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Math E-21c – Lecture #6 

In today’s lecture we’ll finish up a few miscellaneous topics on nth order ODEs – superposition of solutions; 
time invariance, the Exponential Shift Rule, and Variation of Parameters. Also included in these notes are an 
example of how to deal with discontinuous inputs for a first order ODE and an introduction to the idea of 
Fourier series as a way to manage periodic inputs, including discontinuous periodic inputs. 

Superposition of (particular) solutions 
In the case where a linear differential equation has an input expressed as the sum of two or more functions, 
linearity allows us to find solutions for each input individually and then sum these solutions to produce a 
solution for the original ODE. That is, if we have a linear ODE of the form 1 2( )T f g g   and if can 

individually find functions 1f  and 2f  such that 1 1( )T f g  and 2 2( )T f g , then since 

1 2 1 2 1 2( ) ( ) ( )T f f T f T f g g     , it follows that 1 2f f  is a solution to 1 2( )T f g g  . In fact, the same 

reason shows that if 1 1( )T f g  and 2 2( )T f g , then 1 1 2 2c f c f  will be a solution of 1 1 2 2( )T f c g c g  . 

Example: Find a particular solution to the ODE 2 23 2 5 tx x x e t      
Solution: We have already solved 23 2 5 tx x x e     to get a solution 2

1( ) 5 tx t te  . We can solve 
23 2x x x t     using undetermined coefficients and a solution of the form 2( )x t at bt c   . This gives 

2 2 22 3(2 ) 2( ) 2 (6 2 ) (2 3 2 )a at b at bt c at a b t a b c t            , so 
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2 2( )x t t t   . Therefore the desired solution is 2 2

1 2
7
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31
2 2( ) ( ) 5 tx t x t te t t      . 

Linear Time Invariant (LTI) ODEs 
Recall the case of an autonomous 1st order ODE of the form ( )dx

dt F x , i.e. where the prescribed slope does 

not vary with the time t. The slope field for such a differential equation is horizontally invariant. For any such 
differential equation, if ( )x t  is a solution, then ( )x t c  must also be a solution for any translation c. As a simple 

illustration, if dx
dt kx  yields a solution ( ) ktx t ae  (natural exponential growth or decay), then 

( )( ) ( )k t c kc ktx t c ae ae e     is also a solution of this same form. 

There is a similar property in the case of constant coefficient linear ODEs of any order. In the case of a general 
linear ODE of the form 

1

11 1 0[ ( )] ( ) ( ) ( ) ( ) ( )
n n

n nn
d x d x dx
dt dtdtT x t p t p t p t x t q t



      , the “system” T may 

explicitly depend on the time t as evidenced by the coefficient functions ( )kp t  being functions of t. However, in 

the case of constant coefficients, i.e. 
1

11 1 0[ ( )] ( ) ( )
n n

n nn
d x d x dx
dt dtdtT x t a a a x t q t



      , the system T does not 

explicitly depend on the time t. If a function ( )x t  solves [ ( )] ( )T x t q t , then [ ( )] ( )T x t t q t c   , so the 

translated function ( ) ( )y t x t c   satisfies 
1

11 1 0 ( ) ( )
n n

n nn
d y d y dy
dt dtdta a a y t q t c



      . That is, if a given input 

signal is delayed for an amount of time but is otherwise unchanged, the response will be the same but delayed 
by that same period of time. Here’s a simple example to illustrate this: 

Example: Find a particular solution to the ODE 3 2 4sin( 3)x x x t     . 
Solution: It would be simple enough to solve this using undetermined coefficients, but we can also just solve 
the equation 3 2 4sinx x x t     and then use time invariance to get a solution to the given equation by 
translating our solution be replacing t with 3t  . If we try a solution of the form cos sinx a t b t  , we quickly 



 2 revised October 6, 2021  

conclude that to satisfy the equation we must have 6
5a    and 2

5b  , so 6 2
5 5( ) cos sinpx t t t    satisfies 

3 2 4sinx x x t    . Therefore 6 2
5 5( ) cos( 3) sin( 3)px t t t      satisfies 3 2 4sin( 3)x x x t     . 

Had we instead used complex replacement to solve 3 2 4sinx x x t    . We would have obtained 
4
10

( ) sin( )px t t    where 1tan (3)  . Therefore 4 4
10 10

( ) sin( 3 ) sin( (3 ))px t t t        is a particular 

solution to 3 2 4sin( 3)x x x t     . You can explicitly see how the new solution is just shifted further in time. 

Exponential Shift Rule 
We have spent quite a bit of time solving ODEs of the form [ ( )] ( ) ( )p D x t q t , especially in the case where the 
input function ( )q t  is sinusoidal, exponential, or a product of these. One special case is where the ODE is of the 

form [ ( )] ( ) ( )rtp D x t e q t . For example, we might wish to solve the equation 2 33 2 tx x x t e    . For problems 
like this, there’s a handy rule that can help avoid some of the more annoying guesswork and algebra that can 
occur with either undetermined coefficients or variation of parameters. 

Exponential Shift Rule (ESR): Suppose we wish to solve an ODE of the form [ ( )] ( ) ( )rtp D x t e q t  where 
1

1 1 0( ) n n
np D D a D a D a I
      is a linear differential operator with constant coefficients. If ( )u t  is a 

solution of the ODE [ ( )] ( ) ( )p D rI u t q t  , then ( ) ( )rtx t e u t  will solve [ ( )] ( ) ( )rtp D x t e q t . 

Proof: The key step in understanding this rule is the ordinary product rule from Calculus. In terms of 

differential operators, if ( )u u t  and ( )v v t  and d
dtD  , then the product rule is simply ( )D uv uDv vDu  . 

In particular, ( ) ( ) ( )rt rt rt rt rtD e u e Du re u e Du ru e D rI u      . Similarly, we have: 

2 2 2 2 2( ) ( ) ( ) ( ) ( 2 ) ( )rt rt rt rt rt rtD e u D e D rI u e D rD u re D rI u e D rD r I u e D rI u              

3 2 2 2 3( ) ( ) ( ) ( ) ( )rt rt rt rt rtD e u D e D rI u e D D rI u re D rI u e D rI u          , and so on. 

Therefore: 
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So, if we write ( ) ( )rtx t e u t , we see that if we can solve [ ( )] ( ) ( )p D rI u t q t  , then 

[ ( )] ( ) [ ( )] ( ) ( )rt rtp D x t e p D rI u t e q t   , so ( )x t  will solve the original ODE. 

Example: Find a particular solution to 2 33 2 tx x x t e    . 

Solution: First let’s do some guesswork and undetermined coefficients to solve this problem before trying our 
new method. A reasonable guess might be a solution of the form 2 3( ) ( ) tx t at bt c e   . We calculate: 

2 3 3 2 3( ) 3( ) (2 ) [3 (3 2 ) (3 )]t t tx t at bt c e at b e at b a t c b e           
2 3 3 2 3( ) [3 (3 2 ) (3 )]3 [6 (3 2 )] [9 (9 12 ) (9 6 2 )]t t tx t at b a t c b e at b a e at b a t c b a e               

2 2 2

2 3 2 3

3 2 [9 (9 12 ) (9 6 2 )] 3[3 (3 2 ) (3 )] 2( )

[20 (18 20 ) (2 9 20 )] t t

x x x at b a t c b a at b a t c b at bt c

at a b t a b c e t e

               

      

 
 

Therefore 1
2020 1a a   , 9

20018 20 0a b b     , and 61
40002 9 20 0a b c c     . 

These calculations will also arise if we use the Exponential Shift Rule, but we get there more efficiently and 
with less likelihood of error. Specifically, because 2( ) 3 2p D D D I   , we would first calculate 
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2 2 2( 3 ) ( 3 ) 3( 3 ) 2 6 9 3 9 2 9 20p D I D I D I I D D I D I I D D I               . You may find it easier to 
work with the characteristic polynomials rather that with the differential operator. If the characteristic 
polynomial of the original ODE is ( )p s , the characteristic polynomial after the shift will be ( )p s r  and we 

can determine ( )p D rI  from that. In this example we have 2( ) 3 2 ( 2)( 1)p s s s s s      , so 
2( 3) ( 3 2)( 3 1) ( 5)( 4) 9 20p s s s s s s s            . Therefore 2( 3 ) 9 20p D I D D I    . 

We then solve the ODE 29 20u u u t     using undetermined coefficients. The clear choice is a solution of the 
form 2( )u t at bt c    and we calculate 

2 2 29 20 [2 9(2 ) 20( )] 20 (18 20 ) (2 9 20 )u u u a at b at bt c at a b t a b c t                , so again 

1
2020 1a a   , 9

20018 20 0a b b     , and 61
40002 9 20 0a b c c     . 

The particular solution is therefore  3 3 2 9 611
20 200 4000( ) ( )t tx t e u t e t t    . 

Example: Find a particular solution to the ODE 3 2 tx x x e    . 
Solution: In this case, the characteristic polynomial is 2( ) 3 2 ( 2)( 1)p s s s s s       and 1r    is a 
characteristic root. We cannot use the Exponential Response Formula, but the Resonant Response Formula 

provides a simple solution. We calculate ( ) 2 3p s s    and ( 1) 1p   , so ( )
( 1)

t
tte

x t te
p


 

 
. 

The Exponential Shift Rule doesn’t provide a faster method here, but it does provide a different way of seeing 
how this solution comes about. We take ( ) 1q t   and 1r    and solve [ ( )] 1p D I u  . We have 

( ) ( 2)( 1)p s s s   , so 2( 1) ( 1 2)( 1 1) ( 1)p s s s s s s s          , and therefore 2( )p D I D D   . 

We then solve 1u u   . If we try ( )u t At B   we get 0 1u u A     , so 1A   and we can choose any B we 

like. So take 0B   to get ( )u t t . Therefore ( ) t tx t e t te    is the desired solution. 

Variation of Parameters 
Recall the method in the case of a 1st order linear ODE of the form ( ) ( )dx

dt p t x q t  . First we found a 

homogeneous solution 1( )x t , so all homogeneous solutions would be of the form 1( )A x t . To find a particular 

solution to the inhomogeneous equation we “vary the parameter” A and seek a solution of the form 

1 1( ) ( ) ( )x t v t x t v x  . We then derived that 
1

( )
( )( ) q t

x tv t   and, in principle, we can then integrate this to determine 

( )v t  and hence 1( ) ( ) ( )x t v t x t . 

The situation with higher order linear ODEs is similar but more complicated. For example, if we have a 2nd 
order linear ODE of the form 1 0( ) ( ) ( )x p t x p t x R t     and we needed to find a particular solution, we would 

again first find homogeneous solutions 1( )x t  and 2 ( )x t  with all homogeneous solutions of the form 

1 1 2 2( ) ( ) ( )hx t c x t c x t  . We would again “vary the parameters” by seeking functions 1( )v t  and 2 ( )v t  such that 

1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( )x t v t x t v t x t v x v x     satisfies the inhomogeneous equation. Differentiation gives 

   1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2x v x v x v x v x v x v x x v x v                . 

We have some flexibility here, so let’s assume that we can find 1( )v t  and 2 ( )v t  such that 1 1 2 2 0x v x v   . Then 

1 1 2 2 1 1 2 2x v x v x x v x v        . If we differentiate again, we get 1 1 2 2 1 1 2 2x x v x v x v x v          . If we substitute these 

expressions into the ODE we get: 

     1 0 1 1 2 2 1 1 2 2 1 1 1 2 2 0 1 1 2 2( ) ( ) ( ) ( ) ( )x p t x p t x x v x v x v x v p t x v x v p t v x v x R t                     
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If we rearrange terms we get: 

   1 0 1 1 1 0 1 1 2 1 2 0 2 2 1 1 2 2( ) ( ) ( )x p t x p t x x p x p x v x p x p x v x v x v R t                     

However, since 1( )x t  and 2 ( )x t  are homogeneous solutions, the first two terms vanish and we’re left with 

1 1 2 2 ( )x v x v R t     . If we join this with the previous assumption, we will be seeking solutions to the system 

1 1 2 2 1 2 1

1 1 2 2 1 2 2

0 0x v x v x x v
x v x v R x x v R

                        

  
       . This will yield solutions precisely when the Wronskian determinant 

1 2
1 2 2 1

1 2

( ) 0
x x

W t x x x x
x x

      , and we then solve for 1 2 2 2

2 1 1 1

1 1
( ) ( )

0
W t W t

v x x x R
v x x x RR

                     

 
  . 

That is, 2 1
1 2

( ) ( ) ( ) ( )
,

( ) ( )

x t R t x t R t
v v

W t W t
     where 1 2 2 1( ) ( ) ( ) ( ) ( ) 0W t x t x t x t x t    . 

You may find it easier to remember simply that 1 2 1

1 2 2

0x x v
x x v R
              


   . Integration then gives 1( )v t  and 2 ( )v t  and 

hence 1 1 2 2( ) ( ) ( ) ( ) ( )px t v t x t v t x t  . 

This method can be generalized to higher order linear ODEs. It depends on the ability to first find a complete 
basis of homogeneous solutions as well as the ability to find antiderivatives or, alternatively, to express these 
antiderivatives as integrals using the 2nd Fundamental Theorem of Calculus. 

For example, for a third order linear ODE we would find three independent homogeneous solutions 

 1 2 3( ), ( ), ( )x t x t x t  and all homogeneous solutions of the form 1 1 1 2 1 3( ) ( ) ( ) ( )hx t c x t c x t c x t   , then vary the 

parameters to seek a particular solution of the form 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( )px t v t x t v t x t v t x t   . A similar 

derivation (where we set two expressions equal to zero to facilitate things) would result in the system of 

equations 
1 2 3 1

1 2 3 2

1 2 3 3

0
0

x x x v
x x x v
x x x v R

     
     
     
     


   
   

 from which we would determine 1( )v t , 2 ( )v t , and 3( )v t . We would then 

integrate these to get 1( )v t , 2 ( )v t , and 3( )v t  and finally 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( )px t v t x t v t x t v t x t   . 

Higher order linear ODEs would yield analogous results. 

Example: Find a particular solution to the ODE 3 2 tx x x e    . 

Solution: The simplest way to solve this (and hence the best way) is to use either the ERF or, if necessary, the 
RRF. In this case the characteristic polynomial is 2( ) 3 2 ( 2)( 1)p s s s s s      , and 1r    in the exponent 
of the input function is a simple characteristic root. The ERF is therefore not applicable, but the RRF is 

applicable. We have ( ) 2 3p s s   , so ( 1) 1p    and a particular solution is ( )
( 1) 1

t t
t

p

te te
x t te

p

 
  

 
. 

If we had used variation of parameters, we would have the homogeneous solutions 2
1 2,t tx e x e   , their 

derivatives would be 2
1 22 ,t tx e x e      , and the Wronskian determinant would be 3( ) tW t e . 

So 
2

1 23 3
, 1

t t t t
t

t t

e e e e
v e v

e e

   

        . 

These give 1
tv e   and 2v t , so a particular solution would be 2( ) t t t t t

px t e e te e te         . The first 

term is actually a homogeneous solution, so we can discard it to give ( ) t
px t te . 

 



 5 revised October 6, 2021  

Example: Find a particular solution to the ODE 9 costx x te t  . 
Solution: The homogeneous equation 9 0x x   has characteristic polynomial 2( ) 9p s s   and characteristic 

roots 3s i  . These yield the homogeneous solutions  3 3,it ite e  or, if you prefer  cos3 ,sin 3t t . 

If we choose the latter basis for the homogeneous solutions, we would take 1 2cos3 , sin 3x t x t  . We calculate 

1 23sin 3 , 3cos3x t x t    , and the Wronskian determinant is 2 2( ) 3(cos 3 sin 3 ) 3W t t t   . So 

1 2
1 1
3 3cos sin 3 , cos cos3t tv te t t v te t t    . It is unlikely that either we humans or Mathematica can produce 

nice antiderivatives for these, but we can express 1 20 0

1 1
3 3cos sin 3 , cos cos3

t tu uv ue u udu v ue u udu    , so 

formally a particular solution is 
0 0

1 1
3 3( ) cos3 cos sin 3 sin 3 cos cos3

t tu u
px t t ue u udu t ue u udu    . 

Had we instead chosen the complex exponentials as a basis we would have similar challenges. 

A Discontinuous Input 
We will soon be developing a more general method (Laplace transform) for dealing with discontinuous inputs, 
but we can solve 1st order linear ODEs now using methods already developed. 

Example: Solve the ODE 
0 0

( ) 1 0 1
0 1

dx
dt

t
kx q t t

t

       
  

. This is a “switch on, switch off” input. 

Solution: The homogeneous solutions are easy, namely ( ) kt
hx t ce . Because this is a 1st order ODE, we can 

use an integrating factor to solve. (This option is not available for higher order ODEs.) The integrating factor is 

kte  and we have  
0 0

( ) 0 1
0 1

kt kt kt kt ktdx d
dt dt

t
e ke x e x e q t e t

t

 
       
  

. If we use 0t   as a starting point with 

0(0)x x  as initial condition, we integrate to get 
0

1( ) (0) ( 1)
tkt k kt

ke x t x e d e
 







     for 0 1t  ; and for 

1t   we have 
1

0

1( ) (0) ( 1)kt k k

ke x t x e d e
 







    . So 0

0

1

1

[ ( 1)] 0 1
( )

[ ( 1)] 1

kt kt

kt k
k

k

e x e t
x t

e x e t





       
    

. This response is 

actually continuous even though there was a discontinuous input. 
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Periodic Inputs and Fourier Series 
The solution of an ODE of the form [ ( )] ( ) cosp D x t a kt  or [ ( )] ( ) sinp D x t a kt  is now relatively 
straightforward through the use of complex replacement, the Exponential Response Formula, and, when needed, 
the Resonant Response Formula. How might we solve an ODE of the form [ ( )] ( ) ( )p D x t f t  where ( )f t  is 
some other periodic function such: 

or 

The way we’ll handle this is to successively approximate any such periodic function as a sum of trigonometric 
functions, solve term-by-term, and then reassemble a solution using linearity (superposition). The 
approximation method involved Fourier Series. 

Definition: A function ( )f t  is called periodic with period T if ( ) ( )f t nT f t   for all t and all integers n. We 
say that T is the base period if it is the least such 0T  . 

Examples: The functions sin t  and cos t  are both periodic with base period 2 . The functions sin t  and 
cos t  are both periodic with base period 2

 . 

Note: Any constant function is also periodic, but with no base period. 

For the sake of simplicity, we’ll begin by considering periodic functions with base period 2 . We will later 
rescale to adapt our methods to other base periods. Our methods will be based on the following theorem: 

Theorem (Fourier): Suppose a function ( )f t  is periodic with base period 2  and continuous except for a 
finite number of jump discontinuities. Then ( )f t  may be represented by a (convergent) Fourier Series: 

0

1
2( ) ( cos sin )n n

n

af t a nt b nt




   

where:   0
1 ( )a f t dt



 
  ,   1 ( )cosna f t nt dt



 
  ,   1 ( )sinnb f t nt dt



 
  . 

The numbers 0 1 1{ , , , , , , }n na a b a b   are called the Fourier coefficients of the function ( )f t . 

This representation is an equality at all points of continuity of the function ( )f t . At any point of discontinuity 

t a , the series converges to the average of ( )f a  and ( )f a , i.e. the value 1
2 [ ( ) ( )]f a f a  . 

Note: (a) If ( )f t  is an even function [ ( ) ( )f t f t   for all t], then 0nb   for all n by basic facts from calculus. 

(b) If ( )f t  is an odd function [ ( ) ( )f t f t    for all t], then 0 0a   and 0na   for all n by basic facts 

from calculus. 

Example (Square wave function): 
1 [ ,0)

( ) ( )
1 [0, )

t
f t sq t

t



        
, extended periodically for all t. 

This function is periodic (with period 2 ) and antisymmetric, i.e. an odd function. Therefore 0 0a   and 0na   

for all n. We calculate 
0 0

00

cos cos1 1 1( )sin ( 1)sin sinn
nt nt

n nb f t nt dt nt dt nt dt
  

     

                      

4
1 odd

1 ( 1) ( 1) 1
0  even

n n n
n

n
n




                   
. 

So 
 odd

sin4 4 1 1
53( ) [sin sin 3 sin 5 ]

n

nt
nsq t t t t      . 
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The nature of the convergence of this Fourier series toward the square wave function can be seen by graphing 
the partial sums: 

 

n = 1 

 

n = 3 

 

n = 5 

 

n = 7 

 

n = 15 

 

Notes by Robert Winters 
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