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Math S-21b – Lecture #11 Notes 
Today’s lecture is all about determinants. We’ll discuss how to define them, how to calculate 
them, learn the all-important property known as multilinearity, and show that a square matrix 
A is invertible if and only if its determinant is nonzero. We’ll also derive some useful 
geometric applications that will allow us to not only calculate length, area, and volume, but also 
to define geometric content (k-volume) in higher dimensions. We will also give an 
interpretation of the determinant as an “expansion factor” for geometric content. We’ll wrap it 
up with a few minor results (Cramer’s Rule and a not-too-practical formula for the inverse of a 
matrix). 

Defining the determinant 
You are probably already familiar with the determinant in the case of 2 2×  and perhaps 3 3×  
matrices. Let’s start with those and “reverse engineer” the general definition for any square 
matrix. 

1 1×  matrix: Just for the sake of consistency, let’s define det[ ]a a=  for a 1 1×  matrix. 

2 2×  matrix: We define det a b a b ad bcc d c d
  = = −  

. 

3 3×  matrix: We define 

11 12 13 11 12 13
22 23 21 23 21 22

21 22 23 21 22 23 11 12 13
32 33 31 33 31 32

31 32 33 31 32 33

det
a a a a a a a a a a a aa a a a a a a a aa a a a a aa a a a a a

 
  = = − +
 
 

 

11 22 33 23 32 12 21 33 23 31 13 21 32 22 31( ) ( ) ( )a a a a a a a a a a a a a a a= − − − + −  

11 22 33 11 23 32 12 21 33 12 23 31 13 21 32 13 22 31a a a a a a a a a a a a a a a a a a= − − + + −  
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This definition is based on a fact that we have not yet established called the Laplace expansion, 
but let’s take this as given and see what, if any, pattern it suggests. Note that there is just 1 term 
for the determinant of a 1 1×  matrix, 2 terms for a 2 2×  matrix (one positive, one negative), and 
3! 6=  terms for a 3 3×  matrix (half of them positive and half negative). Also note that the 
number of factors in each term grows with the size of the matrix. A more subtle observation is 
that, at least as written for the 3 3×  case, all terms are of the form 1 2 3x y za a a  and the choices of 

, ,x y z  correspond precisely with the different ways of permuting the characters in 123 , i.e. 
{ }123,132,213,231,312,321 . Finally, note that the sign of each term corresponds to whether 
this is an even permutation (positive if obtained by an even number of transpositions of the 
characters starting with 123) or an odd permutation (negative if obtained by an even number of 
transpositions). 

Based on these observations, we might (correctly) speculate that for an n n×  matrix we should 
define the determinant as follows: 

Definition: Given an n n×  matrix 
11 1

1

n

n nn

a a

a a

 
 =
 
 

A


  



, we define 

1 (1) 2 (2) ( )
( )

det sgn( ) n n
P n

a a as s s
s

s
∈

= ∑A   where ( )P n  denotes the set of all permutations of the 

characters 12 n ; s  denoting an individual permutation; ( )is  denoting where the character i 
is mapped under that permutation; and sgn( ) 1s = +  if s  is an even permutation and 
sgn( ) 1s = −  if s  is an odd permutation. There will be !n  terms in the sum – corresponding to 
the number of permutations in ( )P n . 
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There are other ways to define the determinant, but this is a practical definition at least in the 
case of relatively small matrices. 

Two simple observations 
1) If A is either upper triangular or lower triangular, all but one of the terms in the 

determinant will vanish and the determinant will be simply the product of its diagonal 
entries. 

2) For any n n×  matrix, Tdet det=A A . [The sum is the same, just rearranged and with the 
same signs.] 

Multilinearity 
Note that the determinant is, in fact, a function det : n n× →R R  that takes any n n×  matrix A 
and yields the real number det A . As a function from one linear space to another, the 

determinant is not linear. For example, if we were to scale a 2 2×  matrix a b
c d
 =   

A  (with 

det ad bc= −A ), we have at btt ct dt
 =   

A  and 2 2 2 2det( ) ( ) dett t ad t bc t ad bc t= − = − =A A . 

More generally, for any n n×  matrix, we have det( ) detnt t=A A . 

However, the determinant is linear in any single row or column. This is known as 
multilinearity. 

2 2×  example: [ ]1 1
2 1

2 2

3det 3 2 2 32
x xx xx x

   = − = −      
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3 3×  example: 

 

[ ]

3 2 3 1 2 1 1 2 3

1 2 3

1

2

3

1 2 1
det 3 4 2 1(4 2 ) 2(3 2 ) 1(3 4 ) 8 5 2

8 5 2

x x x x x x x x x
x x x

x
x
x

 
 − = + − + + − = − + −
 
 

 
 = − −
 
 

. 

The multilinearity property gives several immediate corollaries. 

In terms of the kth column of a matrix: 

1 1 1det det detn n n

     ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
     + = +
     
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓          

v x y v v x v v y v       

and 1 1det detn nr r
   ↑ ↑ ↑ ↑ ↑ ↑
   =
   
↓ ↓ ↓ ↓ ↓ ↓      

v x v v x v     

In terms of the kth row of a matrix: 
1 1 1

det det det

n n n

← → ← → ← →     
     
     ← + → = ← → + ← →     
     
     ← → ← → ← →     

v v v

x y x y

v v v
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and 

1 1

det det

n n

r r

← → ← →   
   
   ← → = ← →   
   
   ← → ← →   

v v

x x

v v

 

 

.  

This actually explains the Laplace expansion. Choose any row or column of the n n×  
matrix A and for each entry ija of that row or column, let ijA  be its minor – the 
( 1) ( 1)n n− × −  matrix obtained by deleting the ith row and jth column of the matrix A. 

Then, in terms of the ith row, 
1

det ( 1) det
n

i j
ij ij

j
a+

=

= −∑A A ; and in terms of the jth 

column, 
1

det ( 1) det
n

i j
ij ij

i
a+

=

= −∑A A . 

For example, in terms of the 1st row of a matrix 
11 1

1

n

n nn

a a

a a

 
 =
 
 

A


  



, we can express 

[ ] [ ] [ ]11 1 11 11 0 0 1n na a a a= + +    . Applying linearity in the 1st row, this gives; 

11 1

11 1

1 1 1

1 0 0 1
det det det

n

n

n nn n nn n nn

a a
a a

a a a a a a

     
     = = + +
     
     

A
  

         

  

 and because of all the 

0’s in the first row of each, and some observations about even vs. odd permutations to 
determine the signs, this becomes: 
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11 1 22 2 21 2
1

11 1

1 2 1

1
11 11 1 1

det det ( 1) det

det ( 1) det

n n n
n

n

n nn n nn n nn

n
n n

a a a a a a
a a

a a a a a a

a a

+

+

     
     = = + − + −
     
     

= + − + −

A

A A

  

         

  



 

The same idea applies to any choice of row or column with appropriate signs. 

Example: If 
3 2 1
1 1 0
1 1 3

 
 =
 − 

A , we can choose to expand along any row or column. We often 

choose a row with one or more 0’s in order to minimize the number of nonzero terms in the 
sum, but not necessarily. 

Expanding along the 1st row gives 1 0 1 0 1 1det 3 2 1 3(3) 2(3) 1(2) 51 3 1 3 1 1= − + = − + =
− −

A . 

Expanding along the 2nd row gives 
2 1 3 1 3 2det 1 1 0 1(5) 1(10) 0( ) 51 3 1 3 1 1= − + − = − + − =

− −
A  . 

Expanding along the 3rd column gives 
1 1 3 2 3 2det 1 0 3 1(2) 0( ) 3(1) 51 1 1 1 1 1= − + = − + =
− −

A  . 
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Effect of elementary row operations on the determinant 
For any n n×  matrix A, we have the following properties: 

(a) scale row
by det detk k→ ⇒ =A B B A  

scale row
by 1 , 0

1det detk k k≠→ ⇒ =A B B A  

(b) interchange
two rows det det→ ⇒ = −A B B A  

(c) add a multiple of
one row to another det det→ ⇒ =A B B A  

Property (a) follows directly from linearity in any one row. Property (b) follows by observing 
that all the terms in the determinant will be the same except that even permutations will become 
odd and vice-versa. This causes all the signs to be reversed. Property (b) also implies that if a 
matrix has two identical rows, then its determinant must be zero. Property (c) requires a small 
argument for justification: 

det det det

det 0 det

i i i

j i j i

i i

j j

k
k

k

     
     ← → ← → ← →
     = +     
← + → ← → ← →     
         

   
   ← → ← →
   = + ⋅ =   
← → ← →   
      

v v v

v v v v

v v

v v
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There are at least two significant results that flow from these observations. The first has to do 
with simplification of the calculation of a determinant by first doing some row reduction. The 
second will give a new criterion for invertibility of a matrix. 

We can calculate the determinant of a matrix by “double tracking” the steps in row reduction 
and the effect of each step on the value of the determinant. This is especially useful for larger 
matrices. 

Example: Calculate det A  for the matrix 
2 3 1
1 1 4
0 4 5

 
 =
 
 

A . 

Solution: 
1 1
33 33

1 0 11 1 0 02 3 1 1 1 4 1 1 4 1 0 11
0 1 7 0 1 01 1 4 2 3 1 0 1 7 0 1 7
0 0 1 0 0 10 4 5 0 4 5 0 4 5 0 0 33

det detdet det det det

          
           −− −    → → → → →                  
− −− − − A AA A A A

 

We could conclude from the 4th entry when we obtained an upper triangular matrix that 
det 33− =A , so det 33= −A . We could also have completed the row reduction to get to 

reduced row-echelon form. This would give that 1
33 det 1− =A , so det 33= −A . 

Invertibility and the determinant 
Suppose we began with a matrix A and carried out a sequence of steps to obtain rref( )A . This 
sequence of steps would involve s row swaps which would affect the determinant by 
multiplying by ( 1)s− , r row scalings by factors 

1 2

1 1 1, , ,
rk k k  (where 1 2, , , 0rk k k ≠ ), and some 

number of steps where a multiple of a pivot row is added to another row. The effect of these 
row operations on the determinant then gives that 

1 2

1 1 1det[rref ( )] ( 1) det( )
r

s
k k k= −A A . 
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From this we conclude that 1 2det( ) ( 1) det[rref ( )]s
rk k k= −A A . 

There are only two possible values for det[rref ( )]A . If the matrix A is invertible with rank n, 
then rref ( ) n=A I  and det[rref ( )] 1=A . If the matrix A is not invertible with rank k n< , then 
rref ( )A  will have at least one all-zero row and det[rref ( )] 0=A . From the result above, this 
gives the following important theorem: 

Theorem: An n n×  matrix A is invertible if and only if det 0≠A . 

There are a number of other facts about determinants of both practical and theoretical value. 

Proposition: If A and B are n n×  matrices, then det( ) (det )(det )=AB A B . 
Proof: If the matrix A is not invertible, then AB will also not be invertible and det 0=A  and 
det( ) 0=AB , so the result holds in this case. A homework exercise shows that in the case 
where A is invertible and B is an arbitrary n n×  matrix, then rref[ | ] [ | ]n=A AB I B . If the row 
reduction from A to nI  involves the same row operations as outlined previously, then these 
same row operations would be applied in reducing AB to B, so 

1 2det( ) ( 1) det( ) det( )det( )s
rk k k= − =AB B A B . 

Proposition: If A is invertible, then 1 1det( )
det( )

− =A
A

. 

Proof: If A is invertible, then 1
n

− =A A I , so 1 1det( ) det( )det( ) det( ) 1n
− −= = =A A A A I , so 

1det( )−A  and det( )A  are reciprocals. 

Proposition: If two n n×  matrices A and B are similar, then det det=A B . 
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Proof: Two n n×  matrices A and B are similar if an only if 1−=B S AS  for some invertible 
(change of basis) matrix S. Therefore 1 1det det( ) det( )det( )det( ) det( )− −= = =B S AS S A S A . 

This last proposition yields an important corollary: 

Corollary: Suppose V is a finite-dimensional vector space and :T V V→  is a linear 
transformation. Then the determinant det( )T  is well-defined. That is, if B  is any basis for V 
and if [ ]T=A

B
 is the matrix of T relative to this basis, and if we define det( ) det( )T = A , then 

this value will be the same no matter what basis we choose. 
Proof: If we choose any other basis then the matrix of T relative to this other basis will be 

1−=B S AS  for some invertible (change of basis) matrix S. Therefore det( ) det detT = =A B  
from the previous proposition. 

Geometry and the determinant 
If we merge some of the previous information about Gram-Schmidt orthogonalization and QR 
factorization with the current facts about determinants, we can derive some important and 
useful results. Recall that if { }1, , kv v  are linearly independent and if we write 

1 2 k

 ↑ ↑ ↑
 =
 
↓ ↓ ↓  

A v v v , then the Gram-Schmidt process gave: 

11 2 1 1

22 2
1 2 1 2

 matrix w/linearly  matrix
 upper triangularindependent columns w/orthonormal columns

0

0 0

k

k
k k

kk
n k n k

k k

r
r

r
× ×

×

⋅ ⋅    ↑ ↑ ↑ ↑ ↑ ↑  ⋅   = =       ↓ ↓ ↓ ↓ ↓ ↓         

v u v u
v uA v v v u u u





 

   



 

 matrix
with nonzero diagonal entries

= QR



. 
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The columns of the matrix A are the original vectors; the columns of the matrix Q are those of 
the Gram-Schmidt basis; and the entries of the matrix R capture all of the geometric aspects of 
the original basis, i.e. lengths, areas, etc. and the non-orthogonality of the original vectors. The 
k-volume of the parallelepiped determined by { }1, , kv v  is just the product of the diagonal 
entries of R, i.e. 11 22 detkkr r r = R . 

Note that with =A QR  we have T T T T T T( ) k= = = =A A QR QR R Q QR R I R R R . Therefore 
T T T 2 2det( ) det( ) det( )det( ) det( )det( ) (det ) ( -volume)k= = = = =A A R R R R R R R , so 

T-volume det( )k = A A . This is a very handy way to calculate areas, volumes, and their 

higher-dimensional analogues. 

Example: In 3R , find the area of the parallelogram determined by the vectors  

1

1
2
3

 
 =
 
 

v  and 2

1
0
2

− 
 =
 
 

v . 

Solution: In multivariable calculus, we would likely find the area of this parallelogram using 

the cross product. We would calculate that 1 2

4
5

2

 
 × = −
 
 

v v  and find its magnitude: 

1 2Area 16 25 4 45 3 5= × = + + = =v v . Using our determinant method, we write 
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1 1
2 0
3 2

− 
 =
 
 

A  and calculate T
1 11 2 3 14 52 01 0 2 5 53 2

− 
    = =   −     

 
A A . So 

T 14 5det( ) det 70 25 455 5
 = = − =  

A A  and TArea 2-volume det( ) 45 3 5= = = =A A . 

It is important to note that the cross product is only defined in 3R , so any method involving 
cross products has very limited applicability. 

Special Case: Determinant of an n×n matrix as an expansion factor 

If 1 n

 ↑ ↑
 =
 
↓ ↓  

A v v  is an n n×  matrix, then 

T T 2 2det( ) det( )det( ) (det ) ( -volume)n= = =A A A A A  and the n-volume determined by the 

vectors { }1, , nv v  is given by T 2det( ) (det ) det= =A A A A . If we further note that 

1 1

n n

=  
 
 = 

v Ae

v Ae
 , we can observe that the unit n-cube determined by { }1, , ne e  is mapped to the 

parallelepiped determined by { }1, , nv v , so the volume is expanded from 1 to det A . This 

result extends to any region in the domain and enables us to think of det A  as a “volume 
expansion factor”. This provides a simple geometric interpretation of the fact that 
det( ) (det )(det )=AB A B  (and therefore det( ) det det=AB A B ). 
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Since the product of two matrices corresponds to the composition of linear transformations, and 
if applying the matrix B scales volume by det B , and this is followed by applying the matrix A 

which scales volume by det A , then the composition should scale volume by the product 

det detA B . 
It’s not hard to reason that the sign of the determinant will be positive if the linear 
transformation is “orientation preserving” and negative if the transformation is “orientation 
reversing.” Indeed, we can define these terms by the sign of the determinant. 

In the special case when a system of n linear equations in n variables has a unique solution, 
determinants provide a formula for this unique solution. This is known as Cramer’s Rule. 

Cramer’s Rule: Suppose a linear system is represented as =Ax b  where A is an n n×  matrix 
with rank n. Let kA  be the n n×  matrix obtained by replacing the kth column of A with the 

column vector b. If the solution to the system is 
1

n

x

x

 
 =
 
 

x  , then det
det

k
kx =

A
A

 for all k. 

Proof: Suppose x solves =Ax b , then 

1 1det det detk n n

   ↑ ↑ ↑ ↑ ↑ ↑
   = =
   
↓ ↓ ↓ ↓ ↓ ↓      

A v b v v Ax v     

1 1 1 1det ( ) det detn n n k k n kx x x x
   ↑ ↑ ↑ ↑ ↑ ↑
   = + + = =
   
↓ ↓ ↓ ↓ ↓ ↓      

v v v v v v v A      
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where we have liberally applied several previous results. So det
det

k
kx =

A
A

. 

Example: Solve the linear system 
2 3 1

3 4 5 3
6 4

x y z
x y z
x y z

+ − =  − + + = 
 − + = − 

 using Cramer’s Rule. 

Solution: We have 
2 1 3
3 4 5

1 1 6

− 
 = −
 − 

A  and 
1
3
4

 
 =
 − 

b . We first calculate 

det 2(29) 1( 23) 3( 1) 58 23 3 84 0= − − − − = + + = ≠A , so the system will yield a unique solution. 

We next write 1

1 1 3
3 4 5
4 1 6

− 
 =
 − − 

A , 2

2 1 3
3 3 5

1 4 6

− 
 = −
 − 

A , and 3

2 1 1
3 4 3

1 1 4

 
 = −
 − − 

A  and calculate 

1det 1(29) 1(38) 3(13) 29 38 39 48= − − = − − = −A  and 

2det 2(38) 1( 23) 3(9) 76 23 27 72= − − − = + − =A  and 

3det 2( 13) 1(9) 1( 1) 26 9 1 36= − − + − = − − − = −A . So 1
48 4

784x −= = − , 2
72 6

784x = = , and 

3
36 3

784x −= = − . 

Cookbook recipe for finding the inverse of an invertible matrix 
If you look carefully at Cramer’s Rule, you may notice that it actually provides a formula for 
the inverse of any invertible matrix. The fact that det A  should appear in the denominators is 
clear enough , and we omit most of the remaining details, but with a little effort we can arrive 
at the following (not particularly useful) result: 
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Recipe for 1−A : Given an n n×  matrix, we first calculate det A . If det 0=A , stop – the matrix 
is not invertible. If det 0≠A , we continue. For each entry ija  of the matrix, let ijA  be its minor 
– the ( 1) ( 1)n n− × −  matrix obtained by deleting the ith row and jth column of the matrix A. 

We define the cofactors by cof ( ) ( 1) deti j
ij ija += − A . If we assemble all of these cofactors into 

a matrix, we call this cof ( )A . We then transpose this matrix to get the adjoint matrix 
Tadj( ) [cof ( )]=A A . Then 1 1

det( ) adj( )− = AA A . 

A simple procedure for carrying this out is to: 

(a) Calculate the determinant of the given matrix. If it’s nonzero, continue. 

(b) Calculate the matrix consisting of the determinants of the respective minors for every 
entry of the given matrix. 

(c) Adjust all the signs using the checkerboard pattern: 

+ − + 
 − + −
 + − + 
  







   

. 

(d) Transpose the resulting matrix to get the adjoint. 

(e) Multiply by the reciprocal of the determinant to get the inverse matrix. 
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Example: Find the inverse of the matrix 
2 1 3
3 4 5

1 1 6

− 
 = −
 − 

A . 

Solution: (a) det 2(29) 1( 23) 3( 1) 58 23 3 84 0= − − − − = + + = ≠A . 

(b) The determinant of the minors gives: 
29 23 1
3 15 3

17 1 11

− − 
 −
 
 

 

(c) Adjust the signs to get the matrix of cofactors: 
29 23 1

3 15 3
17 1 11

− 
 −
 − 

 

(d) Transpose to get the adjoint: 
29 3 17
23 15 1

1 3 11

− 
 −
 − 

 

(e) Multiply by the reciprocal of the determinant to get 1 1
84

29 3 17
23 15 1

1 3 11

−
− 

 = −
 − 

A . 

Had we proceeded this way, we would have solved the system in the previous example as 

1 1 1 1
784 84

29 3 17 1 48 4
23 15 1 3 72 6

1 3 11 4 36 3

−
− − −       

       = = − = =
       − − − −       

x A b . 
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Note: The impracticality of this method starts to become clear when we look at 4 4×  matrices 
which would involve the calculation 16 determinants of 3 3×  matrices in addition to the 
original 4 4×  determinant which requires the calculation of other 3 3×  determinants to bring 
the total to 20 such determinants (in addition to the other calculations). 

For a 5 5×  matrix, we would have to calculate 25 5 30+ =  determinants of 4 4×  matrices each 
of which would require the calculation of smaller determinants. In general, it is far quicker to 
solve using row reduction methods, and row reduction has the additional advantage of yielding 
solutions in the case of consistent systems with rank less than n. 

Notes by Robert Winters 


