Math E-21c - Linear nth Order ODE Cookbook

Study guide

1. Linear Models. A linear differential equation is one of the form $a_{n}(t) x^{(n)}+\cdots+a_{1}(t) x^{\prime}+a_{0}(t) x=q(t)$. The $a_{k}(t)$ are coefficients functions. The left side models a system, $q(t)$ arises from an input signal, and solutions $x(t)$ provide the system response. In this course we mainly focus on the time-invariant case where the coefficient functions are all constant. In this case the equation can be written in terms of the characteristic polynomial $p(s)=a_{n} s^{n}+\cdots+a_{1} s+a_{0}$ as $p(D) x=q(t)$. However, some of the ideas developed are also applicable to the more general case, e.g. variation of parameters for finding particular solutions.
Spring system: If $m \ddot{x}+c \dot{x}+k x=F_{\text {ext }}(t)$ with $m>0, b, k \geq 0$, and an external driving force $F_{\text {ext }}(t)$, we can rewrite this as $\ddot{x}+\frac{c}{m} \dot{X}+\frac{k}{m} x=\frac{1}{m} F_{e x t}(t)$ with characteristic polynomial $p(s)=s^{2}+\frac{c}{m} s+\frac{k}{m}$. The system response $x(t)$ gives the position of the mass. If driven directly, $q(t)=\frac{1}{m} F_{\text {ext }}(t)$. If driven through the spring, $q(t)=\frac{k}{m} y(t)$ (where $y(t)$ is the position of the far end of the spring). If driven through the dashpot, $q(t)=\frac{c}{m} \dot{y}$ (where $y(t)=$ position of far end of dashpot).
[Note: We did not go into this level of fine detail in class about how the system was driven.]
2. Homogeneous Equations. The "mode" $e^{r t}$ solves $p(D) x=0$ exactly when $p(r)=0$. If r is a double root one needs $t e^{r t}$ also (and $t^{2} e^{r t}$, etc. if the root has greater multiplicity). The general solution is a linear combination of these. If the coefficients are real and if the roots are complex, i.e. $r=a \pm b i$ with $b \neq 0$, then $e^{a t} \cos b t$ and $e^{a t} \sin b t$ are independent real solutions. If all roots have negative real part then all solutions decay to zero as $t \rightarrow \infty$ and are called transients. In the spring case with $p(s)=s^{2}+\frac{c}{m} s+\frac{k}{m}$ with $m>0$ and $b, k \geq 0$, the characteristic roots are $s=\frac{-c \pm \sqrt{c^{2}-4 k m}}{2 m}$. The equation is overdamped if the roots are real and distinct ($c^{2}-4 k m>0$), underdamped if the roots are complex ($c^{2}-4 k m<0$), and critically damped if there is just one (repeated) root ($c^{2}-4 \mathrm{~km}=0$). In the underdamped case the general solution is $A e^{-c t / 2 m} \cos \left(\omega_{d} t-\phi\right)$ where $\omega_{d}=\frac{1}{2 m} \sqrt{4 k m-c^{2}}$ is the damped circular frequency and ϕ is a phase angle.
3. Linearity. In addition to earlier observations about linearity, we also have the following superposition principle: if $p(D) x_{1}=q_{1}(t)$ and $p(D) x_{2}=q_{2}(t)$, then $x=c_{1} x_{1}+c_{2} x_{2}$ solves $p(D) x=c_{1} q_{1}(t)+c_{2} q_{2}(t)$ (where c_{1}, c_{2} are constants).
1st Consequence: The general solution to $p(D) x=q(t)$ is $x_{h}+x_{p}$ where x_{h} is the general solution to the homogeneous equation $p(D) x=0$ and x_{p} is any particular solution to the inhomogeneous equation $p(D) x=q(t)$.
2nd Consequence: If a particular solution to an equation of the form $p(D) x=c_{1} q_{1}(t)+c_{2} q_{2}(t)$ is needed where $q_{1}(t)$ and $q_{2}(t)$ are dissimilar functions (e.g. polynomial and trigonometric), we can separately solve $p(D) x_{1}=q_{1}(t)$ and $p(D) x_{2}=q_{2}(t)$ for particular solutions x_{1} and x_{2}, and then put them together to get a particular solution $x=c_{1} x_{1}+c_{2} x_{2}$ to the equation $p(D) x=c_{1} q_{1}(t)+c_{2} q_{2}(t)$.
4. Exponential Response formula: If $p(r) \neq 0$ then $\frac{a e^{r t}}{p(r)}$ solves $p(D) x=a e^{r t}$. If $p(r)=0$ but $p^{\prime}(0) \neq 0$ then $\frac{a t e^{r t}}{p^{\prime}(r)}$ solves $p(D) x=a e^{r t}$. If $p(r)=p^{\prime}(r)=0$ but $p^{\prime \prime}(0) \neq 0$ then $\frac{a t^{2} e^{r t}}{p^{\prime \prime}(r)}$ solves $p(D) x=a e^{r t}$, etc. These latter cases are known as the Resonant Response Formula(s).
5. Complex Replacement: If $p(s)$ has real coefficients then solutions of $p(D) x=A e^{r t} \cos (\omega t)$ are real parts of solutions of $p(D) x=A e^{(r+i \omega) t}$. Solutions to $p(D) x=A e^{r t} \sin (\omega t)$ may be found from the imaginary parts. This is a particularly useful method when used in conjunction with the Exponential Response Formula.
6. Undetermined Coefficients (and reduction of order): With $p(s)=a_{n} s^{n}+\cdots+a_{1} s+a_{0}$, if $a_{0} \neq 0$ then $p(D) x=b_{k} t^{k}+\cdots+b_{1} t+b_{0}$ has a polynomial (particular) solution, which has degree at most k. If a_{k} is the first nonzero coefficient (for example, in the equation $\dddot{x}+3 \ddot{x}=t^{5}$ we would have $k=2$), you can make the substitution $u=x^{(k)}$ and proceed ("reduction of order") to determine $u(t)$. For a particular solution $x_{p}(t)$ you can take any constants of integration to be zero.
7. Exponential Shift Rule: To solve $p(D) x=q(t) e^{r t}$, try $x=u(t) e^{r t}$. This leads to a different equation for $u(t)$ with right hand side $q(t)$. You can then use a method like Undetermined Coefficients or Complex Substitution to find $u(t)$ and thus find the particular solution $x_{p}(t)=u(t) e^{r t}$. This procedure can be formalized as the Exponential Shift Rule. Specifically, suppose we wish to solve an ODE of the form $[p(D)] x(t)=e^{r t} q(t)$ where $p(D)=D^{n}+a_{n-1} D^{n-1}+\cdots+a_{1} D+a_{0} I$ is a linear differential operator with constant coefficients. If $u(t)$ is a solution of the ODE $[p(D+r I)] u(t)=q(t)$, then $x(t)=e^{r t} u(t)$ will solve $[p(D)] x(t)=e^{r t} q(t)$.
8. Variation of Parameters: When other simpler methods are unavailable to find a particular solution to a linear ODE of the form $a_{n}(t) x^{(n)}+\cdots+a_{1}(t) x^{\prime}+a_{0}(t) x=R(t)$, and if you have found a full complement of independent homogeneous solutions $x_{1}(t), \cdots, x_{n}(t)$, then you can try a solution of the form $x=v_{1} x_{1}+\cdots v_{n} x_{n}$ where $v_{1}(t), \cdots, v_{n}(t)$ are undetermined functions. By imposing additional conditions on the derivatives, you can then solve a system of equations for $\dot{v}_{1}(t), \cdots, \dot{v}_{n}(t)$ and integrate to find $v_{1}(t), \cdots, v_{n}(t)$.

In the 2nd order case, with the ODE $\ddot{x}+p_{1}(t) \dot{x}+p_{0}(t) x=R(t)$, this leads to the system of equations $\left\{\begin{array}{l}x_{1} \dot{v}_{1}+x_{2} \dot{v}_{2}=0 \\ \dot{x}_{1} \dot{v}_{1}+\dot{x}_{2} \dot{v}_{2}=R(t)\end{array}\right\}$ or, in matrix form, $\left[\begin{array}{ll}x_{1} & x_{2} \\ \dot{x}_{1} & \dot{x}_{2}\end{array}\right]\left[\begin{array}{c}\dot{v}_{1} \\ \dot{v}_{2}\end{array}\right]=\left[\begin{array}{c}0 \\ R(t)\end{array}\right]$ and $\dot{v}_{1}=-\frac{x_{2} R}{W}, \dot{v}_{2}=\frac{x_{1} R}{W}$ where $W=W(t)=\left|\begin{array}{ll}x_{1} & x_{2} \\ \dot{x}_{1} & \dot{x}_{2}\end{array}\right|=x_{1} \dot{x}_{2}-x_{2} \dot{x}_{1}$ is the Wronskian determinant. It should be emphasized that if other, simpler methods can be used to find a particular solution, you may wish to try those first.
9. Time Invariance: If $p(D) x=q(t)$, then $y=x(t-a)$ solves $p(D) y=q(t-a)$. This allows you to solve the simpler, more standard ODE $p(D) x=q(t)$ first and then substitute to get the desired solution.
10. Frequency Response: An input signal $y(t)$ determines $q(t)$ in $p(D) x=q(t)$, e.g. a diffusion problem where $p(D) x=k y(t)=q(t)$. With $y=y_{c x}=e^{i \omega t}$, an exponential system response has the form $H(\omega) e^{i \omega t}$ for some complex number $H(\omega)$, calculated using ERF. (If ERF fails then the complex gain is infinite.) Then with $y=A \cos (\omega t), x_{p}=g \cos (\omega t-\phi)$ where $g=|H(\omega)|$ is the gain and $\phi=-\operatorname{Arg}(H(w))$ is the phase lag. By time invariance the gain and phase lag are the same for any sinusoidal input signal of frequency ω.

