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Math E-21c – Linear nth Order ODE Cookbook 
Study guide 
1. Linear Models. A linear differential equation is one of the form ( )

1 0( ) ( ) ( ) ( )n
na t x a t x a t x q t′+ + + = . The 

( )ka t  are coefficients functions. The left side models a system, ( )q t  arises from an input signal, and solutions 
( )x t  provide the system response. In this course we mainly focus on the time-invariant case where the 

coefficient functions are all constant. In this case the equation can be written in terms of the characteristic 
polynomial 1 0( ) n

np s a s a s a= + + +  as ( ) ( )p D x q t= . However, some of the ideas developed are also 
applicable to the more general case, e.g. variation of parameters for finding particular solutions. 

Spring system: If ( )extmx cx kx F t+ + =   with 0m > , , 0b k ≥ , and an external driving force ( )extF t , we can 

rewrite this as 1 ( )ext
c k
m m mx x x F t+ + =   with characteristic polynomial 2( ) c k

m mp s s s= + + . The system 
response ( )x t  gives the position of the mass. If driven directly, 1( ) ( )extmq t F t= . If driven through the spring, 

( ) ( )k
mq t y t= (where ( )y t  is the position of the far end of the spring). If driven through the dashpot, 

( ) c
mq t y=   (where ( )y t  = position of far end of dashpot). 

[Note: We did not go into this level of fine detail in class about how the system was driven.] 

2. Homogeneous Equations. The “mode” rte  solves ( ) 0p D x =  exactly when ( ) 0p r = . If r is a double root 
one needs rtte  also (and 2 rtt e , etc. if the root has greater multiplicity). The general solution is a linear 
combination of these. If the coefficients are real and if the roots are complex, i.e. r a bi= ±  with 0b ≠ , then 

cosate bt  and sinate bt  are independent real solutions. If all roots have negative real part then all solutions 
decay to zero as t →∞  and are called transients. In the spring case with 2( ) c k

m mp s s s= + +  with 0m >  and 

, 0b k ≥ , the characteristic roots are 
2 4

2
c c kms

m
− ± −

= . The equation is overdamped if the roots are real and 

distinct ( 2 4 0c km− > ), underdamped if the roots are complex ( 2 4 0c km− < ), and critically damped if there 
is just one (repeated) root ( 2 4 0c km− = ). In the underdamped case the general solution is 

2 cos( )ct m
dAe t− −ω φ  where 21

2 4d m km c= −ω  is the damped circular frequency and φ  is a phase angle. 

3. Linearity. In addition to earlier observations about linearity, we also have the following superposition 
principle: if 1 1( ) ( )p D x q t=  and 2 2( ) ( )p D x q t= , then 1 1 2 2x c x c x= +  solves 1 1 2 2( ) ( ) ( )p D x c q t c q t= +  (where 

1 2,c c  are constants). 
1st Consequence: The general solution to ( ) ( )p D x q t=  is h px x+  where hx  is the general solution to the 
homogeneous equation ( ) 0p D x =  and px  is any particular solution to the inhomogeneous equation 

( ) ( )p D x q t= . 
2nd Consequence: If a particular solution to an equation of the form 1 1 2 2( ) ( ) ( )p D x c q t c q t= +  is needed 
where 1( )q t  and 2 ( )q t  are dissimilar functions (e.g. polynomial and trigonometric), we can separately solve 

1 1( ) ( )p D x q t=  and 2 2( ) ( )p D x q t=  for particular solutions 1x  and 2x , and then put them together to get a 
particular solution 1 1 2 2x c x c x= +  to the equation 1 1 2 2( ) ( ) ( )p D x c q t c q t= + . 

4. Exponential Response formula: If ( ) 0p r ≠  then 
( )

rtae
p r

 solves ( ) rtp D x ae= . If ( ) 0p r =  but (0) 0p′ ≠  then 

( )

rtate
p r′

 solves ( ) rtp D x ae= . If ( ) ( ) 0p r p r′= =  but (0) 0p′′ ≠  then 
2

( )

rtat e
p r′′

 solves ( ) rtp D x ae= , etc. These 

latter cases are known as the Resonant Response Formula(s). 
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5. Complex Replacement: If ( )p s  has real coefficients then solutions of ( ) cos( )rtp D x Ae tω=  are real parts of 
solutions of ( )( ) r i tp D x Ae ω+= . Solutions to ( ) sin( )rtp D x Ae tω=  may be found from the imaginary parts. 
This is a particularly useful method when used in conjunction with the Exponential Response Formula. 

6. Undetermined Coefficients (and reduction of order): With 1 0( ) n
np s a s a s a= + + + , if 0 0a ≠  then 

1 0( ) k
kp D x b t b t b= + + +  has a polynomial (particular) solution, which has degree at most k. If ka  is the 

first nonzero coefficient (for example, in the equation 53x x t+ =   we would have 2k = ), you can make the 
substitution ( )ku x=  and proceed (“reduction of order”) to determine ( )u t . For a particular solution ( )px t  
you can take any constants of integration to be zero. 

7. Exponential Shift Rule: To solve ( ) ( ) rtp D x q t e= , try ( ) rtx u t e= . This leads to a different equation for ( )u t  
with right hand side ( )q t . You can then use a method like Undetermined Coefficients or Complex 
Substitution to find ( )u t  and thus find the particular solution ( ) ( ) rt

px t u t e= . This procedure can be 
formalized as the Exponential Shift Rule. Specifically, suppose we wish to solve an ODE of the form 
[ ( )] ( ) ( )rtp D x t e q t=  where 1

1 1 0( ) n n
np D D a D a D a I−
−= + + + +  is a linear differential operator with 

constant coefficients. If ( )u t  is a solution of the ODE [ ( )] ( ) ( )p D rI u t q t+ = , then ( ) ( )rtx t e u t=  will solve 
[ ( )] ( ) ( )rtp D x t e q t= . 

8. Variation of Parameters: When other simpler methods are unavailable to find a particular solution to a 
linear ODE of the form ( )

1 0( ) ( ) ( ) ( )n
na t x a t x a t x R t′+ + + = , and if you have found a full complement of 

independent homogeneous solutions 1( ), , ( )nx t x t , then you can try a solution of the form 1 1 n nx v x v x= +  
where 1( ), , ( )nv t v t  are undetermined functions. By imposing additional conditions on the derivatives, you 
can then solve a system of equations for 1( ), , ( )nv t v t 

  and integrate to find 1( ), , ( )nv t v t . 

In the 2nd order case, with the ODE 1 0( ) ( ) ( )x p t x p t x R t+ + =  , this leads to the system of equations 

1 1 2 2

1 1 2 2

0
( )

x v x v
x v x v R t

+ = 
 + = 

 

   

 or, in matrix form, 1 2 1

1 2 2

0
( )

x x v
x x v R t
     =         



  

 and 2
1

Rx
Wv = − , 1

2
x R
Wv =  where 

1 2
1 2 2 1

1 2
( ) x xW W t x x x xx x= = = − 

 

 is the Wronskian determinant. It should be emphasized that if other, simpler 

methods can be used to find a particular solution, you may wish to try those first. 

9. Time Invariance: If ( ) ( )p D x q t= , then ( )y x t a= −  solves ( ) ( )p D y q t a= − . This allows you to solve the 
simpler, more standard ODE ( ) ( )p D x q t=  first and then substitute to get the desired solution. 

10. Frequency Response: An input signal ( )y t  determines ( )q t  in ( ) ( )p D x q t= , e.g. a diffusion problem 
where ( ) ( ) ( )p D x k y t q t= = . With i t

cxy y e ω= = , an exponential system response has the form ( ) i tH e ωω  for 
some complex number ( )H ω , calculated using ERF. (If ERF fails then the complex gain is infinite.) Then 
with cos( )y A tω= , cos( )px g tω φ= −  where ( )g H ω=  is the gain and ( ( ))Arg H wφ = −  is the phase lag. 
By time invariance the gain and phase lag are the same for any sinusoidal input signal of frequency ω . 


