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Math E-21c – Ordinary Differential Equations – Lecture #9 

Generalized Functions, Distributions, and Laplace Transform Methods 

The Main Idea: Beginning with a linear nth order ODE with initial conditions (an initial value problem), 
we’ll transform this into an algebraic equation, solve this equation, and then transform back in order to 
produce a solution to the initial value problem. We will only be concerned with the solution for 0t > . 

Big Idea #1: Generalized functions, a.k.a. “a function is only as good as how it is integrated” - in particular, 
delta functions and step functions. 
Big Idea #2: We’ll devise a systematic way of formally solving an ODE with such inputs, and then use 
integration (convolution) to produce solutions to any given initial value problem. 

Heaviside functions, box functions, and delta functions 

The Heaviside function [named for Oliver Heaviside (1850–1925)] is 
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The Heaviside function is constant everywhere except at 0t = , and because it has a jump discontinuity there we 
usually just say that it’s not differentiable at 0t = . However, we could heuristically observe that by considering 
points immediately to the left and right of the discontinuity any continuous approximation to this function 
would have to have a very large slope in the vicinity of 0t = . We might at least try to express this by saying 

that 
0 0
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, the so-called delta function, but this doesn’t really make much sense in terms of 

traditional functions. We may, however, still be able to make sense out of this if we take the view that “a 
function is only as good as how it is integrated.” Similarly, ( ) ( )u t a t aδ− = − , a translated delta function. 

Generalized functions 
You can heuristically think of the step function ( )u t  as any nice smooth function which is 0 for t ε< −  and 1 
for t ε> , where ε  is a positive number which is much smaller than any time scale we care about in the context 
we are studying at the moment. Similarly, a good way for you to visualize the “delta function” (defined below) 
is to think of it as a function which is zero everywhere except in the immediate neighborhood of 0t =  and 
which has integral 1. We showed that the delta functions ( )tδ  and ( )t a−δ  can be viewed as the “functions you 
integrate against” in order to evaluate a function at respectively 0t =  and at any t a= . 

That is, ( ) ( ) (0)f t t dt f
∞

−∞
δ =∫  and ( ) ( ) ( )f t t a dt f a

∞

−∞
δ − =∫ . 
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You can also take a sequential approach to make sense of this in terms of limits, i.e. if you successively 
approximate the delta function by a sequence of continuous functions ( )kf t  where the support (domain where 
it’s nonzero) gets narrower [ , ]k kε ε− +  and the values grow reciprocally in such a way that at each step the 

integral is always ( ) ( ) 1k

k
k kf t dt f t dt

ε

ε

+∞ +

−∞ −
= =∫ ∫  (we call such functions probability densities), then you can show 

that lim ( ) ( ) (0)kk
g t f t dt g

+∞

−∞→∞

  =  ∫ . 

Note: The Fundamental Theorem of Calculus as well as all the usual rules of differentiation also apply to 
generalized derivatives, so we actually have a “generalized calculus” for dealing with these generalized 
functions or distributions (though it may take a while getting used to it). Basically, we extend the usual rules of 
differentiation to generalized functions together with the fact that ( ) ( )u t a t aδ− = − . 

Example: Consider the piecewise-defined function 
2
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It’s continuous but not differentiable at 0t = , and it has a jump discontinuity at 
2t = . We can also express this function in terms of box functions and Heaviside 

functions by “switching functions on and off.” That is, we can write 
2( ) [ ( ) ( 2)] (8 ) ( 2)f t t u t u t t u t= − − + − − . 

We can differentiate this using the usual rules of Calculus together with the fact 
that ( ) ( )u t tδ′ =  and ( ) ( )u t a t aδ′ − = − . This gives: 

2

2

( ) [ ( ) ( 2)] 1[ ( ) ( 2)] (8 ) ( 2) 2 ( 2)
( ) (8 ) ( 2) 1[ ( ) ( 2)] 2 ( 2)

f t t t t u t u t t t t u t
t t t t t u t u t t u t
δ δ δ

δ δ

′ = − − + − − + − − − ⋅ −

= ⋅ + − − ⋅ − + − − − ⋅ −
 

While this is formally correct, it’s not the simplest way to express this. If we 
embrace the notion that a delta function only has meaning as an integrand and 
that it has a value of 0 everywhere except at a single point and that only the 
value at that point of the function by which it is multiplied is relevant, we can 
greatly simplify this expression. Specifically, if we look at the term ( )t tδ⋅  we 
see that only the value of the function t  at 0 is relevant, and that value is 0, so effectively ( ) 0t tδ⋅ = . Similarly, 
if we look at the term 2(8 ) ( 2)t t tδ− − ⋅ −  and note that only the value at 2t =  is relevant, we can write 

2(8 ) ( 2) 2 ( 2)t t t tδ δ− − ⋅ − = ⋅ − , so ( ) 2 ( 2) 1[ ( ) ( 2)] 2 ( 2)f t t u t u t t u tδ′ = ⋅ − + − − − ⋅ − . Note that this is the sum 
of the “singular part” 2 ( 2)tδ⋅ −  and the “regular part” 1[ ( ) ( 2)] 2 ( 2)u t u t t u t− − − ⋅ − . The graph is shown and 
it’s worth noting that except for the arrow indicating the delta function with “weight” 2, this is exactly what we 
have obtained by simply differentiation the given piece-wise defined function. 

A function ( )f t  is “regular” or “piecewise smooth” if it can be broken into pieces each having all higher 
derivatives and such that at each breakpoint ( ) ( )nf a−  and ( ) ( )nf a+  exist. A “singularity function” is a linear 
combination of shifted delta functions. A “generalized function” ( )f t  is a sum ( ) ( ) ( )r sf t f t f t= +  of a regular 
function and a singularity function. Any regular function ( )f t  has a “generalized derivative” ( )f t′ , with 

regular part ( )rf t′  the regular derivative of ( )f t  wherever it exists, and singular part ( )sf t′  given by a sum of 
terms ( ( ) ( )) ( )f a f a t aδ+ − − −  as a runs over the discontinuities of f . 
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Now, to get back to the Main Idea, how can we solve a linear differential equation [ ( )] ( ) ( )p D x t q t=  by 
transforming it into an algebraic equation, solving that algebraic equation, and then transforming back to 
produce a solution to an initial value problem? As we will only be concerned with forward time, we’ll presume 
that ( )q t  satisfies ( ) 0q t =  for 0t < . 

The Laplace Transform 
Definition: The Laplace transform of a function ( )f t  is defined by 

0
[ ( )] ( ) ( )stf t F s e f t dt

∞ −

−
= = ∫L  

where the new (complex) variable s  is such that its real part Re( ) 0s   (the integral would otherwise not 
converge). Note that the lower limit of the integral indicates that 0t =  is included and is intended to address 
potential discontinuities and delta functions. 

We will liberally make use of the convention that a function of t  will be represented by a lower case name and 
its Laplace transform by the corresponding upper case name, e.g. [ ( )] ( )x t X s=L . 

Linearity 
Because the Laplace transform is defined as an integral, it’s easy to see that: 

[ ( ) ( )] [ ( )] [ ( )] ( ) ( )af t bg t a f t b g t aF s bG s+ = + = +L L L . 

Specifically: 

0 0 0
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[ ( )] [ ( )] ( ) ( )
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a f t b g t aF s bG s

∞ ∞ ∞− − −

− − −
+ = + = +

= + = +

∫ ∫ ∫L

L L
 

This will permit us to transform a differential equation term-by-term (and transform back as well). 

Inverse transform: ( )F s  essentially determines ( )f t  for 0t ≥ . This will generally allow us to produce 
solutions to a given Initial Value Problem by simply recognizing, term by term, a solution by identifying which 
functions gave rise to each term of the transformed differential equation. 

Some Calculations 
1) For our purposes, since we are only concerned with 0t ≥ , the constant function ( ) 1f t =  and the Heaviside 

function 
0 0

( )
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t
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t
< 

=  > 
 are indistinguishable. Thus 

0
0
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= = ⋅ = = + = − 

∫L L  

Here we used the fact that for 0s > ,  lim 0st

t
e−

→∞
  =  . Indeed, this is still the case even if we permit s  to be 

complex with positive real part, i.e. Re( ) 0s > . 

2) If ( )f t t= , we calculate its Laplace Transform as 

20 0
0
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st st

t
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s s s s
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= = = + = + = − 

∫ ∫L L  

3) If 2( )f t t= , we calculate 
2

2 2
2 30 0

0

2 2 2 1 2( ) [ ] 0 [ ]
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t

t eF s t t e dt te dt t
s s s s s s
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− −
= −

 
= = = + = + = ⋅ = − 

∫ ∫L L  

4) s-derivative rule: [ ( )] ( )t f t F s′= −L . We can establish this by noting that if 
0

( ) [ ( )] ( )stF s f t e f t dt
∞ −

−
= = ∫L , 

then 
0 0

( ) ( ) ( ) [ ( )]st std
dsF s e f t dt e t f t dt t f t

∞ ∞− −

− −
′ = = − = −∫ ∫ L , so [ ( )] ( )t f t F s′= −L . 
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From this we see that 2
2 3

1 2[ ] [ ] [ ]d d
ds dst t t t

s s
 = ⋅ = − = − =  

L L L ; 3 2 2
3 4

2 3![ ] [ ] [ ]d d
ds dst t t t

s s
 = ⋅ = − = − =  

L L L ; 

4 3 3
4 5

3! 4![ ] [ ] [ ]d d
ds dst t t t

s s
 = ⋅ = − = − =  

L L L ; and so on. Generally, 1

![ ]n
n

nt
s +=L . 

This, together with linearity, enables us to calculate the Laplace transform of any polynomial function. 

5) If ( ) atf t e=  is an exponential function (really ( ) ( ) atf t u t e=  since we are only concerned with 0t ≥ ), 
( )

( )

0 0
0

1[ ]
( )

ts a t
at st at s a t

t

ee e e dt e dt
s a s a

=∞− −∞ ∞− − −

− −
= −

 
= = = = − − − 
∫ ∫L , so 1[ ]ate

s a
=

−
L . 

6) s-shift rule: [ ( )] ( )rte f t F s r= −L . To establish this, we calculate 
( )

0 0
[ ( )] ( ) ( ) ( )rt st rt s r te f t e e f t dt e f t dt F s r

∞ ∞− − −

− −
= = = −∫ ∫L  simply by noting the substitution. 

7) Transforming derivatives: For any generalized function, [ ( )] ( ) (0 )f t sF s f′ = − −L  where (0 )f −  
represents the initial value of ( )f t . The unusual notation is there because we will be dealing with 
discontinuous and generalized functions where we may need to distinguish left-hand from right-hand limits. 
We can establish this t-derivative rule by noting that 

0
[ ( )] ( )stf t e f t dt

∞ −

−
′ ′= ∫L . If we use Integration by 

Parts with stu e−=  and ( )dv f t dt′= , we get stdu se dt−= −  and ( )v f t= , so: 

00 0
[ ( )] ( ) ( ) ( ) [0] ( ) ( ) (0 )

tst st st

t
f t e f t dt e f t s e f t dt sF s sF s f

∞ ∞=∞− − −

= −− −
′ ′  = = + = + = − − ∫ ∫L  

For second derivatives, note that ( ) ( )d
dtf t f t′′ ′= , so we can apply the above result to get that 

2[ ( )] [ ( )] (0 ) ( ( ) (0 )) (0 ) ( ) (0 ) (0 )f t s f t f s sF s f f s F s s f f′′ ′ ′ ′ ′= − − = − − − − = − ⋅ − − −L L , so 
2[ ( )] ( ) (0 ) (0 )f t s F s s f f′′ ′= − − − −L . 

Continuing, we get that 3 2[ ( )] ( ) (0 ) (0 ) (0 )f t s F s s f s f f′′′ ′ ′′= − − − − − −L , and so on. 

Generally, ( ) 1 2 ( 1)[ ( )] ( ) (0 ) (0 ) (0 )n n n n nf t s F s s f s f f− − −′= − − − − − − −L  . 

8) Transforming the delta function: One of our most fundamental transforms is [ ( )] 1tδ =L . This is relatively 
easy to see once you’re comfortable with the integral formalisms concerning the delta function and how they 
relate to evaluation. Specifically, 0

0
[ ( )] ( ) 1stt e t dt eδ δ

∞ −

−
= = =∫L  since this is really just evaluation of the 

function ste−  at 0t = . 

9) Transforming sines and cosines: 2 2[cos( )] st
s

ω
ω

=
+

L  and 2 2[sin( )]t
s
ωω
ω

=
+

L  

We can derive each of these independently, but if we use Euler’s Formula and linearity we have that: 
[ ] [cos( ) sin( )] [cos( )] [sin( )]i te t i t t i tω ω ω ω ω= + = +L L L L , and 

2 2 2 2 2 2

1[ ]i t s i s i se i
s i s i s s s

ω ω ω ω
ω ω ω ω ω

+ +     = = = +    − + + + +     
L  

Taking real and imaginary parts separately we get that:   2 2[cos( )] st
s

ω
ω

=
+

L  and 2 2[sin( )]t
s
ωω
ω

=
+

L . 

We’ll add to this list as we go and as the need arises. 
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Unit Impulse Response, weight function, transfer function 
Unit impulse response refers to the solution of the ODE ( )[ ( )] ( )p D x t tδ=  with rest initial conditions. The 
solution is also known as the weight function for the given differential operator ( )p D . It is the simplest to 
tackle algebraically and we’ll use it soon along with convolution to solve Initial Value Problems. We generally 
denote the unit impulse response (weight function) by ( )w t . It’s Laplace Transform ( )W s  is called the transfer 
function. 

Unit Step Response 
Unit step response refers to the solution of the ODE ( )[ ( )] ( )p D x t u t=  with rest initial conditions. It is a bit 
more algebraically complicated to solve than the unit impulse response but is still relatively simple. We 
generally denote the unit step response by ( )v t . 

It is worth noting that because these differential operators are time-invariant (constant coefficients), we can use 
the generalized derivative to differentiate both sides of ( )[ ( )] ( )p D x t u t=  to get 

( )[ ( )] ( )[ ( ( ))] ( )[ ( )] [ ( )] ( )D p D v t p D D v t p D v t D u t tδ= = = =
 , so ( )[ ( )] ( )p D v t tδ= . Therefore ( ) ( )v t w t= . 

Example 1: Find the unit impulse response and the unit step response for the operator ( ) 3p D D I= + . 

Solution: For the unit impulse response we solve 3 ( )w w tδ+ =  with rest initial conditions. Transforming both 

sides gives ( ) ( ) ( 3) ( ) 1p s W s s W s= + = , so 1 1( )
( ) 3

W s
p s s

= =
+

. This is just 3( )te−L , so 3( ) tw t e−= . 

For the unit step response we solve 3 ( )v v u t+ =  with rest initial conditions. Transforming both sides gives 
1( ) ( ) ( 3) ( )p s V s s V s
s

= + = , so 1
3

1 1 1( )
( 3) 3

V s
s s s s

 = = − + + 
. It follows that 31

3( ) (1 )tv t e−= − . 

Example 2: Find the unit impulse response for the operator 2 2( )p D D ω= +  where ω  is a given positive 
constant (natural frequency for a harmonic oscillator). 

Solution: For the unit impulse response we solve 2 ( )w w tω δ+ =  with rest initial conditions. Transforming both 

sides gives 2 2( ) ( ) ( ) ( ) 1p s W s s W sω= + = , so 2 2

1 1( )
( )

W s
p s s ω

= =
+

. Adjusting the coefficients to write this as 

2 2

1( )W s
s
ω

ω ω
 =  + 

 we deduce from our table of transforms that 1( ) sin( )w t tω ω= . 

Example 3: Find the unit impulse response for the operator 2( ) 3 2p D D D I= + + , i.e. find the response for the 
Initial Value Problem 3 2 ( ), (0) 0, (0) 0x x x t x xδ+ + = = =      (rest initial conditions). 

Solution: Transforming both sides of this ODE gives 2( 3 2) ( ) ( ) ( ) 1s s X s p s X s+ + = =  where 2( ) 3 2p s s s= + +  
is the characteristic polynomial of the operator. A quick calculation of the partial fractions decomposition gives: 

2

1 1 1 1 1( ) ( )
( ) 3 2 ( 1)( 2) 1 2

X s W s
p s s s s s s s

= = = = − =
+ + + + + +

 

So the unit impulse response (weight function) is 2( ) ( ) t tx t w t e e− −= = − . 

Now let’s move on to some Initial Value Problems other than Unit Impulse Response. 

Example 3: Solve the IVP 3 3cos 2dx
dt x t+ =  with initial value (0 ) 2x − =  (the 0−  is just for emphasis here). 

Solution: First, it should be emphasized that for a problem like this our previous methods work well and there is 
no particular need to use Laplace transform methods. That said, we proceed with two different approaches. 
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Laplace Direct: For this we simply transform both sides of the equation mindful of the need to incorporate the 
initial condition as we transform the derivative. This gives: 

2

3( ) 2 3 ( ) ( 3) ( ) 2
4

ssX s X s s X s
s

− + = + − =
+

, so 
2

2 2

3 2 3 8( 3) ( ) 2
4 4

s s ss X s
s s

+ +
+ = + =

+ +
. 

Therefore 
2

2 2

2 3 8( )
( 3)( 4) 3 4

s s A Bs CX s
s s s s

+ + +
= = +

+ + + +
.  

Clearing fractions gives 2 22 3 8 ( 4) ( 3)( )s s A s s Bs C+ + = + + + +  

There are several good ways to proceed. First, if we choose convenient points we might first choose 3s = −  to 
quickly conclude that 17 13A= , so 17

13A = . You might think the well has run dry, but we are free to use 

complex numbers. If we choose 2s i=  (and as we’ll see we won’t even have to separately consider its complex 
conjugate) we get 8 6 8 6 (3 2 )(2 ) ( 4 3 ) (6 2 )i i i Bi C B C i B C− + + = = + + = − + + + . We can equate both real and 

imaginary parts to conclude that 4 3 0B C− + =  and 6 2 6B C+ = . These give 9
13B =  and 12

13C = . 

Thus 2 2
17 9 6
13 13 13

1 2( )
3 4 4

sX s
s s s

     = + +     + + +     
. So 317 9 6

13 13 13( ) cos 2 sin 2tx t e t t−= + + . 

Alternatively, we could simply multiply out and collect terms to get 
2 22 3 8 ( ) (3 ) (4 3 )s s A B s B C s A C+ + = + + + + +  and then use your favorite linear algebra method to derive the 

same results as above. 

+ZIR ZSR  
Given an n-th order linear ODE ( )[ ( )] ( )p D x t f t=  with initial conditions 0 0( )x t x=  and 0 0( )x t x=  , …, 

( 1) ( 1)
0 0( )n nx t x− −= , we refer to the case where 0( ) 0x t =  and 0( ) 0x t = , …, ( 1)

0( ) 0nx t− =  as the zero state. If we 
solve ( )[ ( )] ( )p D x t f t=  for the zero state, we refer to this solution ( )ZSRx t as the zero state response (ZSR). 

If we seek homogeneous solutions to the ODE ( )[ ( )] 0p D x t =  with initial conditions 0 0( )x t x=  and 0 0( )x t x=  , 
…, ( 1) ( 1)

0 0( )n nx t x− −= , this will have a unique solution ( )ZIRx t  called the zero input response (ZIR). 

The general solution to the ODE ( )[ ( )] ( )p D x t f t=  will be ( ) ( ) ( )h px t x t x t= +  for some particular solution 
( )px t  and homogeneous solutions ( )hx t , and we would then use the initial conditions to determine any 

unknown coefficients. However, note that the zero state response (ZSR) is a particular solution and the zero 
input response is a (single) homogeneous solution. If we let ( ) ( ) ( )ZIR ZSRx t x t x t= + , note that: 

0 0 0 0 0 0

0 0 0 0 0 0

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
0 0 0 0 0 0

( ) ( ) ( ) ( ) 0 ( )
( ) ( ) ( ) ( ) 0 ( )

( ) ( ) ( ) ( ) 0 ( )

ZIR ZSR ZIR ZIR

ZIR ZSR ZIR ZIR

n n n n n n
ZIR ZSR ZIR ZIR

x t x t x t x t x t x
x t x t x t x t x t x

x t x t x t x t x t x− − − − − −

= + = + = = 
 = + = + = = 
 
 

= + = + = =  

     



 

so ( ) ( ) ( )h px t x t x t= +  satisfies the initial value problem (IVP) without the need to introduce any additional 
constants. That is, ( )x t = +ZIR ZSR . 

This observation is very helpful when solving initial value problems using Laplace Transform methods – 
specifically when we use the Unit Impulse Response together with convolution to solve for the zero state 
response (ZSR). More on that later. 
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Previous example using ZSR+ZIR (not really recommended here): If we first solve 3 3cos 2dx
dt x t+ =  with 

rest initial conditions we get 2

3( 3) ( )
4

ss X s
s

+ =
+

 and 

2 2 2
9 9 6

13 13 13
3 1 2( )

( 3)( 4) 3 4 4
s sX s

s s s s s
     = = − + +     + + + + +     

. So 39 9 6
13 13 13( ) cos 2 sin 2t

ZSRx t e t t−= − + + . Next 

we seek the zero input response, so we solve 3 0dx
dt x+ =  with (0) 2x = . This quickly gives 3( ) 2 t

ZIRx t e−= . 

Combining these gives 317 9 6
13 13 13( ) cos 2 sin 2tx t e t t−= + + . 

Example 4: Solve the Initial Value Problem 3 2 2 , (0) 0, (0) 0tx x x e x x−+ + = = =      (rest initial conditions). 

Old Faithful Solution: The homogeneous equation 3 2 0x x x+ + =   is easy to solve. Its characteristic 
polynomial is 2( ) 3 2 ( 2)( 1)p s s s s s= + + = + +  which yields the two roots 2s = −  and 1s = − . This gives the 
two independent solutions 2te−  and te− , and all homogeneous solutions are of the form 2

1 2( ) t t
hx t c e c e− −= + . 

Note that both of these homogeneous solutions are transient in the sense that they decay exponentially as t 
increases. 

Next, we need to find a particular solution ( )px t  that satisfies the inhomogeneous differential equation. One 
look at the right-hand-side and we see that the Exponential Response Formula (ERF) won’t work – there is 
resonance. We can, however, use the Resonant Response Formula to get the particular solution 

2 2( ) 2
( 1) 1

t t
t

p
te tex t te

p

− −
−= = =

′ −
, so the general solution is 2

1 2( ) ( ) ( ) 2t t t
h px t x t x t c e c e te− − −= + = + + . Its derivative 

is 2
1 2( ) 2 2 2t t t tx t c e c e te e− − − −= − − − + . Substituting the (rest) initial conditions gives 1 2

1 2

(0) 0
(0) 2 2 0

x c c
x c c

= + = 
 = − − + = 

, 

and these can be solved to give 1 22, 2c c= = − , so the solution is 2( ) 2 2 2t t tx t e e te− − −= − + . 

Solving directly by Laplace transform: We calculated the following Laplace transforms: 

(1) 1( )kte
s k

=
−

L  with region of convergence Re( )s k> , so 2 1( )
2

te
s

− =
+

L . 

(2) If the Laplace transform of ( )x t  is ( )X s , then the Laplace transforms of its derivatives are 
( ( )) ( ) (0 )x t sX s x= − −L   and 2( ( )) ( ) (0 ) (0 )x t s X s s x x= − − − −L   . In the case of rest initial conditions 
(0 ) (0 ) 0x x− = − = , these are greatly simplified and, in fact ( ( ) ) ( ) ( )p D x p s X s=L . Specifically, 

2 2( 3 2 ) ( ) 3 ( ) 2 ( ) ( 3 2) ( ) ( ) ( )x x x s X s sX s X s s s X s p s X s+ + = + + = + + =L   . 

If we now transform the entire differential equation, we get 2 2( 3 2) ( )
1

s s X s
s

+ + =
+

. 

We then solve for 2 2 2

2 2( )
( 1)( 3 2) ( 2)( 1) 2 1 ( 1)

A B CX s
s s s s s s s s

= = = + +
+ + + + + + + +

. 

There are many good ways to find the unknowns A, B, and C. For example, if we multiply through by the 
common denominator to clear fractions, we get 22 ( 1) ( 1)( 2) ( 2)A s B s s C s= + + + + + + . Plugging in the specific 
values 2s = −  and 1s = −  quickly yields that 2A =  and 2C = . Plugging in, for example, 0s =  and using the 
values for A and C then yields 2B = − . So: 

2 2

2 2 2 1 1 1( ) 2 2 2
2 1 ( 1) 2 1 ( 1)

X s
s s s s s s

    = − + = − +     + + + + + +     
. 
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Consulting our table of common Laplace transforms, we see that 21 ( )
2

te
s

−=
+

L , 1 ( )
1

te
s

−=
+

L , and 

2

1 ( )
( 1)

tte
s

−=
+

L , so transforming back (using linearity) gives 2( ) 2 2 2t t tx t e e te− − −= − + . 

Example: Solve the Initial Value Problem 3 2 2 , (0) 3, (0) 1tx x x e x x−+ + = = =      (rest initial conditions). 

Laplace Direct Solution:  Transforming both sides gives 
2 2 2( 3 1) 3( 3) 2 ( 3 2) 3 10

1
s X s sX X s s X s

s
− ⋅ − + − + = + + − − =

+
 

2 2
2

2

2 3 13 12 3 13 12( 3 2) 3 10 ( )
1 1 ( 1) ( 2)

s s s ss s X s X s
s s s s

+ + + +
⇒ + + = + + = ⇒ =

+ + + +
 

2
2 2

2 2

3 13 12( ) 3 13 12 ( 1) ( 1)( 2) ( 2)
( 2)( 1) 2 1 ( 1)
s s A B CX s s s A s B s s C s
s s s s s
+ +

= = + + ⇒ + + = + + + + + +
+ + + + +

 

Substitution the values 1s = −  and 2s = −  quickly yields that 2C =  and 2A = − ; and 0s =  yields that 5B = . 

So 
2

2 2

3 13 12 2 5 2( )
( 2)( 1) 2 1 ( 1)
s sX s
s s s s s
+ + −

= = + +
+ + + + +

 and consulting the Laplace transform table we see that it 

must be the case that 2( ) 2 5 2t t tx t e e te− − −= − + + . 

Note: Having non-rest initial conditions tends to complicate the algebra somewhat. 

ZSR+ZIR solution: We already found the Zero State Solution in Example 4, i.e. 2( ) 2 2 2t t t
ZSRx t e e te− − −= − + . 

For the Zero Input Response we solve the problem { }3 2 0, (0) 3, (0) 1x x x x x+ + = = =   . This gives the 

homogeneous solutions 2
1 2( ) t tx t c e c e− −= +  and differentiation gives 2

1 2( ) 2 t tx t c e c e− −= − − . Substitution of 

the initial conditions gives 21 2
1 2

1 2

(0) 3 4 , 7 ( ) 4 7(0) 2 1
t t

ZIR
x c c c c x t e ex c c

− −= + =  ⇒ = − = ⇒ = − + = − − = 

. 

Combining these gives ( ) ( )2 2 2( ) ( ) ( ) 2 2 2 4 7 2 5 2t t t t t t t t
ZSR ZIRx t x t x t e e te e e e e te− − − − − − − −= + = − + + − + = − + + . 

Looking ahead: 

Definition (Convolution): Given two functions ( )w t  and ( )f t , we define 
0

( )( ) ( ) ( )
t

f w t f w t d∗ = −∫ t t t . 

It’s a straightforward exercise to show that the convolution product is commutative, i.e. f w w f∗ = ∗ . 

We’ll show that the solution to the differential equation ( ) ( )p D x f t=  will have a Zero State Response given by 
( )( )f w t∗ . This is also known as Green’s Formula. 

We’ll show this by making use of box functions, delta functions, linearity of the Laplace Transform, and 
Riemann Sums to develop the convolution integral. 

Note: When applying the convolution method to solving ( ) ( )p D x f t=  for more general initial conditions, the 
solution will be ( )x t = +ZSR ZIR , where ZSR is the zero state response and ZIR is the zero input response. 



revised October 29, 2020 9 

Properties of the Laplace transform 
0. Definition: 

0
[ ( )] ( ) ( )stf t F s e f t dt

∞ −

−
= = ∫L    for Re( ) 0s  . 

1. Linearity: [ ( ) ( )] [ ( )] [ ( )] ( ) ( )af t bg t a f t b g t aF s bG s+ = + = +L L L . 

2. Inverse transform: ( )F s  essentially determines ( )f t . 

3. s-shift rule: [ ( )] ( )rte f t F s r= −L . 

4. t-shift rule: [ ( )] ( )asf t a e F s−− =L    if 0a ≥  and ( ) 0f t =  for 0t < . 

This may also be expressed as [ ( )] ( )as
af t e F s−=L  where ( ) if ( ) ( ) ( ) 0 if a

f t a t af t u t a f t a t a
− > = − − =  < 

. 

5. s-derivative rule: [ ( )] ( )t f t F s′= −L . 

6. t-derivative rule: [ ( )] ( ) (0 )f t sF s f′ = − −L  
2[ ( )] ( ) (0 ) (0 )f t s F s sf f′′ ′= − − − −L  

( ) 1 2 ( 1)[ ( )] ( ) (0 ) (0 ) (0 )n n n n nf t s F s s f s f f− − −′= − − − − − − −L   

7. Convolution rule: [ ( ) ( )] ( ) ( )f t g t F s G s∗ =L ,   
0

( )( ) ( ) ( )
t

f g t f t g dt t t∗ = −∫ . 

8. Weight function: [ ( )] ( )w t W s=L , ( )w t  the unit impulse response. 

If ( )q t  is regarded as the input signal in ( ) ( )p D x q t= , 1
( )( ) p sW s = . 

Formulas for the Laplace transform 
1[1] s=L  

[ ( )] 1tδ =L  
[ ( )] [ ( )] as

at a t eδ δ −− = =L L  

[ ( )] [ ( )]
as

a
eu t a u t s

−

− = =L L  

1[ ]ate
s a

=
−

L  

2

1[ ]t
s

=L  

1

![ ]n
n

nt
s +=L  

( )[ ( )] ( 1) ( )n n nt f t F s= −L  
[ ( ) ( )] ( )asu t a f t a e F s−− − =L  

[ ( ) ( )] [ ( )]asu t a f t e f t a−− = +L L  

2 2[cos( )] st
s

ω
ω

=
+

L  

2 2[sin( )]t
s
ωω
ω

=
+

L  

2 2

2 2 2[ cos( )]
( )

st t
s

ωω
ω
−

=
+

L  

2 2 2

2[ sin( )]
( )

st t
s

ωω
ω

=
+

L  

2 2[ cos( )]
( )

zt s ze t
s z

ω
ω

−
=

− +
L  

2 2[ sin( )]
( )

zte t
s z

ωω
ω

=
− +

L  

 

 

Notes by Robert Winters 


