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Ordinary Differential Equations – Lecture #7 

Periodic Inputs and Fourier Series 

The solution of an ODE of the form [ ( )] ( ) cosp D x t a kt=  or [ ( )] ( ) sinp D x t a kt=  is now relatively 

straightforward through the use of complex replacement, the Exponential Response Formula, and, when needed, 

the Resonant Response Formula. How might we solve an ODE of the form [ ( )] ( ) ( )p D x t f t=  where ( )f t  is 

some other periodic function such: 

 

or   
 

The way we’ll handle this is to successively approximate any such periodic function as a sum of trigonometric 

functions, solve term-by-term, and then reassemble a solution using linearity (superposition). The 

approximation method involved Fourier Series. 

Definition: A function ( )f t  is called periodic with period T if ( ) ( )f t nT f t+ =  for all t and all integers n. We 

say that T is the base period if it is the least such 0T  . 

Examples: The functions sin t  and cost  are both periodic with base period 2 . The functions sin t  and 

cos t  are both periodic with base period 2
 . 

Note: Any constant function is also periodic, but with no base period. 

For the sake of simplicity, we’ll begin by considering periodic functions with base period 2 . We will later 

rescale to adapt our methods to other base periods. Our methods will be based on the following theorem: 

Theorem (Fourier): Suppose a function ( )f t  is periodic with base period 2  and continuous except for a 

finite number of jump discontinuities. Then ( )f t  may be represented by a (convergent) Fourier Series: 

0

1
2

( ) ( cos sin )n n

n

a
f t a nt b nt



=

+ +  

where:   
0

1 ( )a f t dt


 −
=  ,   1 ( )cosna f t nt dt



 −
=  ,   1 ( )sinnb f t nt dt



 −
=  . 

The numbers 0 1 1{ , , , , , , }n na a b a b  are called the Fourier coefficients of the function ( )f t . 

This representation is an equality at all points of continuity of the function ( )f t . At any point of discontinuity 

t a= , the series converges to the average of ( )f a−
 and ( )f a+

, i.e. the value 1
2

[ ( ) ( )]f a f a− ++ . 

Note: (a) If ( )f t  is an even function [ ( ) ( )f t f t− =  for all t], then 0nb =  for all n by basic facts from calculus. 

(b) If ( )f t  is an odd function [ ( ) ( )f t f t− = −  for all t], then 0 0a =  and 0na =  for all n by basic facts 

from calculus. 

Example (Square wave function): 
1 [ ,0)

( ) ( )
1 [0, )

t
f t sq t

t





−  − 
= =  

+  
, extended periodically for all t. 

This function is periodic (with period 2 ) and antisymmetric, i.e. an odd function. Therefore 0 0a =  and 0na =  

for all n. We calculate 
0 0

00

cos cos1 1 1( )sin ( 1)sin sinn
nt nt

n nb f t nt dt nt dt nt dt
  

    −− −

   = = − + = −              

4
1  odd

1 ( 1) ( 1) 1
0  even

n n n
n

n

n



 

    = − − − − − =      
 

. 
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So 
 odd

sin4 4 1 1
53

( ) [sin sin 3 sin 5 ]
n

nt
nsq t t t t = + + + . 

The nature of the convergence of this Fourier series toward the square wave function can be seen by graphing 

the partial sums: 
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Inner Products and Orthogonality 

We are all familiar with the mutually perpendicular (orthogonal) unit vectors  , ,i j k  in 3
R  and how we can 

express any vector , ,x y z=v  in 3
R  as , , 1,0,0 0,1,0 0,0,1x y z x y z x y z= = + + = + +v i j k . The 

components of the vector are just the scalar projections of v  in the directions of  , ,i j k , respectively. We find 

the scalar projection of a vector in any given direction by calculating its dot product with a unit vector u  in the 

given direction, i.e. v u . So we can also express ( ) ( ) ( )x y z= + + =  +  + v i j k v i i v j j v k k . 

We could do the same thing with any set of three mutually orthogonal unit vectors  1 2 3, ,u u u  in 3
R . That is, if 

3v R  we could write 1 1 2 2 3 3( ) ( ) ( )=  +  + v v u u v u u v u u . 

Just as we can add and scale vectors, we can also do this with functions. We add functions by adding their 

values and scale them by scaling their values. That is, ( )( ) ( ) ( )f g x f x g x+ = +  and ( )( ) ( )cf x cf x= . We might 

speculate that if functions can be combined in a manner analogous to vectors (where we add respective values 

instead of respective components), perhaps there may be something analogous to the dot product that we could 

use to define notions such as orthogonality in spaces of functions. 

Think about how the dot product of two vectors is calculated: We multiply the respective components of the 

two vectors and sum these products, i.e. in 3
R  we have 

1 2 3 1 2 3 1 1 2 2 3 3, , , ,u u u v v v u v u v u v =  = + + u v R  and, 

more generally, in n
R  we have 

1 1 1 1, , , ,n n n nu u v v u v u v =  = + + u v R . We also derive using the 

Law of Cosines that cos =u v u v  where   is the angle between u  and v . It is from this fact that we 

conclude that nonzero vectors u  and v  are orthogonal if and only if 0 =u v . 

Vectors in 3
R  (or any n

R ) have just a finite list of components, whereas functions of a real variable have 

infinitely many values. If we think of the values of a function as analogous to the components of a vector, and if 

we use integration as analogous to a discrete sum, this suggests the following definition: 

Definition: If ,f g  are functions defined on some interval [ , ]a b , we can define an inner product of these 

functions by , ( ) ( )
b

a
f g f t g t dt=  . Such an inner product will then satisfy the following properties (where 

defined for any functions , ,f g h ): 

(1) , ,g f f g=      (symmetric) 

(2) , , ,f g h f h g h+ = +  and , , ,f g h f g f h+ = +      (left and right distributive laws) 

(3) , , ,cf g c f g f cg= =      for any scalar c 

These properties are analogous to the algebraic properties of the dot product. We can use this inner product to 

define orthogonality. 

Definition: We say that two (nonzero) functions ,f g  are orthogonal if , 0f g = . 

There is a 4th property of the dot product that doesn’t quite work as simply in the context of functions. That is, 

for any vector v , we have 
2

0 = v v v  and 0 =v v  only if =v 0 . The corresponding statement for 

functions is not generally true. It will always be the case that  
2

, ( ) 0
b

a
f f f t dt=  , but this inner product 

could be equal to zero for a function that is not identically 0 with isolated discontinuities where the function 

takes on nonzero values. If we only consider continuous functions, then  
2

, ( ) 0
b

a
f f f t dt= =  would imply 
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that ( )f t  is identically zero on the interval [ , ]a b . In any case, we can still define the norm of a function f by 

 
22

, ( )
b

a
f f f f t dt= =   or ,f f f= . 

It’s certainly possible that these integrals might not be defined, so we generally restrict the set of functions to 

those for which  
22

, ( )
b

a
f f f f t dt= =   is finite. These are called “square summable” functions, and the set 

of all such functions for the interval [ , ]a b  is denoted by ( )2 [ , ]L a b . It can be shown that in this space of 

functions, ,f g f g  (Cauchy-Schwarz Inequality) and f g f g+  +  (Triangle Inequality). 

Note: All of the above properties work just as well if we define the inner product as , ( ) ( )
b

a
f g K f t g t dt=   for 

some fixed constant K. This will alter the way in which the norm of a given function is defined, but using such a 

normalizing constant is often desirable when working with a particular interval. We’ll start by considering 

functions defined on the interval [ , ] −  and choose our normalizing constant so that 1, ( ) ( )f g f t g t dt


 −
=  . 

Proposition: In ( )2 [ , ]L  − +  with inner product 1, ( ) ( )f g f t g t dt


 −
=  , the finite collection 

 1
2

, cos ,sin ,cos 2 ,sin 2 , ,cos ,sinn t t t t nt nt=B  is an orthonormal set. That is, each function in nB  has norm 

1 and any distinct pair has inner product equal to 0. We think of this set as consisting of mutually orthogonal 

unit elements. In linear algebra terminology, we would say that these 2 1n+  functions span a subspace 

(referred to as nT ) and that they form a basis for this subspace. 

Proof: This is just a list of integral calculations. We’ll calculate a few of them and just quote the rest (though 

you may want to try some integration techniques or consult an integral table to see why they are true). We have: 

( )
2

1 1 1 1 1 1 1 1
2 22 2 2

, ( )2 1dt dt
 

    
− −

= = = =   

sin1 1 1 1
2 2 2

,cos cos 0kt
k

kt kt dt


  − −
= = =  

1 1 1
2 2

,sin sin 0kt kt dt


 −
= =      (integral of an odd function over a symmetric interval) 

2 sin(2 )1 1 1 1
2 2 22

cos ,cos cos [1 cos(2 )] (2 ) 1
kt

k
kt kt kt dt kt dt t

 

  
   


− − −

 = = + = + = =
    

2 sin(2 )1 1 1 1
2 2 22

sin ,sin sin [1 cos(2 )] (2 ) 1
kt

k
kt kt kt dt kt dt t

 

  
   


− − −

 = = − = − = =
    

1cos ,cos cos cos 0jt kt jt kt dt


 −
= =  for integers j k      (consult integral table) 

1sin ,sin sin sin 0jt kt jt kt dt


 −
= =  for integers j k      (consult integral table) 

1cos ,sin cos sin 0jt kt jt kt dt


 −
= =  for integers ,j k      (consult integral table) 

We can define the orthogonal projection of a function f onto the subspace nT  analogous to n
R , namely: 

1 1
2 2

Proj ( ) , , cos cos ,sin sin ,cos cos ,sin sinn nf f f f t t f t t f nt nt f nt nt= = + + + + +  
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If we express these in terms of integrals, we get: 

1 1 1 1
2

1 1

( ) ( )cos cos ( )sin sin

( )cos cos ( )sin sin

nf f t dt f t t dt t f t t dt t

f t nt dt nt f t nt dt nt

  

  

 

 

  

 

− − −

− −

     = + + +
          

   + +
      

  

 
 

This function nf  is known as the nth order Fourier approximation of the function f. 

This can be expressed more succinctly by defining the Fourier coefficients by: 

0
1 ( )a f t dt



 −
=   1 ( )coska f t kt dt



 −
=  , 1 ( )sinkb f t kt dt



 −
=   

Then 0

1 12
cos sin cos sinn n n

a
f a t b t a nt b nt= + + + + +  is the nth order Fourier approximation. 

If, for any given n, we express ( )n nf f f f= − + , we can think of n nf T  and ( )n nf f T ⊥−   (known as the 

orthogonal complement of nT ). There is the analogue of the Pythagorean Theorem in this context that gives 

that 
2 2 2

n nf f f f= − + . With some careful analysis it can be shown that as n gets larger, the Fourier 

approximation converges in the sense that 
2

lim 0n
n

f f
→

− = , and this implies that 
2 2

lim n
n

f f
→

=  which can 

provide some very interesting results. 

We also by letting n →  produce the Fourier Series of f as ( )0

1
2

cos sinn n

n

a
a nt b nt



=

+ + , and there’s this 

accompanying theorem (proven elsewhere): 

Theorem (Fourier): Suppose a function ( )f t  is periodic with base period 2  and continuous except for a 

finite number of jump discontinuities. Then ( )f t  may be represented by a (convergent) Fourier Series: 

0

1
2

( ) ( cos sin )n n

n

a
f t a nt b nt



=

+ +  

where:   
0

1 ( )a f t dt


 −
=  ,   1 ( )cosna f t nt dt



 −
=  ,   1 ( )sinnb f t nt dt



 −
=  . 

The numbers 0 1 1{ , , , , , , }n na a b a b  are called the Fourier coefficients of the function ( )f t . 

This representation is an equality at all points of continuity of the function ( )f t . At any point of discontinuity 

t a= , the series converges to the average of ( )f a−
 and ( )f a+

, i.e. the value 1
2

[ ( ) ( )]f a f a− ++ . 

We performed these calculations earlier for the square-wave function 
1 [ ,0)

( ) ( )
1 [0, )

t
f t sq t

t





−  − 
= =  

+  
, 

extended periodically for all t, and derived that 
 odd

sin4 4 1 1
53

( ) [sin sin 3 sin 5 ]
n

nt
nsq t t t t = + + + .  

If we translate 
2 2

lim n
n

f f
→

=  for this function we get that 
2 1 1 2f dt



 −
= = , and 

2 2 2

2

0

16 161 1 1 1
9 25 49 (2 1)

lim 1 2n
n

n
n

f
 



→
=

+
 = + + + + = =   . Therefore 

2

2

0

1
8(2 1)

n
n




=
+

= , a curious fact. 
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We can also apply the last statement in Fourier’s Theorem by evaluating the square-wave function at 2 , a 

point of continuity, to get that 4 1 1 1
5 73

( 2) 1 [1 ]sq  = = − + − + , so 1 1 1
5 73 4

1 − + − + = , but the convergence 

is so abysmally slow as to be of no practical consequence – another curiosity. 

Much more relevant to us is how Fourier series can be applied to the solution of linear time-invariant ODEs of 

the form [ ( )] ( ) ( )p D x t f t=  where ( )f t  is some other periodic function such as: 

 

or   
 

Our plan will be to (a) express ( )f t  as a Fourier series, (b) solve the ODE with each term of the Fourier series 

as the (sinusoidal) input, and then (c) reassemble the solution for the input ( )f t  using linearity principles. 

Harmonic Response to Periodic Inputs 

If we couple the Fourier series representation of a periodic input with linearity, we can produce series 

representations to linear time-independent (LTI) differential equations. 

Example: Find the general solution to the differential equation 4 ( )x x sq t+ = , where ( )sq t  is the square-wave 

function. 

Solution: The system corresponds to a harmonic oscillator. The characteristic polynomial is 
2( ) 4p s s= +  with 

characteristic roots 2s i=   and the homogeneous solutions are of the form 1 2( ) cos 2 sin 2hx t c t c t= + . 

For a particular solution, we use linearity. Using the Fourier series representation 
0

4 sin(2 1)
( )

2 1
n

n t
sq t

n



=

+

+ , we 

individually solve 4 sin(2 1)x x n t+ = +  for each n. To do this we use complex replacement and solve 
(2 1)4 i n tz z e ++ =  using the Exponential Response Formula (ERF). We have 

2( (2 1)) 4 (2 1)p i n n+ = − + , so 
(2 1)

2 2

cos(2 1) sin(2 1)

4 (2 1) 4 (2 1)

i n te n t i n t

n n

+ + + +
=

− + − +
 is a solution, and we extract its imaginary part to get 

2

sin(2 1)

4 (2 1)

n t

n

+

− +
. 

Using linearity for the ODE 
0

4 sin(2 1)
4

2 1
n

n t
x x

n



=

+
+ =

+ , we appropriately scale the individual terms and sum to 

get the particular solution 
2

0

4 sin(2 1)
( )

(2 1)[4 (2 1) ]
p

n

n t
x t

n n




=

+
=

+ − +
 . If we expand this to show the first few terms, we 

have 1 1 1 1 1
3 15 105 315 693

4( ) sin sin3 sin5 sin7 sin9px t t t t t t= − − − − −  . Note how the amplitudes of the higher 

frequencies decrease rapidly. As always, the general solution is ( ) ( ) ( )h px t x t x t= + . 

More generally, we could solve 
2 ( )x x sq t+ =  to get 

2 2
0

4 sin(2 1)
( )

(2 1)[ (2 1) ]
p

n

n t
x t

n n






=

+
=

+ − +
 . This will usually 

yield a convergent series, but we have a problem in the case where   is an odd integer since one term of the 

series will “blow up” in that case. This is a case of resonance and we’ll look at that case shortly. 

Harmonic response with resonance 

One of the more interesting aspects of using Fourier Series is analyzing how a linear time-independent ODE 

with a periodic signal yields a response that exhibits resonance. The basic idea is that if we expand a periodic 

signal in a Fourier Series, it’s sometimes that a single term in the series may be responsible for resonance. The 

signal may be composed of a whole range of frequencies, but one of them may produce resonance that may be 

the dominant feature of the response. 
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Suppose we wish to solve the ODE 2

0

4 sin(2 1)
( )

2 1
n

n t
x x sq t

n


=

+
+ =

+ , where ( )sq t  is the square-wave 

function. We previously observed that this would yield the series solution: 

2 2
0

4 sin(2 1)
( )

(2 1)[ (2 1) ]
p

n

n t
x t

n n






=

+
=

+ − +
  

There is a catch, however. All of the terms in the series make sense unless   is an odd integer. If this is the 

case, then all but one of the terms in the series will continue to make sense, but we’ll have to treat the one term 

where 2 1n = +  differently. Let’s consider a specific example. 

Example: Find a particular solution to the ODE 9 ( )x x sq t+ = . 

In this case, all of the terms in the above series are as stated, but we have to deal with the 1n =  term separately 

since 3 = . For this one term we solve the ODE 4
3

9 sin3x x t


+ = . If we use complex replacement and later 

extract the imaginary part, we be solving the ODE 34
3

9 itz z e


+ = . Since the characteristic polynomial is 

2( ) 9p s s= +  and 3s i=  is a characteristic root, we must use the Resonant Response Formula, i.e. 

34
3

(3 )

itte
z

p i

=


. 

Since ( ) 2p s s =  and (3 ) 6p i i = , we have the (complex) solution 
34

3 2 2
9 9

( )[cos3 sin3 ] [sin3 cos3 ]
6

itte
z t i t i t t t i t

i


 

= = − + = − . Extracting the imaginary part gives 

3
2

9
( ) cos3x t t t


= − . This term can then be added into the previous sum to replace the 1n =  term. Note, 

however, that this term is oscillatory but its amplitude grows linearly in time. This is exactly the sort of thing we 

would expect when the system has resonance – even if it is caused by just one resonant frequency embedded 

among others. 

Another Fourier Series calculation 

Problem: Find the Fourier series for the function 
0 [ ,0)

( )
[0, )

t
f t

t t





 − 
=  

 
, extended periodically for all t. 

Solution: This function is neither symmetric nor antisymmetric, so we have to compute all the Fourier 

coefficients. 

2

0
0 0

1 1 1
2 2

( ) ta f t dt t dt
 




  −

 = = = =    

2
0

1 1
2

0  even
( )cos cos

 oddn

n

n
a f t nt dt t nt dt

n

 

 


−

 
= = =  − 
   after a little integration by parts. 

1

0

1 1 ( 1)
( )sin sin

n

nb f t nt dt t nt dt
n

 

 

+

−

−
= = =   after a little integration by parts. 

So 
1

2
 odd 1

2
4

cos ( 1)
( ) sin

n

n n

nt
f t nt

nn




+

=

 − 
− +   

   
   

Curiosity: Note that for this function 0t =  is a point of continuity and (0) 0f = , so 
2

 odd

2
4

1
0

n n



 

− = 
 

 . 

Therefore 
2

2
 odd

1 1 1 1
9 25 49 81 8

1
1

n n
 

= + + + + + = 
 

  (which we have previously shown). 
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Tips & Tricks – Manipulation of Fourier series 

Different period: We developed our Fourier series representation for functions with a standard period 2  and 

fundamental interval [ , ] − . If we instead have a function ( )f t  with period 2L  and fundamental interval 

[ , ]L L− , we can simply change variables to produce the corresponding Fourier series in this case. We let t
L

u =  

(so Lut = ) and define ( )( ) Lug u f =  with period 2  and fundamental interval [ , ] − . The Fourier series for 

( )g u  is then  

( )0

1

( ) cos sin
2

n n

n

a
g u a nu b nu



=

+ +  and if we use the substitution t
L

u =  (and 
L

du dt= ), we’ll have  

0
1 1 1 1( ) ( ) ( ) ( )

L L L

L L L

t
L L L L

a g u du g dt f u du f t dt





 − − − −

= = = =    , 

1 1 1( )cos ( )cos( ) ( )cos( )
L L

n
L L

t n t n t
L L L L L

a g u nu du g dt f t dt




  
 − − −

= = =   , 

1 1 1( )sin ( )sin( ) ( )sin( )
L L

n
L L

t n t n t
L L L L L

b g u nu du g dt f t dt




  
 − − −

= = =   , and we can write: 

( )0

1

( ) ( ) cos( ) sin( )
2

n n

n

n t n t n t
L L L

a
f t g a b  



=

= + +  

Fourier series can be differentiated or integrated term-by-term to produce other Fourier series: 

Example: If we start with 
 odd

sin41 [ ,0)
( )

1 [0, )
n

nt
n

t
sq t

t 




−  − 
=  

+  
  and integrate term-by-term, we get 

2

 odd

cos4( )
n

nt
n

F t C − + . If we also insist that (0) 0F =  and that ( )F t  be continuous, we get that 

( )
2

2

 odd

4 1 4
8 2

0
n

n
C C C 

 
 

− + = − + = − + = 
 
 , so 

2
C = . This gives 

2

 odd

cos4
2

[ ,0)
( )

[0, )
n

nt
n

t t
F t t

t t







−  − 
= = − 

+  
 , extended periodically for all t, a “sawtooth function”. 

This series could also have been calculated directly using the formulas for the Fourier coefficients and some 

integration by parts. 

Fourier series can be scaled, shifted, etc. to produce other Fourier series 

Example #1: Start with 
 odd

sin41 [ ,0)
( )

1 [0, )
n

nt
n

t
sq t

t 




−  − 
=  

+  
 . 

Then 
 odd

sin40 [ ,0)
1 ( ) 1

2 [0, )
n

nt
n

t
sq t

t 




 − 
+ = + 

 
 . 

So  
 odd

sin1 1 2
2 2

0 [ ,0)
1 ( )

1 [0, )
n

nt
n

t
sq t

t 




 − 
+ = + 

 
 , extended periodically for all t, a different sort of square-

wave function. 

Example #2: Find the Fourier series for the function ( ) cos( 3)f t t = − . 

Solution: This function is periodic with period 2 . There’s no need to consider the formulas for the Fourier 

coefficients. Simply note that 31
2 2

( ) cos( 3) cos cos( 3) sin sin( 3) cos sinf t t t t t t  = − = + = + . 

Notes by Robert Winters 


