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General Linear Spaces (Vector Spaces) and Solutions of ODEs 

Definition: A vector space V is a set, with addition and scaling of element defined for all elements of the set, 
that is closed under addition and scaling, contains a zero element (0), and satisfies the following axioms: 
For all , ,f g h V∈  and scalars 1 2, ,c c c  

(1) ( ) ( )f g h f g h+ + = + +  
(2) f g g f+ = +  
(3) 0f f+ =  
(4) ( ) 0f f+ − =  

(5) ( )c f g cf cg+ = +  

(6) 1 2 1 2( )c c f c f c f+ = +  

(7) 1 2 1 2( ) ( )c c f c c f=  

(8) 1 f f=  

We’ll deal initially with the case where the scalars are real numbers. Such a vector space is called a  
real vector space. We will also use complex scalars in which case we’ll call this a complex vector space. 

Though we can give definitions and prove theorems about vector spaces in general, it’s helpful to develop a 
library of examples to which we can refer. 

1. Rn is a vector space. Indeed, the motivation for our definition and axioms is to define vector spaces to be 
spaces which a fundamentally like Rn. All of the required axioms are familiar facts about vectors in Rn. 

2. Any subspace of Rn is a vector space. All of the axioms are inherited and every subspace contains the zero 
vector, and the definition of subspace ensures that a subspace is closed under addition and scaling. 

3. The complex numbers { }2: ,  are real numbers, 1a bi a b i= + = −  can be viewed as a real vector space 

where addition is defined by 1 1 2 2 1 2 1 2( ) ( ) ( ) ( )a b i a b i a a b b i+ + + = + + +  and scaling by a real number c  is 

defined by ( )c a bi ca cbi+ = + . Note that we do not define multiplication of complex numbers in this context. 
The complex numbers contain the zero element 0 0 0i= +  and all of the axioms follow from corresponding 
facts about real numbers. 

4. { }( , )  matrices with real entriesm n M m n m n× = = ×R  is a real vector space with addition and scaling of 

matrices defined component-wise. The m n×  zero matrix is the zero element and the axioms are all known 
properties of matrix algebra. Note that in this context we do not define the product of matrices. 

5. { }( , ) ( ) functions :  with domain F F f= = →R R R R R R  is a real vector space where addition of functions 

and scaling of functions are defined by pointwise by ( )( ) ( ) ( )f g x f x g x+ = +  and ( )( ) ( )cf x c f x= . The zero 
element in this case is the function that is identically zero for all x. (This is quite different than just the real 
number 0.) Once again, the axioms all follow from familiar facts about real numbers. 

6. { } { }0 1 0 1real polynomials of degree : , , ,n
n n nP n a a x a x a a a= ≤ = + + + ∈R   is a real vector space. Note 

that we must allow all polynomials less than or equal to n because we might add two polynomials (or scale by 
0) and get a polynomial of lesser degree. 

7. { }0 0( , ) ( ) continuous functions :C C f= = →R R R R R  is a real vector space. Closure follows from theorems 

of Calculus that the sum of continuous functions is continuous and a scalar multiple of a continuous function 
is also continuous. The zero function is clearly continuous, and the axioms are all easily verified. 

Definition: A subspace W of a vector space V is a subset that is closed under addition and scaling of elements. 
That is, for any vectors 1 2, W∈v v  and scalars 1 2,c c , it must be the case that 1 1 2 2c c W+ ∈v v . We write W V⊆ . 

8. { }1 1( , ) ( ) differentiable functions :C C f= = →R R R R R  is a real vector space. Closure follows from the 

theorems of Calculus that ( )f g f g′ ′ ′+ = +  and ( )cf c f′ ′= . The zero function is clearly differentiable. 
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Note: All polynomials are differentiable, and a (hopefully) familiar theorem of Calculus tells us that 
differentiable functions must be continuous, so for any n, 1 0( ) ( ) ( )nP C C F⊆ ⊆ ⊆R R R . 

9. { }( , ) ( ) functions :  that are at least  times differentiablek kC C f k= = →R R R R R  is a real vector space. This 

follows similarly from Calculus theorems. The zero function is differentiable to all orders. 

10. { }( , ) ( ) functions :  that are differentiable to all ordersC C f∞ ∞= = →R R R R R  is a real vector space. This 

also follows from the Calculus theorems above. The zero function is differentiable to all orders. 

Note: For any n, 1 0
0 1 2 1 ( ) ( ) ( ) ( ) ( )k

n nP P P P P C C C C F∞
−⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆R R R R R   . It’s also 

important to note that when dealing with spaces of functions, these spaces are much “larger” that Rn. To better 
understand this, we’ll need some more definitions, but some of the important details will have to wait until you 
take course in analysis and topology. 

Many of the definitions when working with vectors spaces are essentially the same as those in Rn. 

Definition: Given a collection of elements { }1 2, , , kf f f V∈ , we define the span of these elements as: 

{ } { }1 1 1 1span , ,  where ,  are scalarsk k k kf f c f c f c c= + +   . 

Definition: A set of elements { }1 2, , , kf f f V∈  is called linearly independent if given any linear combination 

of the form 1 1 0k kc f c f+ + = , this implies that 1 0kc c= = = . That is, there is no nontrivial way to combine 
these vectors to yield the zero element. 

Definition: Given a subspace W V⊆ , a collection of elements { }1 2, , , kf f f W∈  is called a basis of W if 

{ }1 2Span , , , kf f f W=  and { }1 2, , , kf f f  are linearly independent. 

A basis is a minimal spanning set and, as was the case in Rn, if a basis for W consists of finitely many elements 
then any other basis will have the same number of elements, the dimension of W. It is important to note, 
however, that it will often be the case, especially in the case of function spaces, that a subspace might not be 
spanned by finitely many elements. 

Coordinates relative to a basis 
Definition: If { }1, , kf f= B  is a basis for a finite dimensional vector space V (or a subspace of V), and if 

f V∈ , then f can be expressed uniquely as 1 1 k kf c f c f= + +  for scalars { }1, , kc c . These uniquely 

determined scalars are called the coordinates of f relative to this basis. If we express these coordinates as a 
column vector (effectively a vector in kR ), we denote this coordinate vector by [ ]f

B
. 

Definition: Given two vectors spaces V and W, a function :T V W→  is called a linear transformation if for 
all elements 1 2,f f V∈  and for all scalars 1 2,c c , T satisfies 1 1 2 2 1 1 2 2( ) ( ) ( )T c f c f c T f c T f+ = + . This can also be 
expressed by saying that T preserves addition and scalar multiplication. We call the input space V the domain 
of T and we call the output space W the codomain. 

Definition: Suppose :T V W→  is a linear transformation. We define: 

{ }image( ) ( ) ( ) :T im T T f f V W= = ∈ ⊆      and     { }kernel( ) ker( ) : ( ) 0T T f V T f V= = ∈ = ⊆  

These are both subspaces. The argument is the same as we’ve seen before. 
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Definition: Given a linear transformation :T V W→ , we define: rank( ) dim(im )T T=  and 
nullity( ) dim(ker )T T=  when these subspaces have finite dimension. 

We can also state (without proof) the corresponding fact regarding the relationship between rank and nullity. 

Rank-Nullity Theorem: If :T V W→  is a linear transformation and V has finite dimension, then 
rank( ) nullity( ) dim( )T T V+ = . 

Definition: A linear transformation :T V W→  is called an isomorphism if it is one-to-one and onto its 
codomain. That is, for every g W∈  there is a unique f V∈  such that ( )T f g= . 

Application to Linear Ordinary Differential Equations 
In any space consisting of differentiable functions, the differentiation operator ( )D f f ′=  is a linear 
transformation. This follows from the Calculus facts that ( ) ( ) ( ) ( )D f g f g f g D f D g′ ′ ′+ = + = + = +  and 

( ) ( ) ( )D cf cf c f c D f′ ′= = = . The kernel of this linear transformation consists of the constant functions. This 
linear transformation is therefore NOT an isomorphism. 

In any space of functions, another important linear transformation is multiplication by a fixed function g. That 
is, if we define ( )gM f g f= , then for any scalars 1 2,c c  and any functions 1 2,f f  we have: 

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2( ) ( ) ( ) ( )g g gM c f c f g c f c f c g f c g f c M f c M f+ = + = + = +  

If we combine the differentiation operator and various multiplication operators via addition and composition, 
we can build more complicated linear differential operators. 

For example, 2D D D=   is a linear operator corresponding to taking the 2nd derivative. 
Similarly, kD D D D=    corresponds with taking the kth derivative. 

If ( )p t  is a function, then T D pI= +  is a first order linear differential operator calculated by: 

( ( )) ( )( ( )) ( ) ( )dx
dtT x t D pI x t p t x t= + = +  

More generally, given functions 1 1 0( ), , ( ), ( )np t p t p t−  , we can form the linear differential operator 
1

1 1 0
n n

nT D p D p D p I−
−= + + + + . When applied to a sufficiently differential function ( )x t , this gives: 

1
1 1 0 1 1 0

1
1( ( )) ( )( ( )) ( ) ( ) ( ) ( )n n

n n

n n
n n

d x d x dx
dt dtdt

T x t D p D p D p I x t p t p t p t x t−
− −

−
−= + + + + = + + + +   

Solving an nth order linear ODE of the form 1 1 0

1
1( ) ( ) ( ) ( ) ( )n

n n
n n

d x d x dx
dt dtdt

p t p t p t x t q t−
−
−+ + + + =  can thus be seen 

as solving ( ( )) ( )T x t q t= . In the case of a homogeneous linear ODE, the becomes simply ( ( )) 0T x t = , i.e. we 
are trying to find the kernel of the linear differential operator. 

Perhaps the greatest benefit of this formulation is that if we can find several (linearly independent) 
homogeneous solutions 1( ), ( )kx t x t  [that is, 1 2( ( )) ( ( )) ( ( )) 0kT x t T x t T x t= = = = ], then for any scalars 

1, kc c , we have (by linearity) 1 1 1 1( ( ) ( )) ( ( )) ( ( )) 0k k k kT c x t c x t c T x t c T x t+ + = + + =  . That is, any linear 
combination of solutions will also be a solution [Principle of Superposition]. 

Linear ODEs with constant coefficients 
An important (and easily solvable) case is where all of the coefficient functions are constant, i.e. an operator of 
the form 1

1 1 0
n n

nT D a D a D a I−
−= + + + +  where 1 1 0, , ,na a a−   are constants. We’ll first consider the 

homogeneous case, i.e. solving a homogeneous linear ODE with constant coefficients of the form 

1 1 0

1
1 0n

n n
n n

d x d x dx
dt dtdt

a a a x−
−
−+ + + + = . We can generate solutions to such an ODE by (initially) considering 

exponential functions of the form ( ) rtx t e=  where r is constant. Substituting this into the ODE gives: 
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1 1
1 1 0 1 1 0 1 1 0

1
1 ( ) 0n rt n rt rt rt n n rt

n n n

n n
n n

d x d x dx
dt dtdt

a a a x r e a r e a re a e r a r a r a e− −
− − −

−
−+ + + + = + + + + = + + + + =    

The polynomial 1
1 1 0( ) n n

nP r r a r a r a−
−= + + + +  is called the characteristic polynomial of this ODE. Any root 

of this polynomial will yield an exponential solution to the ODE, and the Fundamental Theorem of Algebra 
guarantees n roots, though some may be complex and some may be repeated. The roots of the characteristic 
polynomial are called the characteristic roots or characteristic values of the ODE. Our strategy will be to try to 
create a basis out of such exponential solutions from which ALL homogeneous solutions can be constructed. 

First Order Example: If we solve 0dx
dt kx− = , we have the characteristic polynomial ( ) 0P r r k= − =  and 

characteristic value r k= . This yields the exponential solution kte . By linearity, ( ) ktx t ce=  will also be a 

solution and, in fact, this yields ALL homogeneous solutions. That is { }kte  is a basis for all such solutions. 

Second Order Example: Suppose we want to solve the ODE  
2
2 3 2 0d x dx

dtdt
x+ + = . The corresponding linear 

differential operator is 2 3 2T D D I= + +  and the characteristic polynomial is 2( ) 3 2 ( 2)( 1)P r r r r r= + + = + + . 

This yields the characteristic values 2r = −  and 1r = −  and exponential solutions 2te−  and te− . By linearity, any 
function of the form 2

1 2( ) t tx t c e c e− −= +  will also be a homogeneous solution for any scalars 1 2,c c . Does this 

give ALL solutions? That is, does 2{ , }t te e− −  constitute a basis for all solutions? 

We can show that this is actually the case by thinking of 2 3 2 ( 2 ) ( )T D D I D I D I= + + = + + , i.e. as a 
composition of first-order linear operators. We are seeking a solution ( )x t  such that ( 2 )[( )( ( ))] 0D I D I x t+ + = . 
If we let ( ) ( )( ( ))y t D I x t= + , then we can first solve ( 2 )[ ( ))] 2 0D I y t y y+ = + =  to get all solutions of the form 

2
1( ) ty t c e−= . Next, for any such solution we’ll have 2

1( )( ( )) tD I x t x x c e−+ = + = . This is an inhomogeneous 

first-order ODE. The homogeneous solutions are all of the form 2( ) t
hx t c e−=  and we can use the Method of 

Undetermined Coefficients to produce a particular solution to the inhomogeneous equation, i.e. 2( ) t
px t Ae−=  

for some scalar A. Substitution gives 2 2 2
1( 2 ) t t tx x A A e Ae c e− − −+ = − + = − = , so 1A c= − . We then add the 

homogeneous and particular solutions to get that all solutions must be of the form 2
2 1( ) t tx t c e c e− −= − . If we 

now simply rename the coefficients we see that all solutions are of the form 2
1 2( ) t tx t c e c e− −= + , i.e. 2{ , }t te e− −  

does constitute a basis for all solutions. (It’s straightforward to show that these functions are linearly 
independent.) 

The above argument works the same in the case of an nth order linear homogeneous ODE with constant 
coefficients – as along as all the roots of the characteristic polynomial are distinct. It’s even valid in the case of 
complex roots (though it’s generally preferable to use Euler’s Formula to re-express the exponential solutions in 
terms of sine and cosine functions). Repeated roots have to be handled differently. An example will illustrate 
what should be done in that case. 

Repeated root example: Suppose we want to solve the ODE  
2
2 4 4 0d x dx

dtdt
x+ + = . The corresponding linear 

differential operator is 2 4 4T D D I= + +  and the characteristic polynomial is 2 2( ) 4 4 ( 2)P r r r r= + + = + . This 

yields only the characteristic value 2r = −  with corresponding exponential solutions 2te− . Does 2
1( ) tx t c e−=  

yield ALL homogeneous solutions, i.e. does 2{ }te−  constitute a basis for all solutions? The answer is NO. If we 
proceed in the same manner as the previous example, we write ( 2 )[( 2 )( ( ))] 0D I D I x t+ + =  and let 

( ) ( 2 )( ( ))y t D I x t= + . We solve ( 2 )[ ( ))] 2 0D I y t y y+ = + =  to get 2
1( ) ty t c e−=  and then seek solutions of 

2
1( 2 )( ( )) 2 tD I x t x x c e−+ = + = . In this case, it may not be so clear how to use Undetermined Coefficients to 
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guess a particular solution to this inhomogeneous equation. We can use Variation of Parameters to find 

solutions. If we see a solution of the form 2( ) ( ) t
px t v t e−= , the method gives that 

2
1

12
( )

t

t

c e
v t c

e

−

−
′ = = , so 

1 2( )v t c t c= +  (we actually don’t need to include the 2c+  if we’re just seeking a particular solution). So we can 

choose 2
1( ) t

px t c te−= . The homogeneous solutions are all of the form 2
2( ) t

hx t c e−= . Therefore, ALL solutions 

are of the form 2 2
1 2( ) t tx t c te c e− −= + . That is, 2 2{ , }t te te− −  forms a basis for ALL solutions. 

This can be generalized for any repeated root of any multiplicity. For example, a similar calculation shows that 
for the homogeneous linear ODE 3( 3 ) ( ( )) 0D I x t+ = , 3 3 2 3{ , , }t t te te t e− − −  gives a basis for all solutions. That is, 

all solutions are expressible (uniquely) in the form 3 3 2 3
1 2 3( ) }t t tx t c e c te c t e− − −= + +  

As long as we can easily factor the characteristic polynomial, the above example illustrate how we can simply 
generate a basis for all homogeneous solutions for in the case of constant coefficients. 

Example: Find all solutions to the ODE: 
4 3 2
4 3 22 5 8 4 0d x d x d x dx

dtdt dt dt
x+ + + + = . 

Solution: The characteristic polynomial in the case is 4 3 2 2 2( ) 2 5 8 4 ( 1) ( 4) 0P r r r r r r r= + + + + = + + = . The 
characteristic values are 1r = −  (with multiplicity 2), 2r i= , and 2r i= − . From these we get a basis for all 
solutions 2 2{ , , , }t t it ite te e e− − − . We could express all solutions in the form 2 2

1 2 3 4( ) t t it itx t c e c te c e c e− − −= + + +  
where we necessarily have to allow for complex coefficients. However, if we note (using Euler’s Formula) that 

2 cos(2 ) sin(2 )ite t i t= +  and 2 cos(2 ) sin(2 )ite t i t− = −  we can easily see that we could also (perhaps more simply) 

use { , ,cos 2 ,sin 2 }t te te t t− −  as a basis for all solutions, i.e. all solutions may be expressed in the form 

1 2 3 4( ) cos 2 sin 2t tx t c e c te c t c t− −= + + +  where all the coefficients are real scalars. 

 

Our next several tasks will be to consider inhomogeneous equations and initial value problems. This will 
necessitate a slightly more nuanced view of what we mean by linearly independent functions for the purpose of 
finding unique solutions to well-posed initial value problems. This will involve what is known as the Wronskian 
associated with a given basis of homogeneous solutions. 
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