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Math E-21c – Ordinary Differential Equations – Lecture #8 

Theorem (Fourier): Suppose a function ( )f t  is periodic with base period 2π  and continuous except for a 
finite number of jump discontinuities. Then ( )f t  may be represented by a (convergent) Fourier Series: 
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The numbers 0 1 1{ , , , , , , }n na a b a b   are called the Fourier coefficients of the function ( )f t . 

This representation is an equality at all points of continuity of the function ( )f t . At any point of discontinuity 
t a= , the series converges to the average of ( )f a−  and ( )f a+ , i.e. the value 1

2 [ ( ) ( )]f a f a− ++ . 

Miscellaneous Fourier Facts 

We performed these calculations last time for the square-wave function 1 [ ,0)( ) ( ) 1 [0, )
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We can also apply the last statement in Fourier’s Theorem by evaluating the square-wave function at 2π , a 
point of continuity, to get that 4 1 1 1

5 73( 2) 1 [1 ]sq ππ = = − + − + , so 1 1 1
5 73 41 π− + − + = , but the convergence 

is so abysmally slow as to be of no practical consequence – another curiosity. 

Note: In terms of the Fourier coefficients for a periodic function f  of period 2π , the statement that 
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Example (Sawtooth function): ( )f t t=  on the interval ( , ]π π− , extended periodically for all t. 

This is an odd function, so we conclude immediately that 0 0a =  and 0na =  for all n. For the Fourier sine 

coefficients we do a little integration by parts:  2
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It’s worth noting (from Calculus) that this is a p-series with 2p = . There you may recall that we know that this 
series converges but not necessarily what it converges to. This curious result answers that question. 
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Of greater relevance to us is how Fourier series representations can be applied to the solution of differential 
equations. 

Harmonic Response to Periodic Inputs 
If we couple the Fourier series representation of a periodic input with linearity, we can produce series 
representations to linear time-independent (LTI) differential equations. 

Example: Find the general solution to the differential equation 4 ( )x x sq t+ = , where ( )sq t  is the square-wave 
function. 

Solution: The system corresponds to a harmonic oscillator. The characteristic polynomial is 2( ) 4p s s= +  with 
characteristic roots 2s i= ±  and the homogeneous solutions are of the form 1 2( ) cos 2 sin 2hx t c t c t= + . 

For a particular solution, we use linearity. Using the Fourier series representation 
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individually solve 4 sin(2 1)x x n t+ = +  for each n. To do this we use complex replacement and solve 
(2 1)4 i n tz z e ++ =  using the Exponential Response Formula (ERF). We have 2( (2 1)) 4 (2 1)p i n n+ = − + , so 

(2 1)

2 2

cos(2 1) sin(2 1)
4 (2 1) 4 (2 1)

i n te n t i n t
n n

+ + + +
=

− + − +
 is a solution, and we extract its imaginary part to get 2

sin(2 1)
4 (2 1)

n t
n
+

− +
. 

Using linearity for the ODE 
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4( ) sin sin 3 sin 5 sin 7 sin 9px t t t t t tp= − − − − −   . Note how the amplitudes of the higher 
frequencies decrease rapidly. As always, the general solution is ( ) ( ) ( )h px t x t x t= + . 

More generally, we could solve 2 ( )x x sq tω+ =  to get 2 2
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yield a convergent series, but we have a problem in the case where ω  is an odd integer since one term of the 
series will “blow up” in that case. This is a case of resonance and we’ll look at that case shortly. 

Harmonic response with resonance 
One of the more interesting aspects of using Fourier Series is analyzing how a linear time-independent ODE 
with a periodic signal yields a response that exhibits resonance. The basic idea is that if we expand a periodic 
signal in a Fourier Series, it’s sometimes that a single term in the series may be responsible for resonance. The 
signal may be composed of a whole range of frequencies, but one of them may produce resonance that may be 
the dominant feature of the response. 

Suppose we wish to solve the ODE 2
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function. We previously observed that this would yield the series solution: 
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There is a catch, however. All of the terms in the series make sense unless ω  is an odd integer. If this is the 
case, then all but one of the terms in the series will continue to make sense, but we’ll have to treat the one term 
where 2 1nω = +  differently. Let’s consider a specific example. 

Example: Find a particular solution to the ODE 9 ( )x x sq t+ = . 
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In this case, all of the terms in the above series are as stated, but we have to deal with the 1n =  term separately 
since 3ω = . For this one term we separately solve the ODE 4

39 sin 3x x tπ+ = . If we use complex replacement 

and later extract the imaginary part, we’ll be solving the ODE 34
39 itz z eπ+ = . 

Since the characteristic polynomial is 2( ) 9p s s= +  and 3s i=  is a characteristic root, we must use the Resonant 

Response Formula, i.e. 
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. Since ( ) 2p s s′ =  and (3 ) 6p i i′ = , we have the (complex) solution: 
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Extracting the imaginary part gives 3
2

9( ) cos3x t t tπ= − . This term can then be added into the previous sum to 
replace the 1n =  term. Note, however, that this term is oscillatory but its amplitude grows linearly in time. This 
is exactly the sort of thing we would expect when the system has resonance – even if it is caused by just one 
resonant frequency embedded among others. 

Tips & Tricks – Manipulation of Fourier series 
Different period: We developed our Fourier series representation for functions with a standard period 2π  and 
fundamental interval [ , ]π π− . If we instead have a function ( )f t  with period 2L  and fundamental interval 
[ , ]L L− , we can simply change variables to produce the corresponding Fourier series in this case. We let t

Lu π=  

(so Lut π= ) and define ( )( ) Lug u f π=  with period 2π  and fundamental interval [ , ]π π− . The Fourier series for 
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Fourier series can be differentiated or integrated term-by-term to produce other Fourier series: 

Example: If we start with 
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This series could also have been calculated directly using the formulas for the Fourier coefficients and some 
integration by parts. 
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Fourier series can be scaled, shifted, etc. to produce other Fourier series 

Example #1: Start with 
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Example #2: Find the Fourier series for the function ( ) cos( 3)f t t π= − . 
Solution: This function is periodic with period 2π . There’s no need to consider the formulas for the Fourier 
coefficients. Simply note that 31

2 2( ) cos( 3) cos cos( 3) sin sin( 3) cos sinf t t t t t tπ π π= − = + = + . 

Generalized Functions, Distributions, and Transform Methods 
Our next task is to address the situation of linear nth order ODEs with discontinuous and/or non-
differentiable inputs. The method we’ll develop (Laplace Transform) will be applicable to other types of 
inputs, but it’s especially relevant when dealing with discontinuous inputs and inputs defined only by numerical 
data. 

The Main Idea: Beginning with a linear nth order ODE with initial conditions (an initial value problem), 
we’ll transform this into an algebraic equation, solve this equation, and then transform back in order to 
produce a solution to the initial value problem. We will only be concerned with the solution for 0t > . 

Big Idea #1: Generalized functions, a.k.a. “a function is only as good as how it is integrated” - in particular, 
delta functions and step functions. 

Big Idea #2: We’ll devise a systematic way of formally solving an ODE with such inputs, and then use 
integration (convolution) to produce solutions to any given initial value problem. 

Suppose that ( )g t  is a function with compact support, i.e. it vanishes outside some closed and bounded 
interval. We would like to consider two functions 1( )f t  and 2 ( )f t  to be equivalent in the sense of 
measurement if for all functions ( )g t  with compact support, they integrate in the same way, i.e. 

1 2( ) ( ) ( ) ( )f t g t dt f t g t dt
+∞ +∞

−∞ −∞
=∫ ∫ . Said differently, 1 2[ ( ) ( )] ( ) 0f t f t g t dt
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− =∫  for all functions ( )g t  with 

compact support. It’s not hard to see that for continuous functions this means that necessarily 1 2( ) ( )f t f t=  for 
all t , but we’re really interested in what this means for discontinuous functions and functions with impulses, i.e. 
“delta functions”. 

Heaviside functions, box functions, and delta functions 

The Heaviside function [named for Oliver Heaviside (1850–1925)] is 
0 0
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. For our purposes it 

really doesn’t matter how it is defined at 0t = , because it’s not relevant when integrating this function. We can 

also define translated Heaviside functions 
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added to represent functions corresponding to “switching on and off”. For example, we can represent the 



revised October 21, 2020 5 

function 3 5
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The Heaviside function is constant everywhere except at 0t = , and because it has a jump discontinuity there we 
usually just say that it’s not differentiable at 0t = . However, we could heuristically observe that by considering 
points immediately to the left and right of the discontinuity any continuous approximation to this function 
would have to have a very large slope in the vicinity of 0t = . We might at least try to express this by saying 

that 
0 0

( ) 0 ( )
0 0

t
u t t t

t
δ
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, the so-called delta function, but this doesn’t really make much sense in terms of 

traditional functions. We may, however, still be able to make sense out of this if we take the view that “a 
function is only as good as how it is integrated.” Similarly, ( ) ( )u t a t aδ− = − , a translated delta function. 

Digression – Linear functionals and measurement 
One of the most common things we do in vector calculus is finding the component or scalar projection of a 
vector in nR  in a given direction. The tool used to accomplish this task is the dot product. If u  is a unit vector 
we have that comp ( ) = ⋅u v v u . This is, in fact, a linear function from nR  to R , i.e. n∈ → ⋅ ∈v R v u R . These 
are called linear functionals. Indeed, the standard components of a vector 1 2 3, ,v v v=v  in 3R  are “measured” 

by noting that 1v = ⋅v i , 2v = ⋅v j , and 3v = ⋅v k  using the standard unit vectors as a basis for 3R . 

If we let ( ) comp ( )L = = ⋅uv v v u , i.e. the component of v in the direction of the unit vector u, we see that 

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2( ) ( ) ( ) ( )L c c c c c c c L c L+ = + ⋅ = ⋅ + ⋅ = +v v v v u v u v u v v ,  so L is linear. 

The Fourier coefficients are just the “measure” of how much of a given periodic function is associated with 
each “mode”. It’s really no different than calculating the components of a vector in specific directions. 
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In this case, each of the calculations of Fourier coefficients takes a (periodic) function and produces a real 

number, e.g. 1( ) ( ) cosna L f f t nt dt
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∫ ∫
 

So L is also a linear functional, though in this case it takes functions and produces real numbers. 
There is, however, one linear functional, arguably the simplest imaginable one, that we don’t usually think of in 
terms of integration (though maybe we should), namely evaluation. Specifically, if ( )f t  is a function, we can, 
for any specific value t a= , consider ( ) ( )aL f f a= . It’s quite simple to see that 

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2( ) ( )( ) ( ) ( ) ( ) ( )a a aL c f c f c f c f a c f a c f a c L f c L f+ = + = + = + , 
so aL  is a linear functional. It is not defined in terms of integration, but we will find it useful to do so 
nonetheless. 
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Generalized functions 
You can heuristically think of the step function ( )u t  as any nice smooth function which is 0 for t ε< −  and 1 
for t ε> , where ε  is a positive number which is much smaller than any time scale we care about in the context 
we are studying at the moment. Similarly, a good way for you to visualize the “delta function” (defined below) 
is to think of it as a function which is zero everywhere except in the immediate neighborhood of 0t =  and 
which has integral 1. As we’ll see, we can also think of the delta functions ( )tδ  and ( )t a−δ  as the “function 
you integrate against” in order to evaluate a function at respectively 0t =  and at any t a= . That is, 

( ) ( ) (0)f t t dt f
∞

−∞
d =∫  and ( ) ( ) ( )f t t a dt f a

∞

−∞
d − =∫ . How can we make sense of this? 

Making the most of integration by parts 
In first-year Calculus we learned that for differentiable functions ( )u t  and ( )v t  the Product Rule applies, i.e. 

[ ( ) ( )] ( ) ( ) ( ) ( )d
dt u t v t u t v t v t u t′ ′= + . 

On any finite interval [ , ]a b  we can integrate both sides of the Product Rule this and apply the Fundamental 

Theorem of Calculus to get that ( ) ( ) ( ) ( ) [ ( ) ( )] ( ) ( ) ( ) ( )
b b b

a a a
d
dtu b v b u a v a u t v t dt u t v t dt v t u t dt′ ′− = = +∫ ∫ ∫ . Though 

we often think of Integration by Parts as defined formally by udv uv vdu= −∫ ∫ , the stated result is really what 

this means, i.e. we can say that [ ]( ) ( ) ( ) ( )
b bb

aa a
u t v t dt uv v t u t dt′ ′= −∫ ∫ . 

If one of these functions has compact support, i.e. if it vanishes outside of some closed, bounded (compact) 
interval, then we can extend the result to the entire real line and simplify the statement considerably (since the 
value of the product of the functions will vanish outside some interval. Specifically, if ( )g t  has compact 

support and if ( )f t  is any function, we can say that ( ) ( ) ( ) ( )f t g t dt f t g t dt
+∞ +∞

−∞ −∞
′ ′= −∫ ∫ . We can actually use 

this to define a derivative ( )f t′  in a generalized way, i.e. a generalized derivative. It rests on the notion that 
functions can be understood by how they are integrated and not just by how they are evaluated. These 
generalized functions are also known as distributions. 

Perhaps the most important illustration of this is the generalized derivative of the Heaviside function ( )u t . We 
formally called this the delta function ( ) ( )u t tδ′ =  even though it didn’t really make sense at the point of 
discontinuity 0t =  for the Heaviside function. However, we can say that if ( ) ( )u t tδ′ =  then for any function 

( )g t  with compact support: 

0
( ) ( ) ( ) ( ) ( ) ( ) ( ) [0 (0)] (0)t g t dt u t g t dt u t g t dt g t dt g gd

+∞ +∞ +∞ +∞

−∞ −∞ −∞
′ ′ ′= = − = − = − − =∫ ∫ ∫ ∫ . 

That is, if we “integrate a function against the delta function”, this is simply evaluation of that function at 0. It is 
really this property that defines the delta function as a generalized function. 

Similarly, we can do the same for the translated Heaviside function ( ) ( )au t u t a= −  to conclude that its 
generalized derivative ( ) ( )a t t aδ δ= −  is such that for any function ( )g t  with compact support: 

( ) ( ) ( ) ( ) ( )ag t t dt g t t a dt g add
+∞ +∞

−∞ −∞
= − =∫ ∫ . 

You can also take a sequential approach to make sense of this in terms of limits, i.e. if you successively 
approximate the delta function by a sequence of continuous functions ( )kf t  where the support (domain where 
it’s nonzero) gets narrower [ , ]k kε ε− +  and the values grow reciprocally in such a way that at each step the 



revised October 21, 2020 7 

integral is always ( ) ( ) 1k

k
k kf t dt f t dt

ε

ε

+∞ +

−∞ −
= =∫ ∫  (we call such functions probability densities), then you can show 

that lim ( ) ( ) (0)kk
g t f t dt g

+∞

−∞→∞

  =  ∫ . 

Note: The Fundamental Theorem of Calculus as well as all the usual rules of differentiation also apply to 
generalized derivatives, so we actually have a “generalized calculus” for dealing with these generalized 
functions or distributions (though it may take a while getting used to it). Basically, we extend the usual rules of 
differentiation to generalized functions together with the fact that ( ) ( )u t a t aδ− = − . 

A function ( )f t  is “regular” or “piecewise smooth” if it can be broken into pieces each having all higher 
derivatives and such that at each breakpoint ( ) ( )nf a−  and ( ) ( )nf a+  exist. A “singularity function” is a linear 
combination of shifted delta functions. A “generalized function” ( )f t  is a sum ( ) ( ) ( )r sf t f t f t= +  of a regular 
function and a singularity function. Any regular function ( )f t  has a “generalized derivative” ( )f t′ , with 

regular part ( )rf t′  the regular derivative of ( )f t  wherever it exists, and singular part ( )sf t′  given by a sum of 
terms ( ( ) ( )) ( )f a f a t aδ+ − − −  as a runs over the discontinuities of f. 

Now, to get back to the Main Idea, how can we solve a linear differential equation [ ( )] ( ) ( )p D x t q t=  by 
transforming it into an algebraic equation, solving that algebraic equation, and then transforming back to 
produce a solution to an initial value problem? As we will only be concerned with forward time, we’ll presume 
that ( )q t  satisfies ( ) 0q t =  for 0t < . 

The Laplace Transform 
Definition: The Laplace transform of a function ( )f t  is defined by 

0
[ ( )] ( ) ( )stf t F s e f t dt

∞ −

−
= = ∫L  

where the new (complex) variable s  is such that its real part Re( ) 0s   (the integral would otherwise not 
converge). Note that the lower limit of the integral indicates that 0t =  is included and is intended to address 
potential discontinuities and delta functions. 

We will liberally make use of the convention that a function of t  will be represented by a lower case name and 
its Laplace transform by the corresponding upper case name, e.g. [ ( )] ( )x t X s=L . 

Linearity 
Because the Laplace transform is defined as an integral, it’s easy to see that: 

[ ( ) ( )] [ ( )] [ ( )] ( ) ( )af t bg t a f t b g t aF s bG s+ = + = +L L L . 

Specifically: 

0 0 0
[ ( ) ( )] [ ( ) ( )] ( ) ( )

[ ( )] [ ( )] ( ) ( )

st st staf t bg t e af t bg t dt a e f t dt b e g t dt

a f t b g t aF s bG s

∞ ∞ ∞− − −

− − −
+ = + = +

= + = +

∫ ∫ ∫L

L L
 

This will permit us to transform a differential equation term-by-term (and transform back as well). 

Inverse transform: ( )F s  essentially determines ( )f t  for 0t ≥ . This will generally allow us to produce 
solutions to a given Initial Value Problem by simply recognizing, term by term, a solution by identifying which 
functions gave rise to each term of the transformed differential equation. 
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Some Calculations 
1) For our purposes, since we are only concerned with 0t ≥ , the constant function ( ) 1f t =  and the Heaviside 

function 
0 0

( )
1 0

t
u t

t
< 

=  > 
 are indistinguishable. Thus 

0
0

1 1[1] [ ( )] 1 0
tst

st

t

eu t e dt s ss

=∞−∞ −

−
=

 
= = ⋅ = = + = − 

∫L L  

Here we used the fact that for 0s > ,  lim 0st

t
e−

→∞
  =  . Indeed, this is still the case even if we permit s  to be 

complex with positive real part, i.e. Re( ) 0s > . 

2) If ( )f t t= , we calculate its Laplace Transform as 

20 0
0

1 1 1( ) [ ] 0 [1]
tst

st st

t

teF s t te dt e dt
s s s s

=∞−∞ ∞− −

− −
= −

 
= = = + = + = − 

∫ ∫L L  

3) If 2( )f t t= , we calculate 
2

2 2
2 30 0

0

2 2 2 1 2( ) [ ] 0 [ ]
tst

st st

t

t eF s t t e dt te dt t
s s s s s s

=∞−∞ ∞− −

− −
= −

 
= = = + = + = ⋅ = − 

∫ ∫L L  

4) s-derivative rule: [ ( )] ( )t f t F s′= −L . We can establish this by noting that if 
0

( ) [ ( )] ( )stF s f t e f t dt
∞ −

−
= = ∫L , 

then 
0 0

( ) ( ) ( ) [ ( )]st std
dsF s e f t dt e t f t dt t f t

∞ ∞− −

− −
′ = = − = −∫ ∫ L , so [ ( )] ( )t f t F s′= −L . 

From this we see that 2
2 3

1 2[ ] [ ] [ ]d d
ds dst t t t

s s
 = ⋅ = − = − =  

L L L ; 3 2 2
3 4

2 3![ ] [ ] [ ]d d
ds dst t t t

s s
 = ⋅ = − = − =  

L L L ; 

4 3 3
4 5

3! 4![ ] [ ] [ ]d d
ds dst t t t

s s
 = ⋅ = − = − =  

L L L ; and so on. Generally, 1

![ ]n
n

nt
s +=L . 

This, together with linearity, enables us to calculate the Laplace transform of any polynomial function. 

5) If ( ) atf t e=  is an exponential function (really ( ) ( ) atf t u t e=  since we are only concerned with 0t ≥ ), 
( )

( )

0 0
0

1[ ]
( )

ts a t
at st at s a t

t

ee e e dt e dt
s a s a

=∞− −∞ ∞− − −

− −
= −

 
= = = = − − − 
∫ ∫L , so 1[ ]ate

s a
=

−
L . 

6) s-shift rule: [ ( )] ( )rte f t F s r= −L . To establish this, we calculate 
( )

0 0
[ ( )] ( ) ( ) ( )rt st rt s r te f t e e f t dt e f t dt F s r

∞ ∞− − −

− −
= = = −∫ ∫L  simply by noting the substitution. 

7) Transforming derivatives: For any generalized function, [ ( )] ( ) (0 )f t sF s f′ = − −L  where (0 )f −  
represents the initial value of ( )f t . The unusual notation is there because we will be dealing with 
discontinuous and generalized functions where we may need to distinguish left-hand from right-hand limits. 
We can establish this t-derivative rule by noting that 

0
[ ( )] ( )stf t e f t dt

∞ −

−
′ ′= ∫L . If we use Integration by 

Parts with stu e−=  and ( )dv f t dt′= , we get stdu se dt−= −  and ( )v f t= , so: 

00 0
[ ( )] ( ) ( ) ( ) [0] ( ) ( ) (0 )

tst st st

t
f t e f t dt e f t s e f t dt sF s sF s f

∞ ∞=∞− − −

= −− −
′ ′  = = + = + = − − ∫ ∫L  

For second derivatives, note that ( ) ( )d
dtf t f t′′ ′= , so we can apply the above result to get that 

2[ ( )] [ ( )] (0 ) ( ( ) (0 )) (0 ) ( ) (0 ) (0 )f t s f t f s sF s f f s F s s f f′′ ′ ′ ′ ′= − − = − − − − = − ⋅ − − −L L , so 
2[ ( )] ( ) (0 ) (0 )f t s F s s f f′′ ′= − − − −L . 
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Continuing, we get that 3 2[ ( )] ( ) (0 ) (0 ) (0 )f t s F s s f s f f′′′ ′ ′′= − − − − − −L , and so on. 

Generally, ( ) 1 2 ( 1)[ ( )] ( ) (0 ) (0 ) (0 )n n n n nf t s F s s f s f f− − −′= − − − − − − −L  . 

8) Transforming the delta function: One of our most fundamental transforms is [ ( )] 1tδ =L . This is relatively 
easy to see once you’re comfortable with the integral formalisms concerning the delta function and how they 
relate to evaluation. Specifically, 0

0
[ ( )] ( ) 1stt e t dt edd

∞ −

−
= = =∫L  since this is really just evaluation of the 

function ste−  at 0t = . 

9) Transforming sines and cosines: 2 2[cos( )] st
s

ω
ω

=
+

L  and 2 2[sin( )]t
s
ωω
ω

=
+

L  

We can derive each of these independently, but if we use Euler’s Formula and linearity we have that: 
[ ] [cos( ) sin( )] [cos( )] [sin( )]i te t i t t i tω ω ω ω ω= + = +L L L L , and 

2 2 2 2 2 2

1[ ]i t s i s i se i
s i s i s s s

ω ω ω ω
ω ω ω ω ω

+ +     = = = +    − + + + +     
L  

Taking real and imaginary parts separately we get that 

2 2[cos( )] st
s

ω
ω

=
+

L  and 2 2[sin( )]t
s
ωω
ω

=
+

L . 

We’ll add to this list as we go and as the need arises. 

Example: Solve the Initial Value Problem 3 2 2 , (0) 0, (0) 0tx x x e x x−+ + = = =   . 

Old Faithful Solution: The homogeneous equation 3 2 0x x x+ + =   is easy to solve. Its characteristic 
polynomial is 2( ) 3 2 ( 2)( 1)p s s s s s= + + = + +  which yields the two roots 2s = −  and 1s = − . This gives the 
two independent solutions 2te−  and te− , and all homogeneous solutions are of the form 2

1 2( ) t t
hx t c e c e− −= + . 

Note that both of these homogeneous solutions are transient in the sense that they decay exponentially as t 
increases. 

Next, we need to find a particular solution ( )px t  that satisfies the inhomogeneous differential equation. One 
look at the right-hand-side and we see that the Exponential Response Formula (ERF) won’t work – there is 
resonance. We can, however, use the Resonant Response Formula to get the particular solution 

2 2( ) 2
( 1) 1

t t
t

p
te tex t te

p

− −
−= = =

′ −
, so the general solution is 2

1 2( ) ( ) ( ) 2t t t
h px t x t x t c e c e te− − −= + = + + . Its derivative 

is 2
1 2( ) 2 2 2t t t tx t c e c e te e− − − −= − − − + . Substituting the (rest) initial conditions gives 1 2

1 2

(0) 0
(0) 2 2 0

x c c
x c c

= + = 
 = − − + = 

, 

and these can be solved to give 1 22, 2c c= = − , so the solution is 2( ) 2 2 2t t tx t e e te− − −= − + . 

Solving directly by Laplace transform: We calculated the following Laplace transforms: 

(1) 1( )kte
s k

=
−

L  with region of convergence Re( )s k> , so 2 1( )
2

te
s

− =
+

L . 

(2) If the Laplace transform of ( )x t  is ( )X s , then the Laplace transforms of its derivatives are 
( ( )) ( ) (0 )x t sX s x= − −L   and 2( ( )) ( ) (0 ) (0 )x t s X s s x x= − − − −L   . In the case of rest initial conditions 
(0 ) (0 ) 0x x− = − = , these are greatly simplified and, in fact ( ( ) ) ( ) ( )p D x p s X s=L . Specifically, 

2 2( 3 2 ) ( ) 3 ( ) 2 ( ) ( 3 2) ( ) ( ) ( )x x x s X s sX s X s s s X s p s X s+ + = + + = + + =L   . 
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If we now transform the entire differential equation, we get 2 2( 3 2) ( )
1

s s X s
s

+ + =
+

. 

We then solve for 2 2 2

2 2( )
( 1)( 3 2) ( 2)( 1) 2 1 ( 1)

A B CX s
s s s s s s s s

= = = + +
+ + + + + + + +

. 

There are many good ways to find the unknowns A, B, and C. For example, if we multiply through by the 
common denominator to clear fractions, we get 22 ( 1) ( 1)( 2) ( 2)A s B s s C s= + + + + + + . Plugging in the specific 
values 2s = −  and 1s = −  quickly yields that 2A =  and 2C = . Plugging in, for example, 0s =  and using the 
values for A and C then yields 2B = − . So: 

2 2

2 2 2 1 1 1( ) 2 2 2
2 1 ( 1) 2 1 ( 1)

X s
s s s s s s

    = − + = − +     + + + + + +     
. 

Consulting our table of common Laplace transforms, we see that 21 ( )
2

te
s

−=
+

L , 1 ( )
1

te
s

−=
+

L , and 

2

1 ( )
( 1)

tte
s

−=
+

L , so transforming back (using linearity) gives 2( ) 2 2 2t t tx t e e te− − −= − + . 
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Properties of the Laplace transform 
0. Definition: 

0
[ ( )] ( ) ( )stf t F s e f t dt

∞ −

−
= = ∫L    for Re( ) 0s  . 

1. Linearity: [ ( ) ( )] [ ( )] [ ( )] ( ) ( )af t bg t a f t b g t aF s bG s+ = + = +L L L . 

2. Inverse transform: ( )F s  essentially determines ( )f t . 

3. s-shift rule: [ ( )] ( )rte f t F s r= −L . 

4. t-shift rule: [ ( )] ( )asf t a e F s−− =L    if 0a ≥  and ( ) 0f t =  for 0t < . 

This may also be expressed as [ ( )] ( )as
af t e F s−=L  where ( ) if ( ) ( ) ( ) 0 if a

f t a t af t u t a f t a t a
− > = − − =  < 

. 

5. s-derivative rule: [ ( )] ( )t f t F s′= −L . 

6. t-derivative rule: [ ( )] ( ) (0 )f t sF s f′ = − −L  
2[ ( )] ( ) (0 ) (0 )f t s F s sf f′′ ′= − − − −L  

( ) 1 2 ( 1)[ ( )] ( ) (0 ) (0 ) (0 )n n n n nf t s F s s f s f f− − −′= − − − − − − −L   

7. Convolution rule: [ ( ) ( )] ( ) ( )f t g t F s G s∗ =L ,   
0

( )( ) ( ) ( )
t

f g t f t g dt t t∗ = −∫ . 

8. Weight function: [ ( )] ( )w t W s=L , ( )w t  the unit impulse response. 

If ( )q t  is regarded as the input signal in ( ) ( )p D x q t= , 1
( )( ) p sW s = . 

Formulas for the Laplace transform 
1[1] s=L  

[ ( )] 1tδ =L  
[ ( )] [ ( )] as

at a t eδ δ −− = =L L  

[ ( )] [ ( )]
as

a
eu t a u t s

−

− = =L L  

1[ ]ate
s a

=
−

L  

2

1[ ]t
s

=L  

1

![ ]n
n

nt
s +=L  

( )[ ( )] ( 1) ( )n n nt f t F s= −L  
[ ( ) ( )] ( )asu t a f t a e F s−− − =L  

[ ( ) ( )] [ ( )]asu t a f t e f t a−− = +L L  

2 2[cos( )] st
s

ω
ω

=
+

L  

2 2[sin( )]t
s
ωω
ω

=
+

L  

2 2

2 2 2[ cos( )]
( )

st t
s

ωω
ω
−

=
+

L  

2 2 2

2[ sin( )]
( )

st t
s

ωω
ω

=
+

L  

2 2[ cos( )]
( )

zt s ze t
s z

ω
ω

−
=

− +
L  

2 2[ sin( )]
( )

zte t
s z

ωω
ω

=
− +

L  

 

 

Notes by Robert Winters 


