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A Worked Example of a 2nd Order Linear System with Sinusoidal Input Signal 

Problem: Solve the differential equation:     3 2 2cos(3 ), (0) 2, (0) 3x x x t x x        

Solution: First, the homogeneous equation 3 2 0x x x     is easy to solve. If we seek an exponential solution 
rtx e , we have 2 23 2 3 2 ( 3 2) 0rt rt rt rtx x x r e re e r r e          . The characteristic polynomial is 

2( ) 3 2 ( 2)( 1)p r r r r r       and yields the two roots 2r    and 1r   . This gives the two independent 

solutions 2te  and te , and all homogeneous solutions are of the form 2
1 2( ) t t

hx t c e c e   . Note that both of 

these homogeneous solutions are transient in the sense that they decay exponentially as t increases. 

Next, we need to find a particular solution ( )px t  that satisfies the inhomogeneous differential equation. Once 

found, we can express the general solution as ( ) ( ) ( )h px t x t x t  . There are several ways of finding a particular 

solution. 

Method 1: Undetermined Coefficients with trigonometric functions 
Examination of the differential equation suggests that we might be able to find a solution of the form 

( ) cos(3 ) sin(3 )px t a t b t  . We then have to calculate some derivatives, substitute them into the differential 

equation, and determine which coefficients give the correct right-hand-side for the differential equation. 

( ) cos(3 ) sin(3 )

( ) 3 cos(3 ) 3 sin(3 )
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So 3 2 ( 7 9 )cos(3 ) ( 9 7 )sin(3 ) 2cos(3 )p p px x x a b t a b t t          , and we must then have: 
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We can also express this in terms of a single sinusoidal function with a phase lag, i.e. in the form cos(3 )A t   

where 2 2 1307 9 2
65 65 65 130

( ) ( )A       and where   is the angle in the 2nd quadrant determined by 

9
7tan   , i.e. 127.87 2.23     radians. 

Method 2: Undetermined Coefficients and complex replacement 
We can simultaneously solve both 3 2 2cos(3 )x x x t     and 3 2 2sin(3 )y y y t     by letting z x iy   and 

using linearity and Euler’s formula with 3 cos(3 ) sin(3 )ite t i t  . By solving 33 2 2 itz z z e    , we’ll get both 
solutions by extracting the real and imaginary parts. We only want the real part in this case. 

If we choose to solve 33 2 2 itz z z e     using undetermined coefficients, the natural choice is to seek a solution 
of the form 3itz Ae . Its derivatives are 33 itz iAe  and 39 itz Ae  . Substitution into the differential equation 
gives 3 3 33 2 ( 9 9 2) ( 7 9 ) 2it it itz z z i Ae i Ae e           , so ( 7 9 ) 2i A    and 2

7 9iA   . 

At this point, we have a choice in how to proceed. We could do the following calculation to remove the 
complex number from the denominator and apply Euler’s formula express the real and imaginary parts in terms 
of sines and cosines: 
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The real part is then 7 9
65 65( ) cos(3 ) sin(3 )px t t t    which coincides with what we obtained above. 
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Alternatively, we could have expressed the divisor 7 9i   in polar form, i.e. 130 ie   where   is the angle in 

the 2nd quadrant determined by 9
7tan   , i.e. 127.87 2.23     radians. Then the solution is expressed as 
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cos(3 )px t   . 

Method 3: Exponential Response Formula 
Whenever we have an input signal (right-hand-side of the linear differential equation) that is either exponential 
or sinusoidal (in which case it can be expressed either as the real part or the imaginary part of a complex 
exponential) and if the system has constant coefficients, we have a very simple method of finding a particular 
solution, namely the Exponential Response Formula. The only problematic case is when the frequency of the 
input signal coincides with a root of the characteristic polynomial. 

Specifically, if the differential equation is of the form [ ( )] ( ) tp D x t ae  where ( )p r  is the characteristic 
polynomial and where the input signal frequency   can be either real or complex, we calculate that with 

( ) tx t Ae , we have [ ( )]( ) ( )t t tp D Ae Ap e ae    , so ( )Ap a   and ( )
a

pA  , and therefore 

( )( ) ta
px t e  gives a particular solution to the differential equation. This is the Exponential Response 

Formula. It’s very simple to apply. 

In our example, the characteristic polynomial is 2( ) 3 2p r r r   , and with complex replacement we can take 

the input signal frequency to be 3i   for the differential equation 33 2 2 itx x x e    . We calculate 
2( ) (3 ) 3(3 ) 2 9 9 2 7 9p i i i i           , so the particular (complex) solution is 32

7 9
it

i e   and this gives 
3 (3 )2 2 2
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       . The real part, corresponding to a solution to 

3 2 2cos(3 )x x x t    , is then 2
130

( ) [cos(3 )]px t t   , as before. 

Putting it all together with the initial conditions 
We can combine the homogeneous and particular solutions to get the general solution, and then use the initial 
conditions to determine any unknown constants and determine the unique solution to the initial value problem. 
How simple this is depends, to some degree, on the chosen format of the particular solution. Specifically, had 
we chosen the format with sines and cosines, we would have the general solution and its derivative: 
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Substitution the initial conditions (0) 2, (0) 3x x   gives  
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The solution is therefore 261 34 7 9
513 65 65( ) cos(3 ) sin(3 )t tx t e e t t      . It should be emphasized that in this 

example the homogeneous solutions were transients, so after a should while, the solution essentially coincides 
with the particular solution 2

130
( ) [cos(3 )]px t t   . In this format, we see that though the input had an 

amplitude of 2, the response has an amplitude of 2
130

, so the gain is 1
130

g   and the lag is   as described 

earlier. It is often helpful to note that 2
3130

( ) [cos3( )]px t t   , so the time lag is 3
 . 


