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Ordinary Differential Equations – Lecture #5 

Mass-Spring-Dashpot systems 

Of particular interest to us (for a variety of reasons) are mass-spring-dashpot systems in which a spring is 

governed by Hooke’s Law but also subject to friction that is proportional to the velocity. [A picture was drawn 

in class illustrating a spring with an attached mass and the friction supplied by a piston (dashpot).] The simplest 

case is where this system is confined with the spring attached to one fixed wall, the dashpot on the other side of 

the mass attached to another fixed wall, and the mass moving relative to its equilibrium position. In this case, 

we would express the force acting on the mass as F kx cv= − −  where v x=  and F ma mx= = . This gives the 

system 0mx cx kx+ + =  or 0c k
m mx x x+ + = . 

We could also imagine a system that is “driven” by moving either the fixed end of the spring or by moving the 

fixed end of the dashpot. If we incorporate this additional acceleration, the resulting system would be governed 

by an inhomogeneous ODE of the form ( )c k
m mx x x q t+ + = . 

Note: We get similar equations in the case of an electric circuit with inductance (L), resistance (R), and 

capacitance (C), i.e. and LRC circuit. 

Analogy between Mass-Spring-Dashpot systems and LRC circuits 

A spring with an attached mass, friction supplied by a dashpot, and 

external force ( )F t is described by the differential equation 

( )mx cx kx F t+ + = . This purely mechanical system has an electrical 

analogue known as an LRC circuit where L represents the inductance 

associated with a coil, R represents the resistance, and C represents the 

capacitance. Given a voltage source with variable voltage ( )V t  

(measured in volts), the circuit will have at any time a current ( )I t  

(measured in amperes), and the capacitor will be carrying a charge ( )Q t  

(measured in Coulombs). 

In physics, we learn that there are voltage drops associated with each of the 

elements of the circuit. Specifically, L
dI
dt

V LI L= =  due to the inductance, RV IR=  due to the resistance, and 

CV Q C=  due to the capacitance. The sum of the voltage drops must match the voltage source, i.e. 

L R CV V V V= + + . We also know that the current satisfies 
dQ

dt
Q I= = , so dI

dt
Q I= =  and 

CV Q C I C= = . If we 

differentiate to get 
L R CV V V V= + +  and substitute the above relations, we get that 1

C
LI RI I V+ + =  for the 

rate of change of the applied voltage. 

In this mechanical/electrical analogy, the inductance becomes analogous to mass, the resistance is analogous to 

friction, and the (reciprocal of) capacitance is analogous to the stiffness of the spring. Also the rate of change of 

voltage is analogous to the external force (which is the rate of change of momentum). 

Spring only case 

The simplest case is a pure spring with no friction and no external driving force. In this case, the differential 

equation governing the motion would be simply 0k
mx x+ = . In anticipation of what will follow, it’s useful to 

let 
2 k

m =  or k
m = . This gives the differential equation 2 0x x+ = . Its characteristic polynomial is 

2 2( ) 0p r r r i = + =  =  . So all solutions to this homogeneous equation can be expressed as the span of 

 ,i t i te e − , i.e. in the form 
1 2( ) i t i tx t c e c e −= +  where 1 2,c c  are complex constants. We would, of course, prefer 
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to express solutions as real-valued functions. Using Euler’s Formula, we could rewrite the solutions as 

1 2 1 2 1 2( ) (cos sin ) (cos sin ) ( )cos ( )sinx t c t i t c t i t c c t i c c t     = + + − = + + −  and then hope that any given 

initial condition will produce real coefficients (they will). Another way to look at this is to note that since 

cos sini te t i t  = +  and cos sini te t i t  − = −  and we can also solve for 
2

cos
i t i te et
 


−+=  and 

2
sin

i t i te e
i

t
 


−−= , it must be the case that    Span , Span cos ,sini t i te e t t   − = . That is, all solutions must be 

of the form ( ) cos sinx t a t b t = + . We also have the option of expressing this as ( ) cos( )x t A t = −  where 

2 2A a b= +  and tan b
a = . 

Note: If we felt the urge to inquire whether the set  ,i t i te e −  or the set  cos ,sint t   were linearly 

independent solutions, the corresponding Wronskians would give either 2 0
i t i t

i t i t

e e
i

i e i e

 

 


 

−

−
= − 

−
 or 

2 2cos sin
(cos sin ) 0

sin cos

t t
t t

t t

 
   

   
= + = 

−
. They both provide a linearly independent spanning set for 

the solutions, i.e. a basis for the solutions (in linear algebra terms). 

Introducing friction (but no drive) 

In the more general homogeneous case governed by 0c k
m mx x x+ + = , we can again seek exponential-type 

solutions. The characteristic roots will be determined by 2( ) 0c k
m mp s s s= + + = . We can solve this by the 

quadratic formula to get 
( ) ( )

2
24 4

2 2

c c k
m m m c c km

s
m

−  − −  −
= = . At this point, we have to look at cases. 

Underdamped case 

If 2 4 0c km−   or 2 4c km , we’ll get complex roots that we can write as 
24

2

c i km c
s a i

m


−  −
= =   where 

0
2

c
a

m
= −   and 

24

2

km c

m


−
= . This yields solutions    ( ) ( ), ,a i t a i t at i t at i te e e e e e   + − −= . As in the case of the 

spring without friction, we can use Euler’s Formula to get the equivalent set  cos , sinat ate t e t  . Thus all 

homogeneous solutions can be expressed as 
1 2( ) ( cos sin )atx t e c t c t = +  with 0a  , i.e. decaying oscillatory 

solutions. We can equivalently express this in the form ( ) cos( )atx t Ae t = −  for appropriate values of ,A  . 

This is the underdamped case where the friction is small relative to the stiffness of the spring. 

Example: Find the general solution of the homogeneous ODE:  2 3 0x x x+ + =  

Solution: The characteristic polynomial is 
2( ) 2 3 0p s s s= + + = . This gives roots 1 2s i= −  . As described 

above, all solutions may be expressed in the form 
1 2( ) ( cos( 2 ) sin( 2 ))tx t e c t c t−= +  or as 

( ) cos( 2 )tx t Ae t −= −  for appropriate ,A  . 

Overdamped case 

If 
2 4 0c km−   or 

2 4c km , we’ll get two real roots 
21

2 2
4c

m m
s c km= −  − . Because 

2 24c km c−   it’s also 

easy to see that both of these roots will be negative and equidistant from 
2
c
m

− . If we call these two roots 

1 2 0s s  , these will yield two independent (decaying) solutions 1s t
e  and 2s t

e  (modes) and all homogeneous 
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solutions can be expressed as 1 2

1 2( )
s t s t

x t c e c e= +  with 1 2 0s s  . This is the overdamped case where the 

friction is large relative to the stiffness of the spring. 

Example: Find the general solution of the homogeneous ODE:  3 2 0x x x+ + =  

Solution: The characteristic polynomial is 
2( ) 3 2 ( 2)( 1) 0p s s s s s= + + = + + = . This gives roots 1 2s = −  and 

2 1s = − . As described above, all solutions may be expressed in the form 2

1 2( ) t tx t c e c e− −= + . 

Critically damped case 

Perhaps the most interesting case is when 2 4 0c km− =  or 2 4c km= . In this case we get a repeated root 

2
c
m

s a= − =  with multiplicity 2. We know that ate  must be a solution, but this will not span all solutions. In 

fact, all solutions are spanned by  ,at ate te , i.e. all solutions are of the form 
1 2( ) at atx t c e c te= + . Why? The idea 

is easily seen via an example. 

Example: Find the general solution of the ODE:  4 4 0x x x+ + =  

Solution: The characteristic polynomial is 
2 2( ) 4 4 ( 2) 0p s s s s= + + = + = . This yields the solution 2te− . Now 

consider this differential equation in terms of a composition of linear operators, namely 

( 2 ) ( 2 ) ( ) 0D I D I x t+ + = . If we let ( 2 ) ( ) ( )D I x t y t+ = , then ( 2 ) ( ) 0D I y t+ =  or 2 0
dy

dt
y+ =  or 2

dy

dt
y= − . 

This is easily solved to get 2

1( ) ty t c e−= . If we then substitute this into ( 2 ) ( ) ( )D I x t y t+ = , we have 

2

12 tdx
dt

x c e−+ = . This can be solved using the integrating factor 2te . This gives ( )2 2 2

12t t tdx d
dt dt

e e x e x c+ = = , and 

this is easily integrated to give 2

1 2

te x c t c= + . Multiplication by 2te−  then gives 2 2

1 2( ) t tx t c te c e− −= + . That is, the 

solutions are given by  2 2Span ,t te te− − . 

This method outlined in the example clearly works for any repeated root s a=  with multiplicity 2. That these 

solutions are linearly independent should be clear, but formally the Wronskian determinant gives that 

2 2 2(1 ) 0
(1 )

at at
at at at

at at

e te
at e ate e

ae at e
= + − = 

+
. In the case where the multiplicity is 3, we would write the 

differential equation as a composition of three identical operators and 

iterate the method to yield solutions  2, ,at at ate te t e . In general, we would 

produce as many independent solutions as the multiplicity of the root. 

We can categorize the possibilities (underdamped, overdamped, and 

critically damped in terms of the relationship between the coefficient of 

friction c and the spring constant k. This can be viewed graphically in 

terms of the “bifurcation locus” shown at the right. 

It’s also helpful in each case to draw a “root diagram” showing where in 

the complex plane the characteristic roots lie. The underdamped case gives 

a complex conjugate pair with negative real part; the overdamped case 

gives two negative real roots; and the critically damped case gives a 

repeated (negative) real root. 

Some terminology:   zero input response (ZIR) and zero state response (ZSR) 

Given a “driven” system governed by an ODE such as ( ) ( ) ( )x p t x q t x f t+ + =  with initial conditions 0 0( )x t x=  

and 0 0( )x t x= , we generally identify the left-hand expression ( ) ( )x p t x q t x+ +  as “the system” and the 

inhomogeneity on the right-hand side ( )f t  as the “input signal” or “impulse”. We use the same terminology for 

higher order ODE’s. There is some useful terminology relevant to these types of ODE’s. 
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If 0( ) 0x t =  and 0( ) 0x t = , we refer to this as the zero state. 

If we solve ( ) ( ) ( )x p t x q t x f t+ + =  for the zero state, we refer to this solution ( )fx t as the zero state response 

(ZSR). 

If we seek homogeneous solutions to the ODE ( ) ( ) 0x p t x q t x+ + =  for any state with 0 0( )x t x=  and 0 0( )x t x= , 

this will have a unique solution ( )hx t  called the zero input response (ZIR). 

In general, the solution to the ODE ( ) ( ) ( )x p t x q t x f t+ + =  will be ( ) ( ) ( )h px t x t x t= +  for some particular 

solution ( )px t , but note that the zero state response (ZSR) is such a particular solution, so ( ) ( ) ( )h fx t x t x t= + . 

That is, ( )x t = +ZIR ZSR . Note that 
0 0 0 0 0 0

0 0 0 0 0 0

( ) ( ) ( ) ( ) 0 ( )

( ) ( ) ( ) ( ) 0 ( )

h f h h

h f h h

x t x t x t x t x t x

x t x t x t x t x t x

= + = + = = 
 

= + = + = = 
, so ( ) ( ) ( )h px t x t x t= +  

satisfies the initial value problem (IVP) without the need to introduce any additional constants. 

We previously derived the following useful result for finding particular solutions for Linear Time Invariant 

(LTI) ODEs in the case of exponential or sinusoidal inputs: 

Exponential Response Formula (ERF): Suppose the Linear Time-Invariant ODE  ( ) ( ) rtp D x t ae=  has 

characteristic polynomial ( )p s  and that r is not a characteristic root, then a particular solution will be: 

( )
( )

rt

p

aex t
p r

= . 

This result can make easy work of solving constant coefficient linear ODE’s in this form. However, this 

formula will fail in the case where r is a characteristic root (since the denominator will vanish). This formula is 

especially useful for dealing with sinusoidal inputs – either pure sinusoidal inputs or with exponential growth or 

decay. The key step is to use complex replacement in order to express the input in exponential form. 

Example: Solve the ODE 33 2 5 tx x x e+ + =  with (0) 2x = , (0) 3x = . 

Solution: The characteristic polynomial is 
2( ) 3 2 ( 2)( 1)p s s s s s= + + = + + . This gives roots 1 2s = − , 2 1s = − , 

and the homogeneous solutions are of the form 2

1 2( ) t t

hx t c e c e− −= + . If we use the Exponential Response 

Formula, we calculate (3) 9 9 2 20p = + + = , so a particular solution is 
3 3

31
4

5 5
( )

(3) 20

t t
t

p

e e
x t e

p
= = = . The general 

solution is therefore 2 3

1 2
1
4

( ) t t tx t c e c e e− −= + + . Differentiation gives 2 3

1 2
3
4

( ) 2 t t tx t c e c e e− −= − − + . Evaluating 

these at 0t =  gives 
1 2

1 2

1 2

1
4 23

43
4

(0) 2
4,

(0) 2 3

x c c
c c

x c c

 = + + = 
 = − = 

= − − + =  

, so 
2 323 1

4 4
( ) 4 t t tx t e e e− −= − + + . 

Example: Find the general solution of the ODE 3 2 2 cos3tx x x e t+ + = . 

Solution: The characteristic polynomial is 
2( ) 3 2 ( 2)( 1)p s s s s s= + + = + + . This gives roots 1 2s = − , 2 1s = − , 

and the homogeneous solutions are of the form 2

1 2( ) t t

hx t c e c e− −= + . To produce a particular solution, we use 

complex replacement (and then recover the real part). Letting ( ) ( ) ( )z t x t i y t= + , we’ll simultaneously solve the 

ODEs 3 2 2 cos3tx x x e t+ + =  and 3 2 2 sin 3ty y y e t+ + = . Using Euler’s formula, we’ll solve the ODE 
3 (1 3 )3 2 2 (cos3 sin 3 ) 2 2t t it i tz z z e t i t e e e ++ + = + = = . Using the Exponential Response Formula, we calculate 

2(1 3 ) (1 3 ) 3(1 3 ) 2 1 6 9 3 9 2 3 15p i i i i i i+ = + + + + = + − + + + = − + , so a particular solution is 
(1 3 )2( )

3 15

i t

p

ez t
i

+

=
− +

. 

We could do one of two things at this point. First, we could multiply the numerator and denominator by the 
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complex conjugate 3 15i− −  and also use Euler’s formula to express everything in terms of sines and cosines. 

This would give: 

 
(1 3 )

1 1
117 117

2( ) ( 3 15 )(cos3 sin 3 ) ( 3cos3 15sin 3 ) ( 15cos3 3sin 3 )
3 15

i t
t t

p

ez t e i t i t e t t i t t
i

+

= = − − + = − + + − −
− +

. 

We would then recover the real part as 1
117

( ) ( 3cos3 15sin3 )t

px t e t t= − + . 

The second option is particularly well suited to the Exponential Response Formula. If we express the 

denominator as a complex number, i.e. 3 15 234 ii e − + =  where ( )1 115
3

tan tan ( 5) 1.768 − −

−
= = −  radians (in 

the 3rd quadrant), we can then write  
(1 3 )

(3 )2 2
234 234

2( ) cos(3 ) sin(3 )
234

i t
t i t t

p i

ez t e e e t i t
e




 

+
−= = = − + −  and 

recover the real part to give 2
234

( ) cos(3 )t

px t e t = − . We can then easily see that the gain is 1
234

, the lag is 

1tan ( 5) 1.768 −= −   and, by writing 2 1
3234

( ) cos3( )t

px t e t = − , the time lag is 1
3

0.589  . 

The general solution may then be expressed as 2

1 2
2 1

3234
( ) cos3( )t t tx t c e c e e t − −= + + − . 

Resonance 

The case where the Exponential Response Formula fails is when r in the exponential input rtae  is a root of the 

characteristic polynomial. Though the term “resonance” is perhaps most appropriate when considering 

sinusoidal inputs with frequency matching the natural frequency of a harmonic oscillator (like a spring), we use 

the term more generally. Let’s understand this situation by considering an example. 

Example: Find a particular solution of the ODE 23 2 5 tx x x e−+ + = . 

Solution: We cannot use the Exponential Response Formula here because 2r =−  is a root of the characteristic 

polynomial 
2( ) 3 2p s s s= + + . So what do we do? If we think in terms of differential operators, we can express 

this ODE in the form   2( 2) ( 1) ( ) 5 tD D x t e−+ + =  and we know that 2 2 2( 2) 2 2 0t t tD e e e− − − + = − + =  . So, if 

we apply this differential operator to both sides of the former equation we get: 

  2 2( 2) ( 2) ( 1) ( ) ( 2) 5 5( 2) 0t tD D D x t D e D e− −   + + + = + = + =    . 

So we should seek solutions of the 3rd order homogeneous ODE  2( 2) ( 1) ( ) 0D D x t+ + = . The characteristic 

polynomial in this case is 
2( 2) ( 1)s s+ +  which gives the same characteristic roots as before only now the root 

2s = −  has multiplicity 2. This means that the homogeneous solutions are given by  2 2Span , ,t t te te e− − − . The 

original inhomogeneous equation already had homogeneous solutions  2Span ,t te e− − , so we seek a particular 

solution of the form 2( ) t

px t Ate−=  and use undetermined coefficients. This gives 2( ) ( 2 1) t

px t A t e−= − +  and 

2( ) (4 4) t

px t A t e−= − , so 
2 2 2 2 23 2 (4 4) 3 ( 2 1) 2 5t t t t tx x x A t e A t e Ate Ae e− − − − −+ + = − + − + + = − = . Therefore 

5A = −  and the particular solution is 
2( ) 5 t

px t te−= − . 

It’s possible to do this in general. Suppose we have an nth order linear ODE in the form  ( ) ( ) rtp D x t ae=  

where r is a root with multiplicity k of the characteristic polynomial ( )p s . This means that we can express the 

characteristic polynomial as ( ) ( )( )kp s q s s r= −  where ( )q s  is a polynomial of degree n k− . The corresponding 

differential operator can then be expressed as ( ) ( ) ( )kT p D q D D rI= = − . If we seek a particular solution of 

the form ( ) k rt

px t At e= , we can calculate 

1 1( )( ) ( ) ( )k rt k rt k rt k rt k rt k rt k rtD rI At e D At e rAt e A rt e kt e rt e Akt e− −− = − = + − = . If 2k  , we can apply this 
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operator again to get 
2 2( ) ( ) ( 1)k rt k rtD rI At e Ak k t e−− = − . Continuing, we eventually get to 

( ) ( ) ( 1) (2)(1) !k k rt rt rtD rI At e Ak k e Ak e− = − = . Substituting this into the ODE we get: 

 ( ) ( ) ( ) ( ) ( ) ![ ( )( )] ! ( )k rt k k rt rt rt rtp D At e q D D rI At e Ak q D e Ak q r e ae= − = = =  

So ! ( )Ak q r a= , and 
! ( )

a
A

k q r
= , and therefore ( )

! ( )

k rt

p

at e
x t

k q r
= . 

Though we could just use this as our “Resonant Response Formula”, we can differentiate ( ) ( )( )kp s q s s r= −  

repeatedly to get 
1( ) ( ) ( ) ( )( )k kp s q s k s r q s s r− = − + − , 

2 1( ) ( ) ( 1)( ) 2 ( )( ) ( )( )k k kp s q s k k s r q s s r q s s r− −  = − − + − + −  and eventually 

( ) ( ) ( ) ! ( )(polynomial in )kp s q s k s r s= + − , so ( ) ( ) ( ) !kp r q r k= . 

We can therefore in general express the Resonant Response Formula (RRF) as 
( )

( )
( )

k rt

p k

at e
x t

p r
=  where 

( ) ( )kp r  is the value of the kth derivative of the characteristic polynomial evaluated at r . Rarely will we need to 

use this for 1k  , so the usual form is simply ( )
( )

rt

p

ate
x t

p r
=


. The Exponential Response Formula (ERF) is 

just the 0k =  case, i.e. ( )
( )

rt

p

aex t
p r

= . 

If we had applied the RRF to the previous example, we would have 
2( ) 3 2p s s s= + +  and we would calculate 

( ) 2 3p s s = + , so ( 2) 1p − = −  and the particular solution would be 
2

25( ) 5
1

t
t

p

tex t te
−

−= = −
−

. 

Resonance with input frequency matching the natural frequency of a harmonic oscillator 

Intuitively one should expect that if a spring system had a natural frequency   with no external influence and if 

this system was driven with an applied sinusoidal force exactly matching this natural frequency, the amplitude 

might grow if the oscillations were in synch. A simple example illustrates this. 

Example: Find the general solution of the ODE 9 2cos3x x t+ = . 

Solution: The homogeneous system 9 0x x+ =  has 

characteristic polynomial 
2( ) 9p s s= +  which yields 

characteristic roots 3s i=  , and we can choose  cos3 ,sin3t t  as 

a basis for the homogeneous solutions. Note that the input has 

this same frequency. If we choose to solve this using complex 

replacement, we would solve 39 2 itz z e + =  and then recover the 

real part. Because 3r i=  is a simple characteristic root, we use 

the RRF. We have ( ) 2p s s =  and (3 ) 6p i i = , so a particular 

solution is: 
3 3

1 1 1
3 3 3

2 2
( ) (cos3 sin3 ) sin3 (cos3 )

(3 ) 6

it it

p

te te
z t it t i t t t it t

p i i
= = = − + = −


.  Therefore 1

3
( ) sin 3px t t t= . Note that 

this solution oscillates between the lines 1
3

y t=  and 1
3

y t= −  (hence the amplitude grows linearly in time).  

The general solution will be 1 2
1
3

( ) cos3 sin 3 sin 3x t c t c t t t= + + . 

5 10 15 20

-6

-4

-2

2

4

6
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Superposition of (particular) solutions 

In the case where a linear differential equation has an input expressed as the sum of two or more functions, 

linearity allows us to find solutions for each input individually and then sum these solutions to produce a 

solution for the original ODE. That is, if we have a linear ODE of the form 1 2( )T f g g= +  and if can 

individually find functions 1f  and 2f  such that 1 1( )T f g=  and 2 2( )T f g= , then since 

1 2 1 2 1 2( ) ( ) ( )T f f T f T f g g+ = + = + , it follows that 1 2f f+  is a solution to 1 2( )T f g g= + . In fact, the same 

reason shows that if 1 1( )T f g=  and 2 2( )T f g= , then 1 1 2 2c f c f+  will be a solution of 1 1 2 2( )T f c g c g= + . 

Example: Find a particular solution to the ODE 2 23 2 5 tx x x e t−+ + = +  

Solution: We have already solved 23 2 5 tx x x e−+ + =  to get a solution 2

1( ) 5 tx t te−= − . We can solve 
23 2x x x t+ + =  using undetermined coefficients and a solution of the form 

2( )x t at bt c= + + . This gives 

2 2 22 3(2 ) 2( ) 2 (6 2 ) (2 3 2 )a at b at bt c at a b t a b c t+ + + + + = + + + + + = , so 

1
2

3
2

7
4

2 1

6 2 0

2 3 2 0

aa

a b b

a b c c

==   
   

+ =  = −   
   + + = =   

. So 

2

2
7
4

31
2 2

( )x t t t= − + . Therefore the desired solution is 
2 2

1 2
7
4

31
2 2

( ) ( ) 5 tx t x t te t t−+ = − + − + . 

Linear Time Invariant (LTI) ODEs 

Recall the case of an autonomous 1st order ODE of the form ( )dx
dt

F x= , i.e. where the prescribed slope does 

not vary with the time t. The slope field for such a differential equation is horizontally invariant. For any such 

differential equation, if ( )x t  is a solution, then ( )x t c−  must also be a solution for any translation c. As a simple 

illustration, if dx
dt

kx=  yields a solution ( ) ktx t ae=  (natural exponential growth or decay), then 

( )( ) ( )k t c kc ktx t c ae ae e− −− = =  is also a solution of this same form. 

There is a similar property in the case of constant coefficient linear ODEs of any order. In the case of a general 

linear ODE of the form 
1

11 1 0[ ( )] ( ) ( ) ( ) ( ) ( )
n n

n nn
d x d x dx
dt dtdt

T x t p t p t p t x t q t
−

−−= + + + + = , the “system” T may 

explicitly depend on the time t as evidenced by the coefficient functions ( )kp t  being functions of t. However, in 

the case of constant coefficients, i.e. 
1

11 1 0[ ( )] ( ) ( )
n n

n nn
d x d x dx
dt dtdt

T x t a a a x t q t
−

−−= + + + + = , the system T does not 

explicitly depend on the time t. If a function ( )x t  solves [ ( )] ( )T x t q t= , then [ ( )] ( )T x t t q t c− = − , so the 

translated function ( ) ( )y t x t c= −  satisfies 
1

11 1 0 ( ) ( )
n n

n nn

d y d y dy

dt dtdt
a a a y t q t c

−

−−+ + + + = − . That is, if a given input 

signal is delayed for an amount of time but is otherwise unchanged, the response will be the same but delayed 

by that same period of time. Here’s a simple example to illustrate this: 

Example: Find a particular solution to the ODE 3 2 4sin( 3)x x x t+ + = − . 

Solution: It would be simple enough to solve this using undetermined coefficients, but we can also just solve 

the equation 3 2 4sinx x x t+ + =  and then use time invariance to get a solution to the given equation by 

translating our solution be replacing t with 3t − . If we try a solution of the form cos sinx a t b t= + , we quickly 

conclude that to satisfy the equation we must have 6
5

a = −  and 2
5

b = , so 6 2
5 5

( ) cos sinpx t t t= − +  satisfies 

3 2 4sinx x x t+ + = . Therefore 6 2
5 5

( ) cos( 3) sin( 3)px t t t= − − + −  satisfies 3 2 4sin( 3)x x x t+ + = − . 

Had we instead used complex replacement to solve 3 2 4sinx x x t+ + = . We would have obtained 
4
10

( ) sin( )px t t = −  where 
1tan (3) −= . Therefore 4 4

10 10
( ) sin( 3 ) sin( (3 ))px t t t = − − = − +  is a particular 

solution to 3 2 4sin( 3)x x x t+ + = − . You can explicitly see how the new solution is just shifted further in time. 
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Problematic inputs 

It won’t always be the case that the input function for a linear ODE will be in a familiar form for which there is 

a simple formula or an obvious choice for undetermined coefficients. In such problematic cases, we can either 

be more inventive with our guesswork and choice of undetermined coefficients or perhaps come up with 

another method for handling problematic cases. For example: 

Example: Find a particular solution to the ODE 9 cosxy y xe x + = . 

Solution: Finding the homogeneous solutions for this ODE is straightforward. Though it may not be obvious 

what form of solution might be best to try for a particular solution, perhaps one sufficiently general form might 

be ( ) cos ( ) sinx xy Ax B e x Cx D e x= + + + . As you can see, calculating the derivatives, substituting into the 

ODE, and solving for the undetermined coefficients is no picnic. You might want to try Mathematica. 

That said, it is possible to carry out the calculations: 

( ) cos ( ) sin

[( ) ( )] cos [( ) ( )] sin

[2 (2 2 2 )] cos [ 2 (2 2 2 )] sin

x x

x x

x x

y Ax B e x Cx D e x

y A C x A B D e x A C x B C D e x

y Cx A C D e x Ax A B C e x

 = + + +
 

 = + + + + + − + + − + + 
  = + + + + − + − + 

 

So: 

9 [(9 2 ) (2 9 2 2 )] cos [( 2 9 ) (2 2 2 9 )] sin cosx x xy y A C x A B C D e x A C x A B C D e x xe x + = + + + + + + − + + − + + =  

Matching coefficients gives: 

9 2 1 9 0 2 0 1 9 85

2 9 2 2 0 2 9 2 2 0 154 7225

2 9 0 2 0 9 0 0 2 85

2 2 2 9 0 2 2 2 9 0 242 7225

A C A A

A B C D B B

A C C C

A B C D D D

+ =           
           + + + = − 

 =  =          
− + = −          

− + + = − −                     

. 

So 9 154 2 242
85 7225 85 7225

( ) cos ( ) sinx x

py x e x x e x= − + − . As we said, it’s doable but it’s no picnic. 

In the previous example there was at least some basis for guessing the form of the particular solution. 

Sometimes this is not a realistic expectation. What then? 

Variation of Parameters 

Recall the method in the case of a 1st order linear ODE of the form ( ) ( )
dy

dx
p x y q x+ = . First we found a 

homogeneous solution ( )hy x , so all homogeneous solutions would be of the form ( )hA y x . To find a particular 

solution to the inhomogeneous equation we “vary the parameter” A and seek a solution of the form 

( ) ( ) ( )hy x v x y x= . We then derived that 
( )

( )
( )

h

q x

y x
v x =  and, in principle, we can then integrate this to determine 

( )v x  and hence ( )y x . 

The situation with higher order linear ODEs is similar but more complicated. For example, if we have a 2nd 

order linear ODE of the form ( ) ( ) ( )y P x y Q x y R x + + = , we would again first find homogeneous solutions 

1( )y x  and 2 ( )y x  with all homogeneous solutions of the form 1 1 2 2( ) ( )c y x c y x+ . We would again “vary the 

parameters” by seeking functions 1( )v x  and 2 ( )v x  such that 1 1 2 2( ) ( ) ( ) ( ) ( )y x v x y x v x y x= +  satisfies the 

inhomogeneous equation. For simplicity, let’s write this as 1 1 2 2y v y v y= + . Differentiation (using the product 

and sum rules) gives ( ) ( )1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2y u y v y v y v y v y v y v y v y        = + + + = + + + . We have some flexibility here, 

so let’s assume that we can find 1( )v x  and 2 ( )v x  such that 1 1 2 2 0v y v y + = . Then 1 1 2 2y v y v y  = + . If we 

differentiate again, we get 1 1 1 1 2 2 2 2y v y v y v y v y      = + + + . If we substitute these expressions into the ODE we get: 

( ) ( ) ( )1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( )y P x y Q x y v y v y v y v y P x v y v y Q x v y v y R x         + + = + + + + + + + =  

If we rearrange terms we get: 



 9 revised November 12, 2023  

( ) ( ) ( )1 1 1 1 2 2 2 2 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )y P x y Q x y v y P x y Q x y v y P x y Q x y v y v y R x         + + = + + + + + + + =  

However, since 1( )y x  and 2 ( )y x  are homogeneous solutions, the two of these terms vanish and we’re left with 

1 1 2 2 ( )v y v y R x   + = . If we join this with the previous assumption, we are seeking solutions to the system 

1 1 2 2 1 2 1

1 1 2 2 1 2 2

0 0y v y v y y v

y v y v R y y v R

  + =       
 =             + =       

. This will yield solutions precisely when the Wronskian determinant 

1 2
1 2 2 1

1 2

( ) 0
y y

W x y y y y
y y

 = = − 
 

, and we then solve for 1 2 2 2

2 1 1 1

1 1
( ) ( )

0
W x W x

v y y Ry

v y y RyR

  − −      
= =       −       

. That is, 

2 1
1 2

( ) ( ) ( ) ( )
,

( ) ( )

R x y x R x y x
v v

W x W x
 = − =  where 1 2 2 1( ) ( ) ( ) ( ) ( ) 0W x y x y x y x y x = −  . Integration then gives 1( )v x  and 

2 ( )v x  and hence 1( )y x  and 2 ( )y x . This method can be generalized to higher order linear ODEs. It depends on 

the ability to first find a complete basis of homogeneous solutions as well as the ability to find antiderivatives 

or, alternatively, to express these antiderivatives as integrals using the 2nd Fundamental Theorem of Calculus. 

Example: Find a particular solution to the ODE 3 2 xy y y e− + + = . 

Solution: The simplest way to solve this (and hence the best way) is to use either the ERF or, if necessary, the 

RRF. In this case the characteristic polynomial is 
2( ) 3 2 ( 2)( 1)p s s s s s= + + = + + , and 1r =−  in the exponent 

of the input function is a simple characteristic root. The ERF is therefore not applicable, but the RRF is 

applicable. We have ( ) 2 3p s s = + , so ( 1) 1p − =  and a particular solution is ( )
( 1) 1

x x
x

p

xe xe
y x xe

p

− −
−= = =

 −
. 

If we had used variation of parameters, we would have the homogeneous solutions 2

1 2,x xy e y e− −= = , their 

derivatives would be 2

1 22 ,x xy e y e− − = − = − , and the Wronskian determinant would be 
3( ) xW x e−= . So 

2

1 23 3
, 1

x x x x
x

x x

e e e e
v e v

e e

− − − −

− −
 = − = − = = . These give 

1

xv e= −  and 2v x= , so a particular solution would be 

2( ) x x x x x

py x e e xe e xe− − − −= − + = − + . The first term is actually a homogeneous solution, so we can discard it to 

give ( ) x

py x xe−= . 

Example: Find a particular solution to the ODE 9 cosxy y xe x + = . 

Solution: The homogeneous equation 9 0y y + =  has characteristic polynomial 
2( ) 9p s s= +  and characteristic 

roots 3s i=  . These yield the homogeneous solutions  3 3,ix ixe e−  or, if you prefer  cos3 ,sin3x x . 

If we choose the latter basis for the homogeneous solutions, we would take 1 2cos3 , sin 3y x y x= = . We 

calculate 1 23sin 3 , 3cos3y x y x = − = , and the Wronskian determinant is 
2 2( ) 3(cos 3 sin 3 ) 3W x x x= + = . So 

1 2
1 1
3 3

cos sin3 , cos cos3x xv xe x x v xe x x = − = . It is unlikely that either we humans or Mathematica can produce 

nice antiderivatives for these, but we can express 
1 2

0 0

1 1
3 3

cos sin3 , cos cos3
x x

t tv te t tdt v te t tdt= − =  , so 

formally a particular solution is 
0 0

1 1
3 3

( ) cos3 cos sin 3 sin 3 cos cos3
x x

t t

py x x te t tdt x te t tdt= − +  . 

Had we instead chosen the complex exponentials as a basis we would have similar challenges. 

Notes by Robert Winters 


