]
1 1 1 1

1
0

0n n n n

λ λ

λ λ

−
=      ⇒ = = =    =   

Av v
A S AS D

Av v
B

 B . 
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Note: It is not always possible to diagonalize a matrix. We want to understand under what 
circumstances this will be possible. 

Powers of a matrix: If a matrix A is diagonalizable, we can write [ ] 1−= =A S AS D
B

 for some 

change of basis matrix S. Therefore 1−=A SDS  and 1 1 1 1( )( ) ( )t t− − − −= =A SDS SDS SDS SD S  

where, if 
1 0

0 n

λ

λ

 
 =
 
 

D B , we’ll have 
1 0

0

t

t

t
n

λ

λ

 
 =
 
  

D B . 

Example: For the matrix 3 1
1 3
 =   

A , calculate tA  for any (positive integer) t. 

Solution: For this matrix we found that 1− =S AS D  where 1 1
1 1

− =   
S , 1 1

2
1 1
1 1

−  =  − 
S , 

and 4 0
0 2
 =   

D . So 1−=A SDS  and: 

1 1 1 1
2 2 2

1 1 4 0 1 1 4 2 1 1 4 2 4 2
1 1 1 1 1 10 2 4 2 4 2 4 2

t t t t t t t
t t

t t t t t t t
−      − − + −     = = = =          − − − +          

A SD S . 
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Application: Markov example 
There are situations in which a fixed amount of some asset is distributed among a number of 
sites and where some iterated process simultaneously redistributes the amounts to other sites 
according to fixed percentages. For example, suppose you had a fixed number of beans 
distributed between two piles, A and B. A process simultaneously moves 50% of the beans in 
pile A to pile B (while retaining 50% in pile A) and moves 75% of the beans in pile B to pile A 
(while retaining 25% in pile B). We can describe the transition as follows: 

If Ax  is the number of beans in pile A and Bx  is the number of beans in pile B, then the new 

values will be determined by new .5 .75
new .5 .25

A A B

B A B

x x x
x x x

= + 
 = + 

. 

That is, the new values are determined by applying the matrix .5 .75
.5 .25
 =   

A . 

If we think of 0
A

B

x
x
 =   

x  as the initial distribution, then after one iteration we’ll have 1 0=x Ax , 

after two iterations 2
2 1 0= =x Ax A x , and so on. After t iterations the distribution will be given 

by 0
t

t =x A x . The ability to calculate powers of a matrix using eigenvalues and eigenvectors 
greatly simplifies the analysis. 
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In this case, we have .5 .75
.5 .25
 =   

A , .5 .75
.5 .25

λλ λ
− − − =  − − 

I A , 

2( ) det[ ] .75 .25 ( 1)( .25)p λ λ λ λ λ λ= − = − − = − +A I A  and the eigenvalues are 1 1λ =  and 

2 .25λ = − . 

These yield the eigenvectors 1
3
2
 =   

v  and 2
1
1

 =  − 
v . 

If we began with any configuration 0
A

B

x
x
 =   

x  and expressed this in terms of the basis of 

eigenvectors 1 2{ , }= v vB  as 0 1 1 2 2c c= +x v v , then we would have 1 1 1 1 2 2 2c cλ λ= +x v v , 
2 2

2 1 1 1 2 2 2c cλ λ= +x v v , etc. After t iterations we would get 1 1 1 2 2 2
t t

t c cλ λ= +x v v . But with 1 1λ =  
and 2 .25λ = −  we see that 1 1tλ =  for all t and 2 0tλ → , so eventually 1 1t c→x v . In practical 
terms, this simply means that the number of beans in each pile will eventually be proportional 

to the components of the eigenvector 1
3
2
 =   

v . For example, if we began with 1000 beans 

initially configured in any way, eventually we’ll find the number of beans to be approaching 
600 in pile A and 400 in pile B. 
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Example: Find the eigenvalues and eigenvectors of the matrix 
3 0 2
7 0 4

4 0 3

− 
 = −
 − 

A  and 

diagonalize this matrix, if possible, by finding a basis consisting of eigenvectors. 

Solution: Before getting started, note that the column of 0’s means that 2 =Ae 0 , so 2e  is 
actually an eigenvectors with eigenvalue 0λ = . Indeed, the kernel of any n n×  matrix is just 

the eigenspace 0E . 
3 0 2

7 4
4 0 3

λ
λ λ

λ

− 
 − = −
 − + 

I A , 

so 2 3( ) det[ ] ( 3)( 3 ) 2(4 ) ( 1)( 1) 0p λ λ λ λ λ λ λ λ λ λ λ= − = − + + = − = − + =A I A . 

This yields three distinct, real eigenvalues 1 1λ = , 2 0λ =  and 3 1λ = − . (Order doesn’t matter, 
but be consistent.) 

1

1 2 1

3

1 0 1 02 0 2 0 1 1
1 7 1 4 0 0 1 3 0 3 3 3

4 0 4 0 0 0 0 0 1 1

x t
x t t

x t
λ

 −− =               = ⇒ − ⇒ ⇒ = − ⇒ − ⇒ = −        − =         

v  
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1

2 2 2

3

1 0 0 03 0 2 0 0 0 0
0 7 0 4 0 0 0 1 0 1 1

4 0 3 0 0 0 0 0 0 0 0

x
x t t
x

λ
 − =               = ⇒ − ⇒ ⇒ = ⇒ ⇒ =        − =         

v  

1
2 1

1
3 2 32

3

1 0 04 0 2 0 1 1
1 7 1 4 0 0 1 0 1 1

4 0 2 0 2 2 20 0 0 0

x t
x t t
x t

λ

 −− =               = − ⇒ − − ⇒ ⇒ = − ⇒ − ⇒ = −         − =        

v  

Once again, we were fortunate to be able to produce a basis of eigenvectors 1 2 3{ , , }= v v vB . 

Theorem: Eigenvectors corresponding to distinct eigenvalues are linearly independent. 

Proof: We prove this fact using an inductive argument in which each successive step uses the 
result of the previous step. For a finite set of eigenvalues, there will be a finite number of steps. 
(1) If there is just one eigenvalue 1λ , then there must be a corresponding nonzero eigenvector 

1v . This is a linearly independent set. 

(2) Suppose there are two distinct eigenvalues 1 2λ λ≠  with corresponding eigenvectors 

1 2{ , }v v . We want to show that these must necessarily be linearly independent. To this end, 
let 1 1 2 2c c+ =v v 0 . If we multiply by the matrix A, we get 
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1 1 2 2 1 1 2 2 1 1 1 2 2 2( ) ( )c c c c c cλ λ+ = + = + = =A v v Av A v v v A 0 0 . The original relation 

1 1 2 2c c+ =v v 0  gives that 2 2 1 1c c= −v v , so 1 1 1 2 1 1 1 1 2 1( ) ( )c c cλ λ λ λ+ − = − =v v v 0 . Because 

1 2λ λ≠  and 1 ≠v 0 , we must have 1 0c = . But therefore 2 2c =v 0 , so necessarily 2 0c = . 
Therefore 1 2{ , }v v  are linearly independent. 

(3) Suppose 1 2 3, ,λ λ λ  are distinct eigenvalues (hence 1 2 1 3 2 3, ,λ λ λ λ λ λ≠ ≠ ≠ ), with 
corresponding eigenvectors 1 2 3{ , , }v v v . Once again, we write 1 1 2 2 3 3c c c+ + =v v v 0 . 
Multiplication by A gives 1 1 2 2 3 3 1 1 1 2 2 2 3 3 3c c c c c cλ λ λ+ + = + + =Av Av Av v v v 0 , and the 
original relation allows us to solve for 3 3 1 1 2 2c c c= − −v v v . Substitution gives 

1 1 1 2 2 2 3 1 1 2 2 1 1 3 1 2 2 3 2( ) ( ) ( )c c c c c cλ λ λ λ λ λ λ+ + − − = − + − =v v v v v v 0 . The previous step 
established the linear independence of 1 2{ , }v v , so necessarily 1 1 3( ) 0c λ λ− =  and 

2 2 3( ) 0c λ λ− = . Because the eigenvalues are all distinct, this implies that 1 0c =  and 2 0c = . 
Therefore 3 3c =v 0 , so 3 0c =  as well. So 1 2 3{ , , }v v v  are linearly independent. 

The argument continues in the same fashion so that if 1, , kλ λ  are distinct eigenvalues with 
corresponding eigenvectors 1{ , , }kv v , these must be linearly independent. 

Corollary: If A is an n n×  matrix with distinct, real eigenvalues, then A is diagonalizable. 
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Proof: If the roots of the nth degree characteristic polynomial are 1, , nλ λ , each will yield a 
corresponding eigenvector so we’ll have a collection 1{ , , }nv v  of linearly independent 
eigenvectors. This will constitute a basis for nR , so the matrix A will be diagonalizable. 

Note: This means that for a matrix A to fail to be diagonalizable, its spectrum must contain 
either repeated eigenvalues, complex eigenvalues, or possibly both. However, it is quite 
possible for a matrix with repeated eigenvalues to still be diagonalizable. The best example is 
the n n×  identity matrix which has only the eigenvalue 1 but this eigenvalue has algebraic 
multiplicity n. The identity matrix is clearly diagonalizable because it’s already diagonal! All 
vectors are eigenvectors of the identity matrix. 

Example: If we compare the three matrices 
2 0 0
0 2 0
0 0 2

 
 =
 
 

A , 
2 1 0
0 2 0
0 0 2

 
 =
 
 

B , and 
2 1 0
0 2 1
0 0 2

 
 =
 
 

C , 

we’ll see that they each have the same characteristic polynomial 3( ) ( 2)p λ λ= − , so they each 
have just the one eigenvalue 2λ =  with algebraic multiplicity 3. However, a quick calculation 
with each of these matrices reveals that the geometric multiplicity of A is 3 (every vector is an 
eigenvector), the geometric multiplicity of B is 2, and the geometric multiplicity of C is 1. 
Neither matrix B nor matrix C is diagonalizable. 

Notes by Robert Winters 


