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Ordinary Differential Equations – Lecture #4 

Today’s topics include a) a recap of the methods so far for finding particular solutions for linear ODEs; b) the 
introduction of complex numbers and related facts to reformulate some of the methods involving exponential 
and sinusoidal inputs – specifically the Exponential Response Formula (ERF) and “complex replacement,” and 
c) finding homogeneous and particular solutions for 2nd order (and higher) linear ODEs. 

Methods we’ve seen so far: 
Separation of variables 
Integrating factors for solving 1st order linear ODEs 
Linearity – homogeneous and particular solutions for linear ODEs 

Method of undetermined coefficients for finding particular solutions to linear ODEs 
Variation of Parameters for finding particular solutions 

Complex variable methods for working with sinusoidal and exponential inputs (and other applications) 
We often have to solve linear ODEs of the form ( )T f g  where the input is either sinusoidal or exponential or 

both. That is, we might encounter inputs of the form ( ) atg t ke  or ( ) cosg t k t  or ( ) sing t k t  or 

( ) cosatg t ke t  or ( ) sinatg t ke t  or a sum of such inputs for various choices of the constants , ,k a  . 

Somewhere in your mathematical history you most likely learned a few things about complex numbers. We 
initially express complex numbers in the rectangular form z a ib   where 2 1i   . Complex numbers can be 
viewed in vector-like terms in the complex plane as shown in the diagram. We define: 

2 2modulus ( ) mod( )z z z a b     

 1argument ( ) arg ( ) tan b
az z      

We add complex numbers by adding their respective real and 
imaginary parts, in much the same way as vector addition is 
defined. We multiply complex numbers via the distributive law 
and the fact that 2 1i   . For example: 

2(3 2 )( 1 4 ) 3 2 12 8 3 14 8 5 14i i i i i i i              . 

If we note that cosa z   and sinb z   (see picture), then we 

can write (cos sin )z a bi z i     . There’s a simpler way to express this using Euler’s formula. 

The Maclaurin series for te , cos t , and sin t  are: 
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If we formally replace t by it  and use the usual algebra rules, we get that: 

   2 3 4 2 4 3

2! 3! 4! 2! 4! 3!
( ) ( ) ( )1 1 cos sinit it it it t t te it i t t i t                  

That is, cos sinite t i t    [Euler’s Formula] 

A curious corollary of this is Euler’s Identity: 1ie    . 

Using Euler’s Formula, we can express any complex number as (cos sin ) iz a bi z i z e        where z  

is the modulus and   is the argument of the complex number. This polar form allows us to understand the 
multiplication of complex numbers in very geometric terms. That is, if 1

1 1
iz z e   and 2

2 2
iz z e   are two 
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complex numbers, their product is 1 2 1 2( )
1 2 1 2 1 2

i i iz z z z e e z z e     . That is, the modulus of the product is 

given by 1 2 1 2z z z z  and the argument of the product is given by 1 2 1 2 1 2( ) ( ) ( )Arg z z Arg z Arg z     . 

When we multiply complex numbers, we multiply the moduli and we add the arguments. 

As a special case, note that the complex number i  has modulus 1 and argument 2 90   . So 2i  should have 
modulus 1 and argument 180   , and this does indeed correspond to 1 . 

Perhaps more interesting is what this tells us about the “roots of unity”. If we seek solutions to the equation 
1nz   or, equivalently, 1 0nz   , we know that 1z   is a solution, but what are the other solutions? One way 

to approach this might be via factoring, i.e. 1 21 ( 1)( 1) 0n n nz z z z z          and we’d be seeking a 

factorization of 1 2 1 0n nz z z      . If, instead, we think of this geometrically, it should be pretty clear 
that any such root would have to have modulus 1 (so it would lie on the unit circle in the complex plane) and 
it’s argument   would have to be such that 2n k   for some integer k. Any such number must be of the form 

 2i k nz e  , and these consist of n points evenly distributed on the unit circle including 1z  . For example , the 

solutions to 3 1z   would be     2 3 4 31, ,i ie e  , i.e.  3 31 1
2 2 2 21, ,i i    . 

Definition: The complex conjugate of z a ib   is defined to be z a ib  . In the complex plane, z and z  are 

reflections of each other across the real axis. It’s not hard to show that 1 2 1 2z z z z    and 1 2 1 2z z z z . 

When factoring polynomials with real coefficients, the Fundamental Theorem of Algebra and the Quadratic 
Formula guarantee that any complex roots must come in complex conjugate pairs. 

A little more trigonometry 
We can use Euler’s formula to produce a quick derivation of the sum of angle formulas for both the sine and 
cosine functions. We have: 

      ( ) cos sin cos sin cos cos sin sin sin cos cos sini i ie e e i i i                        . 

So, since ( ) cos( ) sin( )ie i          , comparing the real parts and the imaginary parts give that: 

cos( ) cos cos sin sin         and sin( ) sin cos cos sin        . 

Application to integration 
We can actually find the integrals cosate bt dt  and sinate bt dt  simultaneously using complex numbers. 

If we write cos sinibte bt i bt  , then ( ) cos sina ib t at ibt at ate e e e bt ie bt    . 

Integration acts linearly, and if we extend this to complex-valued functions, we have that: 

( ) cos sina ib t at ate dt e bt dt i e bt dt     . 

Exponential functions are easy to integrate (even when we extend to complex-valued exponential functions), 
and we calculate that ( ) ( )1a ib t a ib t

a ibe dt e 
 . We can proceed several ways here, but for the purpose of 

calculating these integrals, let’s get rid of the complex denominator by multiplying both numerator and 

denominator by its complex conjugate (and use the fact that 
22 2( )( )zz a ib a ib a b z      ). We get: 
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If we compare this with ( ) cos sina ib t at ate dt e bt dt i e bt dt     , we see that: 

2 2
1cos ( cos sin )at at

a be bt dt e a bt b bt   and 2 2
1sin ( cos sin )at at

a be bt dt e b bt a bt   . 

Previously we might have calculated such integrals using repeated application of integration by parts where we 
would have to use algebra to solve for the desired integral. Alternatively, we can use the above results. For 
example:  

 2 21
13cos3 2cos3 3sin 3t te t dt e t t C    

(First order) Linear response to exponential, sinusoidal inputs 

Motivating example: Heating/cooling can be modeled by the ODE ( )dx
dt k y x   where ( )x t  measures the 

temperature inside some box, room, or other space, and where the outside temperature varies according to some 

prescribed function ( )y t , with 0k   the coupling constant. This can also be written as dx
dt kx ky  , so this 

can be thought of as a 1st order linear inhomogeneous differential equation with input ( ) ( )g t k y t . 

Imagine a situation where the initial inside temperature is 0(0)x x  and where the outside temperature varies 

sinusoidally according to ( ) cosy t A t . Here   is the frequency and the period is 2T 
 . 

What do we expect will happen? 
(a) The temperature variation (amplitude) inside will likely not be as great as the variation outside. 

(b) Any initial temperature inside will be transient – as the system eventually takes over. 

(c) The change in temperature inside will likely lag or be out of phase with the outside temperature (wine cellar 
effect) 

(d) If the frequency   is very small (slow change), we might expect the inside temperature to “keep up” with 
the outside temperature. 

(e) If   is very large (rapid oscillation of temperature), we expect that the inside temperature will have very 
small variation around the average temperature (which is 0 in this case). 

To solve the given linear differential equation, we start by finding the homogeneous solutions. We rewrite 
0dx

dt kx   as dx
dt kx   and get ( ) kt

hx t ce . For a particular solution, we could use undetermined coefficients 

and a solution of the form ( ) cos sinpx t a t b t   , but based on our expectations we might alternatively seek 

a solution of the form ( ) cos( )px t gA t   , where g is the ratio of response amplitude to input amplitude A. 

[This is equivalent to a solution of the form ( ) cos sinpx t a t b t   .] This ratio g is called the gain. We then 

substitute ( ) cos( )px t gA t    into the original inhomogeneous ODE to determine g and  . 

We calculate sin( ) cos( ) cosdx
dt kx g A t kgA t kA t            . To facilitate the determination of the 

unknowns g and  , we rewrite cos cos( ) cos cos( ) sin sin( )kA t kA t kA t kA t                . So 

sin( ) cos( ) cos cos( ) sin sin( )dx
dt kx g A t kgA t kA t kA t                    . Equating coefficients 

gives sin sing A kA g k        , and cos coskgA kA g    . So tan k   
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This is most easily pictured with a right triangle as shown. 

From this we see that tan k
   and 

2 2

k
k

g


 . 

So, the particular solution is ( ) cos( )px t gA t    with these values for the 

gain g and the phase angle  , and the general solution is therefore 

( ) cos( )ktx t ce gA t    . Does this match with our expectations? 

k 





2 2k 

Notes: (1) When the frequency   is small (slow change), the gain g will be close to 1 100% , i.e. the inside 
temperature will vary almost as much as the outside temperature, and the lag will be close to 0 
(temperature inside will “keep up” with the outside temperature change). 

(2) When the frequency   is large (rapid change), the gain g will be close to 0, so the inside 
temperature will have very small variation around the average temperature of 0. It will also be the 
case that the lag will approach 90°, but this will likely go unnoticed due to the minimal temperature 
variation. 

(3) The initial temperature inside will determine the constant c in the exponentially decaying (transient) 
term, and this term will become negligible over time. 

Another approach to finding a solution is to introduce complex-valued functions. For this we’ll actually be 
solving two differential equations simultaneously. In addition to the ODE cosdx

dt kx kA t  , let’s also 

consider the ODE sindy
dt ky kA t  . If we let ( ) ( ) ( )z t x t i y t  , then dydz dx

dt dt dti  , so we’ll have 

        (cos sin ) i tdy dydz dx dx
dt dt dt dt dtkz i k x iy kx i ky kA t i t kAe              , using Euler’s formula. 

This gives the complex ODE i tdz
dt kz kAe    where now the right-hand-side is now an exponential function. 

This approach is known as complex replacement. 

We will soon develop a handy tool called the Exponential Response Formula (ERF) for handling similar 
linear ODE’s of any order, but for now we can solve this directly using undetermined coefficients. The 
homogeneous solutions will again be of the form ( ) kt

hz t ce , but we must understand the constant c to be an 

arbitrary complex constant, i.e. 1 2c c ic  . The homogeneous solutions may this be written as 

1 2( ) kt kt
hz t c e ic e   . Since 0k   this will decay, so we think of this as a transient. 

For a particular solution (which will actually represent the steady-state solution), we try ( ) i t
pz t GAe   where 

G is a complex constant called the complex gain. Differentiation and substitution into the ODE gives 

( )i t i t i t i tdz
dt kz GAi e kGAe GA k i e kAe          , so we must have ( )G k i k   or k

k iG  . If we refer 

to the triangle from before and write in polar form 2 2 ik i k e     , we’ll have 
2 2 i

k
k e

G 
 , and the 

particular solution will be 
2 22 2

( )( ) i t i t
p i

kA kA
kk e

z t e e  
 




  . Note that 

2 22 2 i
k k

kk e
G g  

    is the 

gain, and we can write 
2 2 2 2 2 2

( )( ) cos( ) sin( )i t
p

kA kA kA
k k k

z t e t i t 

  
   

  
             

. 

So we have 
2 2 2 21 2( ) cos( ) sin( ) ( ) ( )kt ktkA kA

k k
z t c e t i c e t x t i y t

 
    

 
                

 as the general 

solution. This individually gives solutions 
2 21( ) cos( )kt kA

k
x t c e t


 


    to the first ODE and 

2 22( ) sin( )kt kA
k

y t c e t


 


    to the second ODE, and the solution to the first ODE is consistent with what 
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we derived previously. Here 
2 2
k

k
g


  is the gain and tan k

   determines the lag. This method involving 

complex solutions is especially appropriate when considering gain and lag in the solution of higher order linear 
ODEs when the inhomogeneity is of the form ( ) cosatq t ke t  or ( ) sinatq t ke t . 

Engineers often plot the gain and lag as functions of the input frequency  . The plots of  log ( )g   vs. log( )  

and ( )   vs. log( )  are known as Bode plots. They measure the response to a given signal. 

Higher order linear ordinary differential equations with constant coefficients 
In general, an nth order linear ordinary differential equation is a differential equation of the form 

1

11 1 0( ) ( ) ( ) ( ) ( )
n n

n nn
d x d x dx
dt dtdtp t p t p t x t q t



     , where 1 1 0( ), , ( ), ( ), ( )np t p t p t q t   are functions of the 

independent variable t. We solve this by (1) finding an expression for all homogeneous solutions ( )hx t , 

(2) using some productive method to find one particular solution ( )px t  to the inhomogeneous equation, and 

then (3) adding these to get the general solution ( ) ( ) ( )h px t x t x t  . If we are solving an initial value problem, 

we would then use the initial conditions to determine any unknown constants in the expression for ( )x t . 

One case of special interest is the case where all of the coefficient functions ( )i ip t a  are constant. In this case 

the differential equation simplifies to 
1

11 1 0 ( ) ( )
n n

n nn
d x d x dx
dt dtdta a a x t q t



     . If we write d
dtD  , 

2

2

2 d
dtD D D  , etc. and I Identity , we can express this ODE as 1

1 1 0 ( ) ( )n n
nD a D a D a I x t q t
       . 

Note that this linear operator 1
1 1 0

n n
nT D a D a D a I
      has a very polynomial-like quality. It has a 

corresponding characteristic polynomial 1
1 1 0( ) n n

np s s a s a s a
      that permits us to formally express 

1
1 1 0 ( )n n

nT D a D a D a I p D
      . We will often write such an ODE in the form  ( ) ( ) ( )p D x t q t . 

If we seek exponential solutions of the form rte  for the homogeneous equation 
1

11 1 0 ( ) 0
n n

n nn
d x d x dx
dt dtdta a a x t



     , we calculate rtdx
dt re , 

2

2

2 rtd x
dt r e , …, 

n

n

n rtd x
dt r e , and substitution 

gives 1 2 1 2
1 2 1 0 1 2 1 0( ) ( ) 0n rt n rt rt rt rt n n rt rt

n nr e a r e a r e a re a e r a r a r a r a e p r e 
               . 

This yields a solution only when the characteristic polynomial 1 2
1 2 1 0( ) 0n n

np r r a r a r a r a
       . 

So for any root ir  of the characteristic polynomial, ir te  will be a homogeneous solution. The Fundamental 

Theorem of Algebra guarantees (in principle) that we can factor ( )p r  into a product of linear factors and 
irreducible quadratic factors. As long as there are no repeated roots, and since we can use the quadratic 
formula to produce a complex conjugate pair of roots for each irreducible quadratic factor, we will be able to 
produce n distinct roots and a corresponding set of exponential solutions  1 2, , , nr tr t r te e e . In the case of 

repeated roots, this will yield fewer solutions of this form. 

By linearity, any function of the form 1 2
1 2( ) nr tr t r t

h nx t c e c e c e     will solve the homogeneous equation. 

Question: Does this yield all solutions? 

A second order example should explain why the answer is YES. Suppose we wish to solve the ODE 
3 2 0x x x    . Any exponential solution rte  would give 2( ) 3 2 ( 2)( 1) 0p r r r r r       . Its characteristic 

roots are 1 2r    and 2 1r   , and these yield solutions 2te  and te . Why are ALL homogeneous solutions of 

the form 2
1 2( ) t tx t c e c e   ? 
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If we write the differential equation in terms of linear differential operators, we might write this as 

   2 ( ) 0D I D I x t   , i.e. as a composition of two 1st order linear differential operators. [Feel free to check 

this.] If we let   ( ) ( )D I x t y t  , this gives two 1st order equations: ( )dx
dt x y t   and 2 0dy

dt y  . The latter 

equation is easily solved to give all solutions 2
1( ) ty t c e  where 1c  is a constant. We then substitute this into the 

former equation to get 2
1

tdx
dt x c e  . This is an inhomogeneous equation with integrating factor te . 

Multiplication by this gives 1( )t t t tdx d
dt dte e x e x c e   , so 1 2( )t te x t c e c   . Finally, multiplying both sides 

by te  gives 2
1 2( ) t tx t c e c e    . Except for the sign switch on the first arbitrary constant, this demonstrates 

that all homogeneous solutions are of the form 2
1 2( ) t tx t c e c e    for some choices of the constants 1c  and 2c , 

i.e. all linear combinations of the two basic exponential solutions that we found. 

It should be relatively clear that this approach can be generalized to the nth order case as long as the 
characteristic polynomial can be factored into distinct linear factors. (We write the differential equation as a 
composition of n 1st order linear operators and iterate the above process.) This even works in the case of 
complex roots as long as they are not repeated. The more difficult case is when there are repeated roots of the 
characteristic polynomial, but, as we’ll soon see, this case also yields a relatively simple solution. 

In Linear Algebra terms, we say that  1 2, , , nr tr t r te e e  span all solutions in the above case. It is a valid question 

to ask whether all of these solutions are necessary, i.e. if we could span all solutions with a subset of these 
exponential solutions. In Linear Algebra terms, we would ask: Are these solutions are linearly independent? 
In other words, is it possible to express any of these solutions as a linear combination of the other solutions? 

Definition: A set of functions  1 2, , , nf f f  is called linearly independent if the equation 

1 1 2 2( ) ( ) ( ) 0n nc f t c f t c f t     (for all t) implies that 1 2 0nc c c    . 

When seeking solutions to an nth order linear differential equation of the form  ( ) ( ) ( )p D x t q t , we 

actually want more than this. We want to guarantee a unique solution to any well-posed initial value problem 
with initial conditions given for the function and its derivatives up to order ( 1)n  , i.e. 0 0( )x t x , 0 0( )x t x  , … 

( 1) ( 1)
0 0( )n nx t x  . If ( )px t  is one particular solution and if we can express all homogeneous solutions as 

1 1 2 2( ) ( ) ( ) ( )h n nx t c f t c f t c f t    ,then we would have the general solution 

1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )h p n n px t x t x t c f t c f t c f t x t        and we would then also want that: 

1 1 0 2 2 0 0 0 00 0 0

0 0 0 1 1 0 2 2 0 0 0 0

( 1) ( 1) ( 1) ( 1) (
0 0 0 1 1 0 2 2

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n ph p

h p n n p

n n n n n
h p

c f t c f t c f t x t x tx t x t x t

x t x t x t c f t c f t c f t x t x t

x t x t x t c f t c f
    

      
            
 

    


    

 
1) ( 1) ( 1) ( 1)

0 0 0 0( ) ( ) ( ) ( )n n n
n n pt c f t x t x t  

 
 
 
 
 
     

 

To guarantee a unique solution to the initial value problem, we would have to produce unique values for 

 1 2, , , nc c c . We can rewrite the above system of linear equations in the form: 

1 0 1 2 0 2 0 0 0

1 0 1 2 0 2 0 0 0

( 1) ( 1) ( 1) ( 1) ( 1)
1 0 1 2 0 2 0 0 0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

n n p

n n p

n n n n n
n n p

f t c f t c f t c x t x t

f t c f t c f t c x t x t

f t c f t c f t c x t x t    

     
        
 
 
      



 




 



 7 revised September 30, 2021  

In terms of matrices, we can express these as: 

0 01 0 2 0 0 1 1

0 02 21 0 2 0 0

( 1) ( 1)( 1) ( 1) ( 1)
0 01 0 2 0 0

( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( ) unique 

( ) ( )( ) ( ) ( )

pn

pn

n nn n n
n npn

x t x tf t f t f t c c
x t x tc cf t f t f t

c cx t x tf t f t f t    

      
                
      
            


 

    


 

Two fundamental results in linear algebra say that this will only be the case when the above matrix is invertible, 
and this will only be the case when its determinant is never equal to 0. 

Definition: 

1 2 1 2

1 2 1 2

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1 2 1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )det ( )

( ) ( ) ( ) ( ) ( ) ( )

n n

n n

n n n n n n
n n

f t f t f t f t f t f t

f t f t f t f t f t f t W t

f t f t f t f t f t f t     

 
         
 
  

 
 

       
 

 

is called the Wronskian determinant. 

Corollary: If the Wronskian determinant is never 0, the given ODE will yield unique solutions in the form 

1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )h p n n px t x t x t c f t c f t c f t x t        for any given initial conditions given for the function 

and its derivatives up to order ( 1)n  . 

Though not routinely used to ensure a linearly independent set of solutions, (there are arguments with less 
tedious calculations that can be made), the Wronskian is one tool for ensuring that a set of homogeneous 
solutions to a linear ODE is valid for uniquely expressing all solutions to a given initial value problem. 

Example: Solve the initial value problem 5 4 3sin 2x x x t     with initial conditions (0) 3x  , (0) 2x  . 

Solution: We first solve the homogeneous equation 5 4 0x x x    . Its characteristic polynomial is 
2( ) 5 4 ( 4)( 1)p r r r r r       and this yields two distinct roots 4r    and 1r   . The corresponding 

exponential solutions are 4te  and te . We can check that these are, in fact, linearly independent by calculating 

the Wronskian determinant: 
4

5 5 5
4 4 3 0

4

t t
t t t

t t

e e
e e e

e e

 
  

      
 

. From our previous arguments, we know 

that all homogeneous solutions are of the form 4
1 2( ) t t

hx t c e c e   . 

Next, we seek a particular solution. There are at least two good ways to do this. We could do “complex 
replacement” and simultaneously solve 5 4 3cos 2x x x t     and 5 4 3sin 2y y y t     by solving the 

inhomogeneous equation 25 4 3 itz z z e     and then taking the “imaginary” part. It is perhaps easier to solve 
using undetermined coefficients. 

If we let cos 2 sin 2x a t b t  , we get 
cos 2 sin 2

2 cos 2 2 sin 2 5 4 (10 )cos 2 ( 10 )sin 2
4 cos 2 4 sin 2

x a t b t
x b t a t x x x b t a t
x a t b t

           
    

  


 

We must therefore have 10 0b   and 10 3a  , so 3
10a    and 0b  . So 3

10( ) cos 2px t t  . 

The general solution is therefore 4
1 2

3
10( ) cos 2t tx t c e c e t    , and we have 4

1 2
3
5( ) 4 cos 2t tx t c e c e t     . 

If we substitute the initial conditions (0) 3x  , (0) 2x  , we have: 
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533 33 33
1 2 1 2 301 110 10 10

76
2 21 2 1 2 15

(0) 3 1 1
4 1(0) 4 2 4 2 2

x c c c c c c
c cx c c c c

                                                  . 

We don’t have to use matrices to solve these two equations, but it’s worth noting that the non-vanishing of the 
Wronskian determinant is precisely why there is a unique solution for these constants. The unique solution to 

this initial value problem is therefore 453 76
30 15

3
10( ) cos 2t tx t e e t     . 

Note: In this example, the exponential terms are transients (they decay quickly) and the “steady state” solution 
is the particular solution that we calculated. 

Characteristic polynomial and the Exponential Response Formula 
Given the operator 1

1 1 0
n n

nD a D a D a I
     and the fact that [ ]rt rtD e re , 2 2[ ]rt rtD e r e , etc., it follows 

that 1 1 1
1 1 0 1 1 0 1 1 0( )n n rt n rt n rt rt rt n n rt

n n nD a D a D a I e r e a r e a re a e r a r a r a e  
                    . 

We have already defined 1
1 1 0( ) n n

np r r a r a r a
      as the characteristic polynomial. We can also 

formally write 1
1 1 0( ) n n

np D D a D a D a I
     , and write simply  ( ) ( )rt rtp D e p r e . In the case of a 

homogeneous system, this means we would have  ( ) ( ) 0rt rtp D e p r e   for all t, and this is only possible 

when ( ) 0p r  , i.e. when r is a root of the characteristic polynomial (called a characteristic root). According to 
the Fundamental Theorem of Algebra, we should, in principle, be able to fact ( )p r  into a product of linear and 
irreducible quadratic factors and produce n roots, possible with multiplicity, and possibly including complex 
conjugate pairs. 

If the ODE is not homogeneous but is in the simple form  ( ) ( ) rtp D x t ae  for some (possibly complex) 

numbers a and r, we can use the method of undetermined coefficients to produce a particular solution. That is, if 
we let ( ) rtx t Ae , this will be a particular solution if: 

  1 1
1 1 0 1 1 0( ) ( ) ( )rt n n rt n n rt rt rt

n np D Ae D a D a D a I Ae A r a r a r a e Ap r e ae 
                 

Cancellation of the exponential factors and division by ( )p r  gives ( )
a

p rA  , so ( )
( )

rt

p
aex t
p r

 . 

Exponential Response Formula (ERF): Suppose the ODE  ( ) ( ) rtp D x t ae  has characteristic polynomial 

( )p s  and that r is not a characteristic root. Then a particular solution will be ( )
( )

rt

p
aex t
p r

 . 

This result can make easy work of solving constant coefficient linear ODE’s in this form. 

Example: Solve the ODE 33 2 5 tx x x e     with (0) 2x  , (0) 3x  . 

Solution: The characteristic polynomial is 2( ) 3 2 ( 2)( 1)p s s s s s      . This gives roots 1 2s   , 2 1s   , 

and the homogeneous solutions are of the form 2
1 2( ) t t

hx t c e c e   . If we use the Exponential Response 

Formula, we calculate (3) 9 9 2 20p     , so a particular solution is 
3 3

31
4

5 5( )
(3) 20

t t
t

p
e ex t e

p
   . The general 

solution is therefore 2 3
1 2

1
4( ) t t tx t c e c e e    . Differentiation gives 2 3

1 2
3
4( ) 2 t t tx t c e c e e     . Evaluating 

these at 0t   gives 1 2
1 2

1 2

1
4 23

43
4

(0) 2
4,

(0) 2 3

x c c
c c

x c c

          
      

, so 2 323 1
4 4( ) 4 t t tx t e e e     . 
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Example: Find the general solution of the ODE 3 2 2 cos3tx x x e t    . 
Solution: The characteristic polynomial is 2( ) 3 2 ( 2)( 1)p s s s s s      . This gives roots 1 2s   , 2 1s   , 

and the homogeneous solutions are of the form 2
1 2( ) t t

hx t c e c e   . To produce a particular solution, we use 

complex replacement (and then recover the real part). Letting ( ) ( ) ( )z t x t i y t  , we’ll simultaneously solve the 

ODEs 3 2 2 cos3tx x x e t     and 3 2 2 sin 3ty y y e t    . Using Euler’s formula, we’ll solve the ODE 
3 (1 3 )3 2 2 (cos3 sin 3 ) 2 2t t it i tz z z e t i t e e e        . Using the Exponential Response Formula, we calculate 

2(1 3 ) (1 3 ) 3(1 3 ) 2 1 6 9 3 9 2 3 15p i i i i i i               , so a particular solution is 
(1 3 )2( )

3 15

i t

p
ez t

i



   . 

We could do one of two things at this point. First, we could multiply the numerator and denominator by the 
complex conjugate 3 15i   and also use Euler’s formula to express everything in terms of sines and cosines. 

This would give: 

 
(1 3 )

1 1
117 117

2( ) ( 3 15 )(cos3 sin 3 ) ( 3cos3 15sin 3 ) ( 15cos3 3sin 3 )
3 15

i t
t t

p
ez t e i t i t e t t i t t

i



            . 

We would then recover the real part as 1
117( ) ( 3cos3 15sin 3 )t

px t e t t   . 

The second option is particularly well suited to the Exponential Response Formula. If we express the 

denominator as a complex number, i.e. 3 15 234 ii e     where  1 115
3tan tan ( 5) 1.768  
    radians (in 

the 3rd quadrant), we can then write  
(1 3 )

(3 )2 2
234 234

2( ) cos(3 ) sin(3 )
234

i t
t i t t

p i

ez t e e e t i t
e




 


       and 

recover the real part to give 2
234

( ) cos(3 )t
px t e t   . We can then easily see that the gain is 1

234
, the lag is 

1tan ( 5) 1.768     and, by writing 2 1
3234

( ) cos3( )t
px t e t   , the time lag is 1

3 0.589  . 

The general solution may then be expressed as 2
1 2

2 1
3234

( ) cos3( )t t tx t c e c e e t      . 

Superposition of (particular) solutions 
In the case where a linear differential equation has an input expressed as the sum of two or more functions, 
linearity allows us to find solutions for each input individually and then sum these solutions to produce a 
solution for the original ODE. That is, if we have a linear ODE of the form 1 2( )T f g g   and if can 

individually find functions 1f  and 2f  such that 1 1( )T f g  and 2 2( )T f g , then since 

1 2 1 2 1 2( ) ( ) ( )T f f T f T f g g     , it follows that 1 2f f  is a solution to 1 2( )T f g g  . In fact, the same 

reason shows that if 1 1( )T f g  and 2 2( )T f g , then 1 1 2 2c f c f  will be a solution of 1 1 2 2( )T f c g c g  . 

Example: Find a particular solution to the ODE 25 4 3sin 2x x x t t      

Solution: We have already solved 5 4 3sin 2x x x t     to get a solution 1
3

10( ) cos 2x t t  . We can solve 
25 4x x x t     using undetermined coefficients and a solution of the form 2( )x t at bt c   . This gives 

2 2 22 5(2 ) 4( ) 4 (10 4 ) (2 5 4 )a at b at bt c at a b t a b c t            , so 

1
4

5
8

21
32

4 1
10 4 0

2 5 4 0

aa
a b b

a b c c

            
         

. So 

2
2

21
32

51
4 8( )x t t t   . Therefore the desired solution is 2

1 2
21
32

3 51
10 4 8( ) ( ) ( ) cos 2x t x t x t t t t       . 

Notes by Robert Winters 


