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Supplement on Linear Coordinates, Vectors and Matrices Relative to a Basis, 
with Applications to Solving Systems of 1st Order Linear Differential Equations 

Though everyone most likely believes they understand vectors and matrices, there are some subtle aspects that 
warrant additional explanation. For example, if your concept of a vector in Rn is “an ordered n-tuple” or some 
similar definition, then this doesn’t really hold up objectively. If you were to change units, for example, the 
components of the vector might be completely different but still represent the same vector. In physics, the 
acceleration due to Earth’s gravity is a vector pointing downward, but is it 32 ft/sec2 or 9.8 m/sec2? The 
numerical value of the downward component can be different things depending on what coordinates you 
choose. 

The same ambiguity applies to the description of functions. If we have a function represented as 2( )y f x x  , 
think about what happens if you change coordinates by letting 3x u   and 12y v . The former is a shift in 

the horizontal axis, and the latter is a linear change of scale. Substituting, we get 212 ( 3)v u   or 
21

12 ( 3) ( )v u f u    . In the new coordinates, the function has a different algebraic representation (formula), 

but it still describes the same parabola. There’s an interesting way to think about this in terms of the functions 

that determine the coordinate changes. If we write ( ) 3x h u u    and ( ) 12y k v v  , then 1f k f h   . 
This can be schematically understood via the following diagram (where the variables are appended for 
guidance): 
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A given function can, in fact, be represented in arbitrarily many different ways. We require only that the 
appropriate coordinate changes be understood and that the relationship between different representations be 

determined by a diagram such as the one above. If so, we’ll say that f  and f  are equivalent. 

This is somewhat simplified in the case where the coordinate change is the same in both the domain and range 

of a given function. If this change is given by a function h , we get the simpler relation 1f h f h    and the 
corresponding simplified schematic: 
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Let’s focus on how this plays out in the context of vectors and matrices. In our standard view of Rn we can 

think of a vector 
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e  . We refer to the numbers 

1 2{ , , , }nx x x  as the standard coordinates of the vector. In Linear Algebra we’d say that these are the 

coordinates of the vector relative to the standard basis 1{ , , }n e eE  . Some Linear Algebra definitions are in 

order here. We call a subset V of Rn a subspace if it is closed under vector addition and scalar multiplication. 
We call 1Span{ , , }kv v  the set of all vectors you can build out of a given set of vectors 1{ , , }kv v  by scaling 

and adding, i.e.  1 1 1: , ,  scalarsk k kc c c c v v  . A single nonzero vector spans a line through the origin. 

Two nonparallel vectors in Rn span a plane through the origin. Any subspace is typically described by providing 
a spanning set. We say that a set of vectors 1{ , , }kv v  are linearly independent if it’s impossible to express any 
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one of them as a linear combination of the others. This is the same as saying that if 1 1 k kc c  v v 0  then 

necessarily 1 0kc c   . If a subspace 1Span{ , , }kV  v v , and if 1{ , , }kv v  are linearly independent, we 

call this a basis for V. It can be shown that the number of vectors in a basis for a subspace V is always the same 
and this number is called the dimension of V. It is important to note that Rn itself is a subspace of dimension n. 
In addition to the standard basis 1{ , , }n e eE   for Rn, any collection 1{ , , }n v vB   of n linearly independent 

vectors in Rn will form a basis for Rn. 

It can be easily shown that if 1{ , , }n v vB   is a basis for Rn, then any vector x in Rn can be expressed 

uniquely as  
1
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   . The matrix 1 n
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S v v  is called the change of 

basis matrix. It is necessarily invertible. 

The vector  
1

n

c

c
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x
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  gives the coordinates of x relative to the basis B. 

Note that  [ ] x x S xE B
 and   1x S x

B
. These tell us how to change coordinates. 

Example: In R2, the vectors 1

2
1
    

v  and 2

1
2
    

v  form a basis B for R2. If we write 
2 1
1 2
    

S , then for a 

vector such as 
5
3

    
x , we can calculate its coordinates relative to the basis B by 

 
13

1 3

11
3

1 1
3 3

2 1 5 13
1 2 3 11

                            
x S x
B

. You can verify that 13 11
1 23 3 v v x . 

An n by n matrix A represents a linear function from Rn to Rn, and matrix multiplication corresponds with 
composition of these linear functions, i.e. ( ) ( )AB x A Bx . We can use the facts that  [ ] x x S xE B

 and 

  1x S x
B

 in conjunction with our earlier observations about coordinate changes to define not only the idea of 

the coordinates of a vector relative to a basis, but also the idea of the matrix of a linear function relative to a 

basis. Specifically, if we let  ,nR E  represent nR  with the coordinates of vectors expressed in terms of the 

standard basis E, and let  ,nR B  represent nR  with the coordinates of vectors expressed in terms of a different 

basis B, and if we use the notation [ ]A B  for the matrix representation of the linear function corresponding to 

matrix A but relative to the basis B, then we have the following schematic: 
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From this we observe that 1[ ] A S ASB . This is a extremely important result. 

[ ]A B  can also be calculated directly for a given basis 1{ , , }n v vB   as 1[ ] [ ] [ ]n

  
 
 

   

A Av AvB B B . 
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Let’s look at what this means in the case of a matrix A for which we are able to find a basis 1{ , , }n v vB   for 
nR  consisting of eigenvectors of A with corresponding eigenvalues 1{ , , }n  . Note that 

1
1 1 1 1 1 1 1 1 1

1
1n n n n n n n n
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  




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            

Av v ASe Se S ASe e

Av v ASe Se S ASe e
   . If we interpret what this says about the matrix 1S AS , 

it says that 1S AS  must be the diagonal matrix 
1 0

0 n





 
 
 
 

D


  


, i.e. 1 S AS D . That is, the matrix of this 

linear function relative to this basis of eigenvalues is a diagonal matrix. This can also be observed directly. This 
is why we say that a matrix A is diagonalizable if it yields a basis 1{ , , }n v vB   for nR  consisting of 

eigenvectors of A. In essence, when a basis of eigenvectors can be found, the matrix relative to that basis will 
be the simplest possible. 

It is not always possible to find a basis of eigenvectors of a given matrix A. 

Application to Solving a System of 1st Order Linear Differential Equations 
The tool at the heart of these methods is diagonalization or, in the case where a matrix cannot be 

diagonalized, finding an appropriate change of basis relative to which the underlying linear transformation has 
the simplest possible matrix representation, i.e. Jordan Canonical Form. A second useful formalism is the use of 
“evolution matrices.” 

Suppose S is a change of basis matrix corresponding to either diagonalization or reduction to Jordan 
Canonical Form (the simplest possible form). We will have S-1AS = B in this case, where B is diagonal or 

otherwise in simplest form. We then calculate A = SBS-1, and substitution gives 1d
dt

x SBS x . Multiplying on 

the left by S-1 and using the basic calculus fact that ( )d d
dt dt

 xMx M  for any (constant) matrix M, we have 

1
1 1( ) ( )dd

dt dt


  S xxS B S x . 

If we write  1 u S x x
B

, where B is the new, preferred basis, then in these new coordinates the system 

becomes d
dt

u Bu , but now the system will be much more straightforward to solve. 

The diagonalizable case 

In the case where B is a diagonal matrix with the eigenvalues of A on the diagonal, the system is just 
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 
 
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This has the solution 

1
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1
1 1( ) 0 (0)
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t

t
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    
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If we use the shorthand notation 

1 0
[ ] Exp( )

0 n

t

t

t

e
e t

e





 
  
 
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B B  , sometimes referred to as the (time-

varying) evolution matrix for the simplified system, we can succinctly write the solution as ( ) [ ] (0)tt e Bu u . To 

revert back to the original coordinates, we write x Su , so 1( ) ( ) [ ] (0) [ ] (0)t tt t e e   B Bx Su S u S S x . If we 

denote the evolution matrix for the system in its original coordinates as [ ] ( )te Exp tA A  where ( ) [ ] (0)tt e Ax x , 

then the previous calculation gives the simple relation 1[ ] [ ]t te e A BS S . 

In other words, the evolution matrices for the solution are in the same relationship as the matrices A and B, 
namely A = SBS-1. This pattern is very easy to remember, and this same pattern will again be the case where B 
is not diagonal but where the corresponding evolution matrix is still relatively easy to calculate. 

1 1[ ] [ ]t te e   A BA SBS S S , and the solution of the original system will be ( ) [ ] (0)tt e Ax x . 

The complex eigenvalue case 

Suppose we want to solve a system of the form d
dt

x Ax  where A is an 2  2 real matrix with a complex 

conjugate pair of eigenvalues a ib    and a ib   . There are several reasonable ways to proceed, but they 
all come down to determining the evolution matrix [ ]te A  so that we can solve for ( ) [ ] (0)tt e Ax x . 

First, put the system into (real) normal form. 

Use the complex eigenvalue a ib    to find a complex eigenvector i w u v . If we change to the basis 
{ , }v u  (note the reversal of order) then, using the change of basis matrix  S v u , we’ll get 

1 a b
b a

      
S AS B , a rotation-dilation matrix. Noting, as before, that 1 1[ ] [ ]t te e   A BA SBS S S , we 

need only to determine [ ]te B . 

Second, find the evolution matrix for the (real) normal form. 

In fact, 
cos sin

[ ]
sin cos

t at bt bt
e e

bt bt
    

B , a time-varying rotation matrix with exponential scaling. This yields a 

trajectory that spirals out in the case where Re( ) 0a    (look to the original vector field to see whether it’s 
clockwise or counterclockwise), or a trajectory that spirals inward toward 0 in the case where Re( ) 0a   . 

To derive this expression for [ ]te B , make another coordinate change with complex eigenvectors starting 

with 
a b
b a

    
B . We know this has the same eigenvalues of A, namely a ib    and a ib   . Use 

a ib    to get the complex eigenvector 
1
i

    
w . The eigenvalue a ib    will then give eigenvector 

1
i
    

w


. Using the (complex) change of basis matrix 
1 1
i i

    
P , we have that 1 0

0
a ib

a ib
      

P BP D . 

It follows that: 

( )
1

( )
2 2

2 2

11 1 0 1 cos sin
[ ] [ ]

1 sin cos0 2

a ib t
t t at at

a ib t

ibt ibt ibt ibt

ibt ibt ibt ibt

e e e e
i

e e e e
i

e i bt bt
e e e e

i i i bt bte






 

 

 

 

                            

B DP P . 
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These calculations enable us to write down a closed form expression for the solution of this linear system, 

namely ( ) [ ] (0)tt e Ax x  where 1 1cos sin
[ ] [ ]

sin cos
t t at bt bt

e e e
bt bt

      
A BS S S S . However, the more important result 

is the ability to qualitatively describe the trajectories for this system by knowing only the real part of the 
eigenvalues of the matrix A and the direction of the corresponding vector field (clockwise vs. 
counterclockwise). 
Repeated eigenvalues (with geometric multiplicity less than the algebraic multiplicity) 

Suppose we want to solve a system of the form d
dt

x Ax  where A is a non-diagonalizable 2  2 real matrix 

with a repeated eigenvalue  . In this case, we can always find a change of basis matrix S such that 

1 1
0



      

S AS B . The eigenvalue   will produce one eigenvector 1v , but not a second eigenvector. It is, 

however, always possible to find a second vector 2v  such that 2 1 2 Av v v  (simply solve the equation 

2 1( ) A I v v  or, equivalently, 2 1( )   I A v v  using the previously found eigenvector 1v ). As in the 

previous two cases, 1 1[ ] [ ]t te e   A BA SBS S S  and it comes down to finding [ ]te B . This is perhaps most 
easily done by explicitly solving the corresponding differential equations. In the new coordinates, this system 

translates into 

1
1 2

2
2

du
u u

dt
du

u
dt





   
 
 
 

. The second equation is easily solved to get 2 2( ) (0)tu t e u . We can guess a 

solution for the first equation of the form 1 1 2( ) t tu t c te c e   . Differentiating this and substituting into the first 

equation, we get 1 2 1 2 2( ) ( ) (0)t t t t t tc e te c e c te c e e u            . Comparing like terms, we conclude that 

1 2 (0)c u . Substituting t = 0, we further conclude that 1 2(0)u c . Putting these results together, we get 

1 2 1 1 2( ) (0) (0) (0) (0)t t t tu t u te u e e u te u       . We therefore have that 

1 1 2 1

2 22

( ) (0) (0) (0)
( ) (0)

( ) (0)(0) 0 0

t t t t t t

t t t

u t e u te u ue te e te
t

u t ue u e e

     

  

                          
u u  

So, [ ]
0

t t
t

t

e te
e

e

 



 
  
 

B  in this case and the solution is given by 1 1( ) [ ] (0)
0

t t
t

t

e te
t e

e

 


  

   
 

Bx S S S S x . 

An alternate method of deriving this was done in class. 

Similar calculations enable us to deal with cases such as a repeated eigenvalue where the geometric 
multiplicity is 1 and the algebraic multiplicity is 3 (or even worse). 

Finally, an actual system may exhibit several of these qualities – one or more complex pairs of eigenvalues, 
repeated eigenvalues, and distinct real eigenvalues. The Jordan Canonical Form of the matrix for such a system 
can be analyzed block by block and each of the above solutions applied within each block to determine the 
evolution matrix for the entire system. 

Exercise: a) Find the general solution for the following system of differential equations: 

1 1 4 5

2 2 3 4

3 2 4

4 4

5 4 5

2 4 3
2 2 2

3 2

x x x x
x x x x
x x x
x x
x x x

   
   
   
  
    







              b) Find the solution in the case where 

5
4

(0) 3
2
1

 
 
   
 
  

x . 


