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Ordinary Differential Equations – Lecture #2 

Definition: A differential equation of the form 
1

11 1 0( ) ( ) ( ) ( ) ( )
n n

n nn
d x d x dx
dt dtdt

p t p t p t x t q t
−

−−+ + + + = , where 

1 1 0( ), , ( ), ( ), ( )np t p t p t q t−  are functions of the independent variable t, is called an nth order linear ordinary 

differential equation. In the case where ( ) 0q t =  for all t, we call the equation homogeneous. Otherwise we 

call it inhomogeneous. 

We are initially concerned with 1st order linear ODEs of the form ( ) ( )dx
dt

p t x q t+ =  (or ( ) ( )
dy

dx
p x y q x+ = ). 

Integrating factors 

Definition: An integrating factor for a given first order ODE is a function ( )v t  such that when both sides of 

the ODE are multiplied by ( )v t  the resulting differential equation consists of known derivatives on both sides of 

the equation. The ODE can then be solved by integrating both sides and then solving for the dependent variable 

in terms of the independent variable. 

It’s always possible to formally solve ( ) ( )dx
dt

p t x q t+ =  via an integrating factor. We seek ( )v t  such that we can 

integrate both sides of the equation ( ) ( ) ( ) ( )dx
dt

v t p t x v t q t + =  . The left-hand-side is dx
dt

v pvx+ , and if  we note 

that ( )d dx dv
dt dt dt

vx v x= + , we can then look for ( )v t  such that dx
dt

v dx
dt

pvx v+ = dv
dt

x+  or simply 

dv dv
dt dt

pvx x pv=  = . This is separable and can be rewritten as ( )dv dv
v vpdt p t dt=  =  . This gives 

ln ( ) ( )v t p t dt C= + . Since we’re just looking for one integrating factor, we can arbitrarily take 0C =  and 

integrate to get
( )

( )
p t dt

v t e=  as an integrating factor. This approach, of course, works best if you can find an 

antiderivative of the function ( )p t . 

We then have the new ODE ( )( ) ( ) ( ) ( )d
dt

v t x t v t q t= , so integration gives ( ) ( ) ( ) ( )v t x t v t q t dt C= + . We can 

then solve for 1
( )

( ) ( ) ( )
v t

x t v t q t dt C = +
  . If we insert the integrating factor ( )

pdt

v t e= , we can write this 

solution as ( ) ( )
pdt pdt

x t e q t e dt C
−   = +

   . It may not be pretty, but it works if you can actually do the 

integrals. You may find it simpler to just multiply both sides of the original ODE by the integrating factor 

( )
pdt

v t e=  and proceed with the integrations. 

Example: Solve the initial value problem 5 3, (0) 4dx
dt

x x= + = . 

Solution via separation of variables: Some quick algebra enables us to rearrange this ODE as 
5 3

dx
x

dt
+

=  and 

multiplying both sides by 5 and integrating gives 55
5 3

5 ln 5 3 5 5 3 tdx
x

dt x t C x Ae
+

=  + = +  + =  . 

Substituting the initial condition gives 23 A= , so 
5 51

5
5 3 23 ( ) (23 3)t tx e x t e+ =  = − . 

Solution via integrating factor: We start by first putting the ODE in the correct form, i.e. 5 3dx
dt

x− = . We then 

recognize that ( ) 5p t = − , so the integrating factor is 
5 5( )

dt tv t e e
− −= = . Multiplying both sides of the ODE by 

this gives: 5 5 55 3t t tdx
dt

e e x e− − −− =  or ( )5 53t td
dt

e x e− −= , so 5 5 53
5

3t t te x e dt e C− − −= = − + . We then solve for 
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53
5

( ) tx t Ce= − + . Inserting the initial condition gives 3
5

(0) 4x C= = − + , so 23
5

C =  and 53 23
5 5

( ) tx t e= − + . So 

51
5

( ) (23 3)tx t e= − . 

Considering the relatively simple expression for this solution, you might think that there could be a simpler 

approach. There is, but it requires us to start our way down an important path that will lead to some of the most 

important methods and perspectives in this entire course. This is the Linearity path. This method will prove to 

be the method that most easily generalizes to higher order linear ODEs. The method borrows some ideas from 

linear algebra and will require some introduction, especially the concept of a linear operator. 

Linearity 

In the context of functions of one variable, linearity is an often abused word. In fact, a function of the form 

( )f x mx b= +  is NOT a linear function. It is more appropriately called a 1st order affine function. Linearity is a 

property most simply characterized by the fact that linear functions preserve scaling and adding. The linear 

functions of one variable consist only of those of the form ( )f x mx= . Note that 

( ) ( ) ( ) ( )f ax m ax a mx af x= = = , i.e. it preserves scaling, and ( ) ( ) ( ) ( )f x y m x y mx my f x f y+ = + = + = + , i.e. 

it preserves addition. 

Definition: Formally we say that a function is linear if for all inputs 1 2,x x  and constants 1 2,c c  we must have 

1 1 2 2 1 1 2 2( ) ( ) ( )f c x c x c f x c f x+ = + . 

In the case of functions : n mT →R R , linearity means that the scaling of vectors and the addition of vectors is 

preserved via a linear transformation. All such transformations are of the form ( )T =x Ax  where A is an m n  

matrix with constant entries. Linearity then translates into the matrix algebra facts that ( ) ( )k k=A x Ax  and 

( )+ = +A x y Ax Ay , or (combined) ( )   + = +A x y Ax Ay  for all scalars ,   and all vectors ,x y . 

Our current situation involves working with functions in the same way that we looked at vectors in n
R . Just as 

we can scale and add vectors, we can also scale and add functions. A transformation that acts on functions in a 

manner analogous to the way matrices act on vectors is known as a linear (differential) operator. The basic 

examples are differentiation and multiplication by a fixed function. We can then compose these basic operators 

and add them to form more complicated operators. 

There are many spaces of functions in which we can seek solutions to differential equations. Perhaps the most 

common such space is the space of functions that are differentiable to all orders. 

Multiplication by a fixed function is a linear operator. 

Suppose we have a fixed function ( )p t  and we define a transformation of functions by  ( ) ( ) ( ) ( )T f t p t f t= . 

We can easily see that for any constant c,    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T cf t p t cf t cp t f t c T f t= = = , so ( ) ( )T cf cT f= , 

i.e. T preserves scaling. Similarly, if 1f  and 2f  are two functions, then 

     1 2 1 2 1 2 1 2 1 2( ) ( ) ( )( )( ) ( )( ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T f f t p t f f t p t f t f t p t f t p t f t T f t T f t+ = + = + = + = + . 

This is really just the distributive law, but the result is that formally 1 2 1 2( ) ( ) ( )T f f T f T f+ = + , i.e. T preserves 

addition of functions. Together, this shows that T is a linear operator. 

Differentiation of functions is a linear operator. 

Let D be the transformation defined by ( )D f f = , i.e. d
dt

D = . That is,  ( ) ( ) ( )
df

dt
D f t f t= = . The old 

refrains you learned in first semester calculus are precisely what makes this a linear operator: (a) The derivative 

of a constant times a function is the constant times the derivative of the function; and (b) The derivative of a 

sum is the sum of the derivatives. In symbolic terms, ( )D cf cf =  and ( )D f g f g + = + . We can put these 

together as a single linearity rule: 1 1 2 2 1 1 2 2( ) ( ) ( )D c f c f c D f c D f+ = + . 
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The composition of linear operators (or any linear function), where defined, is also linear. 

If  S and T are both linear operators and if the composition S T  is defined, then using the linearity properties 

of both we have that for all scalars 1 2,c c  and functions 1 2,f f , 

( )

( ) ( )

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

( ) ( ( )) ( ( ) ( ))

( ( ) ( ( )) ( ) ( )

S T c f c f S T c f c f S c T f c T f

c S T f c S T f c S T f c S T f

+ = + = +

= + = +
 

For example, since differentiation acts linearly, we can compose this with itself to get the 2nd derivative and 

this also acts linearly. The same holds for higher order derivatives. 

The sum of two linear operators is also a linear operator. 

The sum of two operators is defined in the same way we add any functions, i.e. ( )( ) ( ) ( )S T f S f T f+ = + . 

If  S and T are both linear operators, then we’ll have that for all scalars 1 2,c c  and functions 1 2,f f , 

 

       
1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

1 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

S T c f c f S c f c f T c f c f c S f c S f c T f c T f

c S f c T f c S f c T f c S f T f c S f T f c S T f c S T f

+ + = + + + = + + +

= + + + = + + + = + + +
 

If we put together the facts that composition of linear operators and the addition of linear operators yields 

another linear operator, we see that the expression 
1

11 1 0( ) ( ) ( ) ( )
n n

n nn
d x d x dx
dt dtdt

p t p t p t x t
−

−−+ + + +  for functions 

1 1 0( ), , ( ), ( )np t p t p t−  represents a linear operator acting on an undetermined function ( )x t . If we write this 

operator as 
1

11 1 0( ( )) ( ) ( ) ( ) ( )
n n

n nn
d x d x dx
dt dtdt

T x t p t p t p t x t
−

−−= + + + + , we then know by linearity that 

1 2 1 2( ( ) ( )) ( ( )) ( ( ))T x t x t T x t T x t+ = +  and ( ( )) ( ( ))T c x t cT x t=  and, more generally, 

1 1 2 2 1 1 2 2( ( ) ( )) ( ( )) ( ( ))T c x t c x t c T x t c T x t+ = + . 

Now that we have paved the road to Linearity, we can apply this idea to solving linear differential equations. 

Linearity method using homogeneous solutions and particular solutions 

Suppose we have an inhomogeneous linear ODE of the form ( )T f g=  where T  is an nth order linear 

differential operator. We can produce ALL solutions to ( )T f g=  as follows: 

(1) First solve the homogeneous equation ( ) 0T f =  to find a general expression for all such solutions. We call 

these the homogeneous solutions hf . It will generally involve n arbitrary constants. 

(2) Find a single particular solution to the inhomogeneous equation ( )T f g= . Call this particular solution 
pf . 

(3) The general solution to ( )T f g=  is then h pf f f= + . 

(4) Use the initial condition(s) to determine the unique solution to the given initial value problem (IVP). 

Proof of the method: We know that ( )pT f g= , so suppose f  is any other solution to ( )T f g= . Then, by 

linearity, ( ) ( ) ( ) 0p pT f f T f T f g g− = − = − = . So 
pf f−  solves the homogeneous equation and must be 

included among all homogeneous solution, i.e. 
p hf f f− = . Therefore 

h pf f f= + . 

This fact is really the same thing that we see when solving a consistent, inhomogeneous system of linear 

algebraic equations. In matrix form, if the system is represented as =Ax b  where A is an m n  matrix, and if 

hx  represents all solutions to the homogeneous equation =Ax 0  and 
px  is a single solution to =Ax b , then all 

solutions to =Ax b  will be of the form 
h p= +x x x . Typically, these homogeneous solutions are lines, planes or 

higher-dimensional analogues (subspaces) passing through the origin. This just says that the inhomogeneous 

solutions are parallel translates of these subspaces. 

So, let’s solve the problem 5 3, (0) 4dx
dt

x x= + =  using linearity methods: 

We start by wring the ODE in the form 5 3dx
dt

x− = , a first order, linear, inhomogeneous ODE. 
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(1) The homogeneous equation is just 5 0dx
dt

x− =  or 5dx
dt

x= . We’ve already solved problems like this (it’s 

separable) to get all solutions in the form 5( ) t

hx t Ae= . 

(2) We can find an inhomogeneous solution by educated guessing (formally called the method of 

undetermined coefficients). Try a solution of the form x at b= + . Calculate dx
dt

a=  and substitute into the 

ODE to get 5 5( ) ( 5 ) 5 3dx
dt

x a at b a b at− = − + = − − =  (for all t). We can solve this by choosing 5 0a b− =  

and 5 0a− = . So 0a =  and 5 3b− = , so 3
5

b = −  and a particular solution is therefore 3
5

( )px t = −  which 

we could have guessed directly. 

(3) By linearity, all solutions are therefore of the form 5 3
5

( ) ( ) ( ) t

h px t x t x t Ae= + = − . This agrees with our 

previous result. 

(4) Substitution of the initial condition then gives 
51

5
( ) (23 3)tx t e= −  as before. 

Analogy with solving inhomogeneous systems of linear equations 

Suppose we want to solve a consistent, inhomogeneous system of linear algebraic equations. In matrix form, if 

the system is represented as =Ax b  where A is an m n  matrix, and if hx  represents all solutions to the 

homogeneous equation =Ax 0  and 
px  is a single solution to =Ax b , then all solutions to =Ax b  will be of 

the form 
h p= +x x x . Typically, these homogeneous solutions are lines, planes or higher-dimensional analogues 

(subspaces) passing through the origin. This just says that the inhomogeneous solutions are parallel translates of 

these subspaces. 

Example: Find all solutions of the linear system 
2 3

2 5 2
3 7 5

x z
x y z
x y z

− =  
− − = 
− − =  

. We can solve this most easily by row 

reduction to get an equivalent system from which we can readily express all solutions. Specifically, we have: 

1 0 2 3 1 0 2 3 1 0 2 3 2 3 3 2 3 2

2 1 5 2 0 1 1 4 0 1 1 4 4 4 4 1

3 1 7 5 0 1 1 4 0 0 0 0  arbitrary 0 1

x z x t x

y z y t y t

z z t z

− − − − = = +               
              − − → →  + =  = −  = + −   

              − − =               

 

If we were to solve the corresponding homogeneous linear system 

2 0

2 5 0

3 7 0

x z

x y z

x y z

− = 
 

− − = 
 − − = 

, the process is similar: 

1 0 2 0 1 0 2 0 1 0 2 0 2 0 2 2

2 1 5 0 0 1 1 0 0 1 1 0 0 1

3 1 7 0 0 1 1 0 0 0 0 0  arbitrary 1

x z x t x

y z y t y t

z z t z

− − − − = =             
            − − → →  + =  =  = −   

            − − =             

 

The only difference is that the inhomogeneous solutions differ from the homogeneous solutions by a particular 

solution (which corresponds to 0t = ). 

Back to solving differential equations 

Example #1: Solve the initial value problem 2 ; (0) 5
dy

dx
xy x y+ = = . 

(1) First, we solve the homogeneous equation 0
dy

dx
xy+ = . This will always be separable. We get 

dy

dx
xy= −  and 

dy
y xdx= − , so 

21
221

2
ln

x

h

dy
y xdx y x C y Ae

−
= −  = − +  =  . 
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(2) Next, we seek a particular solution to 2
dy

dx
xy x+ = . The Method of Undetermined Coefficients is a good 

choice here based on the relatively simple functions involved. If we try a solution of the form 
2

py ax bx c= + +  (which is actually more general that we really need), we have 2
dy

dx
ax b= + , so 

substitution into the ODE gives: 

2 3 2(2 ) ( ) (2 ) 2ax b x ax bx c ax bx a c x b x+ + + + = + + + + =  

So we must have 0, 0, 2 2, 0 0, 0, 2 2pa b a c b a b c y= = + = =  = = =  = . 

(3) So, the general solution must be 
21

2 2
x

h py y y Ae
−

= + = + . The initial value gives (0) 2 5y A= + = , so 3A =  

and the unique solution to the initial value problem is 
21

23 2
x

y e
−

= + . 

Note: This problem could also have been solved using the integrating factor 
21

2
x

e  derived by the method already 

discussed. This would give ( )
2 2 2 2 2 2 21 1 1 1 1 1 1

2 2 2 2 2 2 22 2 2
x x x x x x xdy d

dx dx
e xe y e y xe e y e C y Ce

−
+ = =  = +  = + , as 

above. 

Example #2: Solve the initial value problem 
2

2 3 2 sin , (0) 1, (0) 2 (0)d x dx
dt dt

x t x x x− + = = = = . 

This problem cannot be done using an integrating factor as that’s really a method specific to 1st order linear 

equations. So we proceed using our methods based on linearity. 

(1) First we seek homogeneous solutions, i.e. solutions of 
2

2 3 2 0d x dx
dt dt

x− + = . We’re getting a little ahead of 

ourselves here, but for a linear ODE with constant coefficients we begin by seeking exponential solutions of 

the form rtx e= . The logic behind this choice will be developed soon, but differentiation gives rtdx
dt

re=  and 

2

2

2 rtd x
dt

r e= . Substitution into the ODE gives 
2 23 2 ( 3 2) 0rt rt rt rtr e re e r r e− + = − + = . This can only vanish 

when 
2 3 2 ( 1)( 2) 0r r r r− + = − − = , so either 1r =  or 2r = . Therefore 

1( ) tx t e=  and 2

2( ) tx t e=  are 

solutions. 

Now here’s where linearity becomes especially useful. If [ ( )] 0T x t =  is the form of the homogeneous 

equation (so 1[ ( )] 0T x t =  and 2[ ( )] 0T x t =  for all t), then any function of the form 1 1 2 2( ) ( )c x t c x t+  will also 

satisfy the homogeneous equation, i.e. 1 1 2 2 1 1 2 2 1 2[ ] ( ) ( ) 0 0 0T c x c x c T x c T x c c+ = + =  +  = . So 

2

1 2( ) t t

hx t c e c e= +  will give homogeneous solutions for any scalars 1 2,c c . Though we have not yet shown 

it, the fact is that these give all of the homogeneous solutions. 

(2) Now let’s concentrate on getting a particular solution to the original inhomogeneous equation. If you think 

about what kinds of functions might be such that when combined with its 1st and 2nd derivatives in the 

manner prescribed by the ODE to yield the function sin x , it should be pretty clear that something of the 

form sin cospx A t B t= +  is a likely candidate. We have 

sin cos

sin cos

sin cos

p

p

p

x A t B t

x B t A t

x A t B t

 = +
 
 = − + 

  = − − 

, so: 

3 2 ( 3 2 )sin ( 3 2 )cos ( 3 )sin ( 3 )cos sinp p px x x A B A t B A B t A B t A B t t − + = − + + + − − + = + + − + =  

This implies that 

1 1
10 101

10 3 3
10 10

3 1 1 3 1 1 3 1

3 0 3 1 0 3 1 0

AA B A A

A B B B B

   =+ = −               
 =  = =                − + = − =                    

. 
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So 31
10 10

( ) sin cospx t t t= +  is a particular solution. 

(3) Therefore all solutions are of the form 
2

1 2
31

10 10
( ) sin cost tx t c e c e t t= + + + . 

Finally, to solve the given initial value problem, note that 2

1 2
31

10 10
( ) 2 cos sint tx t c e c e t t = + + − , so: 

1 21 2 2

2 1

1 2 1 2

73
1010 6 6 31 1 1

5 52 2 10 10191
10 10

(0) 1
, ( ) sin cos

(0) 2 2 2

t t
c cx c c

c c x t e e t t
x c c c c

   + == + + =   
  = = −  = − + + +   

 = + + = + =      

 

Input-Response formulation for linear ODEs 

A linear ODE of the form ( ) ( 1)

1 1 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n

nx t p t x t p t x t p t x t q t−

−
+ + + + =  where 

1 1 0( ), , ( ), ( ), ( )np t p t p t q t−  are functions of the independent variable t can be expressed in the form 

( ( )) ( )T x t g t=  where T is a linear operator of the form 
1

11 1 0( ) ( ) ( )
n n

n nn
d d d
dt dtdt

T p t p t p t
−

−−= + + + +  . The last 

term refers to multiplication by 0 ( )p t . A useful way of formulating such an ODE is to think of the left-hand-

side as corresponding to “the system” and the inhomogeneity ( )q t  on the right-hand-side as corresponding to 

the “input signal” or, more simply, the “input.” The general solution of the ODE is then referred to as the 

“output signal” or “response.” Some motivating examples are in order. 

Banking: If we let ( )x x t=  represent how much money (in dollars) we have in a bank account after t years with 

a fixed interest rate I , the simple model for this is dx
dt

Ix=  and we have solved this to get ( ) Itx t Ae= . If we 

have only the initial deposit 0(0)x x= , then we’ll have 
0( ) Itx t x e= . Note, however, that we can write the ODE 

as 0dx
dt

Ix− = , a homogeneous 1st order linear ODE. This corresponds to the situation where you make your 

deposit and then go home and let the system grow your money without further intervention. 

Now let’s suppose that you make deposits and withdrawals according to some function ( )q t  (in dollars/year). If 

we add this rate into our model, we have ( )dx
dt

Ix q t= + , or ( )dx
dt

Ix q t− = . Note how this intervention (or input) 

corresponds to the inhomogeneity of this linear ODE. The “system” will carry on as before but will be subject 

to the input associated with the deposits and withdrawals. The “response” to all this internal and external 

activity will be the output ( )x t , i.e. how much money you’ll have in the bank at any given time. 

Newton’s Law of Cooling (diffusion): Suppose we have an enclosed space such as a building or a cooler chest 

and that the temperature at any given time t in the interior space is measured as some function ( )x t  and that the 

initial temperature is 0(0)x x= . If the outside temperature is given by some function ( )y t  (possibly constant or 

possibly variable), then we might expect the interior temperature to change depending on the quality of the 

insulation and on the difference between outside and inside temperatures. That is, the rate of change of 

temperature might be modeled as ( )dx
dt

F y x= −  for some function F. We would expect that when y x  the 

temperature would increase, i.e. that 0dx
dt
 ; when y x  the temperature would decrease, i.e. that 0dx

dt
 ; and 

that when the outside temperatures are the same there would be no change in temperature, i.e. 0dx
dt
= . The 

simplest model for this would be ( )dx
dt

k y x= −  for some positive constant k (called the coupling constant) that 

depends on the level of insulation. We can rewrite this as dx
dt

kx ky+ = . In this form, we can think of the 

homogeneous equation 0dx
dt

kx+ =  as representing how this system would be governed if the outside 
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temperature remained constant (at 0) and the interior temperature gradually rose or fell to that level. The 

inhomogeneous equation ( ) ( )dx
dt

k x t k y t+ =  would govern how the interior temperature would respond to the 

input ( )y t  (or ( )ky t ) in the case where the outside temperature varied according to some known pattern, e.g. 

the sinusoidal temperature change that might be associated with either a day/night cycle or seasonal cycle, or 

perhaps some other temperature variation. 

Hooke’s Law: A simple model for a frictionless mass-spring system is given by Hooke’s Law F kx= −  where 

F represents an applied force, x represents the displacement of the mass from the equilibrium position, and 

where k is the spring constant that corresponds to the stiffness of the spring. If we combine this with Newton’s 

2nd Law that F ma=  where m is the mass, dx
dt

v =  is the velocity, and 
2

2

dv d x
dt dt

a = =  is the acceleration of the 

mass, we have ma kx= −  or 
2

2

d x
dt

m kx= − . We can rewrite this as 
2

2 0d x k
mdt

x+ = . If these is some friction in the 

system, a simple model suggests that this friction would grow proportionally to the velocity, i.e. there would be 

an additional force 
fF cv= −  opposing the motion. The revised equation becomes 

2

2

d x
dt

m kx cv= − −  or 

2

2 0d x c dx k
m mdt dt

x+ + = . Physicists often favor the “dot notation” for time derivatives with dx
dt

x =  and 
2

2

d x
dt

x = , so 

the equation may also be expressed as 0c k
m mx x x+ + = . 

Now imagine that you mess with this spring system by “driving” the system with an additional external force 

( )E t . The model might then look like 
2

2 ( )d x
dt

m kx cv E t= − − +  and if we write ( ) ( )E t mq t=  for simplicity, the 

ODE becomes 
2

2

( )
( )

E td x c dx k
m m mdt dt

x q t+ + = =  or ( )c k
m mx x x q t+ + = . Once again, the inhomogeneity 

corresponds to the external input imposed on the system, and the homogeneous ODE would govern how the 

system would evolve without this intervention. 

As we’ve seen previously, a good approach to solving all of these linear ODEs is to use linear methods that 

involve finding all homogeneous solutions (the system), finding one particular solution, and combining these to 

determine the overall response ( )x t . 

Example (diffusion): Suppose a closed container has an initial interior temperature of 32°F at 10:00am and that 

the outside temperature (also in °F) rises steadily according to ( ) 60 6y t t= +  where time t is measured in hours. 

Further suppose that Newton’s Law of Cooling applies where the coupling constant is 1
3

k = . (a) How will the 

interior temperature vary in time, and (b) at what time will the interior temperature reach 60°F? 

Solution: The temperature will be governed by 1
3
( )dx

dt
y x= −  or 1 1 1

3 3 3
( ) (60 6 ) 20 2dx

dt
x y t t t+ = = + = + , so the 

inhomogeneous ODE is 1
3

20 2dx
dt

x t+ = + . This can be solved using an integrating factor, but let’s use linearity. 

(1) The homogeneous equation 1
3

0dx
dt

x+ =  easily yields the solutions of the form 
1
3( )
t

hx t ce
−

= . It’s worth 

noting that over time any such homogeneous solution will tend toward 0 and become negligible. For this reason 

we often refer to this as a transient. In the short term it may be relevant, but in the long term it is not. 

(2) We can use undetermined coefficients to find a particular solution. The nature of the inhomogeneity 

( ) 20 2q t t= +  suggests that we seek a solution of the form ( )px t A Bt= + . We have ( )pdx

dt
t B= , so we must 

have 1 1 1
3 3 3

( ) ( ) 20 2B A Bt B A Bt t+ + = + + = + , so 1
3

20B A+ =  and 1
3

2B = . This gives 6B =  and 42A= , so 

( ) 42 6px t t= + . Once the transients have become negligible, this is all that will remain. For this reason we 

might refer to this as the “steady state” solution. 
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(3) The general solution is 
1
3( ) ( ) ( ) 42 6
t

h px t x t x t ce t
−

= + = + + . If we substitute the initial condition (0) 32x = , 

we have (0) 42 32x c= + = , so 10c = −  and 
1
3( ) 42 6 10
t

x t t e
−

= + − . Note that eventually the interior 

temperature will be rising at the same rate as the outside temperature but always 18°F cooler. 

The interior temperature will reach 60°F at a time T when 
1
342 6 10 60
T

T e
−

+ − =  or 
1
36 10 18
T

T e
−

− = . This 

cannot be solved algebraically, but it’s easy to get a numerical solution using a graphing calculator and the trace 

function. It gives a time 3.33 3 hrs, 20 minT   , i.e. about 1:20pm. 

Example #2 (exponential input): Solve the initial value problem 
2

2 3 2 , (0) 4, (0) 2td x dx
dt dt

x e x x+ + = = = . 

Solution: This ODE is of the type we might expect from a mass-spring system, though the external driving 

force is not especially realistic (relentlessly exponential in a single direction). It is nonetheless good for 

illustrating the methods, and the exponential input will be very relevant in the days and weeks to come. For 

simplicity, let’s write the ODE as 3 2 tx x x e + + = . 

(1) For the homogeneous solutions, look for exponential solutions rtx e=  to the equation 3 2 0x x x + + = . This 

gives 
2 23 2 ( 3 2) 0rt rt rt rtr e re e r r e+ + = + + = , so 

2 3 2 ( 1)( 2) 0 1, 2r r r r r r+ + = + + =  = − = − . Individual 

homogeneous solutions are 
1( ) tx t e−=  and 2

2( ) tx t e−= , and by linearity any solution of the form 

2

1 2( ) t t

hx t c e c e− −= +  will satisfy the homogeneous ODE. It’s not hard to prove that these give all homogeneous 

solutions if we think of the 2nd order homogenous linear ODE as a composition of two 1st order linear ODEs 

and use the fact that we can always solve such equations. [See if you can complete the argument.] 

Note that, in this case, the homogeneous solutions are transient. 

(2) Once again, undetermined coefficients provide the simplest way to find a particular solution in this case. 

The obvious choice is to try a solution of the form tx Ae= . This gives ,t tx Ae x Ae = = , and we get that 

1
6

3 2 6t t t t tAe Ae Ae Ae e A+ + = =  = , so our particular solution is 1
6

( ) t

px t e= . 

(3) Our general solution is then 
2

1 2
1
6

( ) t t tx t c e c e e− −= + + . We compute 2

1 2
1
6

( ) 2t t tx t c e c e e− − = − − + , and the 

initial conditions give 
1 2 1 2

1 2

1 2 1 2

231
6 6 19 17

2 31 11
6 6

(0) 4
,

(0) 2 2 2

x c c c c
c c

x c c c c

  = + + = + =   
  = = −   

 = − − + = − − =      

. So the unique 

solution to the initial value problem is 
219 17 1

2 3 6
( ) t t t

steady statetransient

x t e e e− −

−

= − + . 

Example #3 (sinusoidal input): Find the general solution to the ODE 2 cos3dx
dt

x t+ =  

Solution: As with all 1st order linear equations, solving using an integrating factor is always an option, though 

it could lead to some difficult integration. In this example, the integrating factor is 2te  which gives 
2 2 2 22 ( ) cos3t t t tdx d

dt dt
e e x e x e t+ = = . Integration gives 2 2( ) cos3t te x t e t C= +  and 

2 2( ) cos3t tx t e e t C−  = +
  . 

The integration can be done using integration by parts (twice) and some additional algebra. 

If we solve this using linearity: 

(1) 2 0dx
dt

x+ =  gives the homogeneous solutions 2( ) t

hx t ce−=  

(2) For a particular solution, try cos3 sin3x a t b t= + . We calculate 3 cos3 3 sin3x b t a t = − , and substitution 

gives 2 (2 3 )cos3 ( 3 2 )sin3 cos3x x a b t a b t t + = + + − + = , so 



 9 Revised September 9, 2021 

2
131

13 3
13

2 3 1 2 3 1 2 3 1

3 2 0 3 2 0 3 2 0

a b a a

a b b b

 + = −             
 =  = =               − + = −                

, so 32
13 13

( ) cos3 sin3px t t t= +  or 

1
13

( ) (2cos3 3sin3 )px t t t= + . 

(3) The general solution is therefore 2 1
13

( ) (2cos3 3sin 3 )t

transient
steady state

x t ce t t−

−

= + + . 

A little trigonometry 

Any expression of the form cos sina t b t +  actually represents a single sinusoidal curve with frequency   

and an appropriate translation (phase shift), i.e. a function of the form 0cos( )A t − . We can see this quickly 

using the sum of angle formula for cosine: 

0 0 0cos( ) cos cos sin sin cos sinA t A t A t a t b t       − = + = +  

We must therefore have 0

0

cos

sin

A a

A b





= 
 = 

. 

This is most easily understood with a right triangle as shown. 

From this we see that 2 2A a b= +  and 
0tan b

a = . 
 

a 

b 

0

a 

A 

 

In our example with 1
13

( ) (2cos3 3sin3 )px t t t= + we would get 
2 2 131 1

13 13 13
2 3A = + = =  and 

0
3
2

tan = . This 

gives 0 56.31    or 0 0.9828  radians. The period of the oscillation would be 2 2
3

 
 = . 

Variation of parameters 

Another useful method for finding a particular solution to a linear ODE is to take the homogeneous solutions 

that you’ve presumably already found and “vary the parameters.” This method can be formulated for nth order 

linear ODEs (and we’ll do that eventually), but for now we’ll formulate the method for 1st order linear ODEs. 

Suppose we are trying to solve the linear ODE ( ) ( )dx
dt

p t x q t+  =  where ( ), ( )p t q t  are functions of the 

independent variable t, and that we have already solved the homogeneous equation ( ) 0dx
dt

p t x+  =  to find the 

homogeneous solutions ( )hx t . This equation is separable and can, in principle, always be solved to give 

( )

1( ) ( )
p t dt

hx t Ae A x t
−= = . The basic idea is to treat the scalar A  as variable, i.e. we “vary the parameter.” 

If we write 1( ) ( ) ( )x t v t x t=  where 1( )x t  as the basic homogeneous solution, we can then calculate that 

1

1( ) ( )
dxdx dv

dt dt dt
v t x t= +  and substitute into the ODE to get: 

( )1 1

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
dx dxdv dv
dt dt dx dt

v t x t p t v t x t v t p t x t x t q t+ + = + + =  

Note that since 1( )x t  is a solution to the homogeneous equation, the expression in parentheses vanishes. So the 

resulting equation becomes 1( ) ( )dv
dt

x t q t= . This is, in principle, easily solved by writing 
1

( )

( )
dv
dt

q t

x t
=  and 

integrating to get 
1

( )
( )

( )

q t
v t dt

x t
=  . We then have the particular solution 

1( ) ( ) ( )px t v t x t= . 
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Example #1: Find the general solution of the 1st order linear ODE 5 7
dy

xdx
y x+ = . 

Solution: The homogeneous equation 5 0
dy

xdx
y+ =  gives: 

55 5 5 ln 5ln ( )h

dy dy dy
x y x y xdx

y dx dx y x C y x Ax−= −  = −  = −  = − +  =   

So we take 5

5 1( )h x
y x x−= =  for the purpose of doing variation of parameters to find a particular solution. With 

( ) 7q x x= , the method as described above gives 5

6 77( ) 7x
x

v x dx x dx x−= = =  . [Note that we don’t add an 

arbitrary constant because we’re only trying to find one particular solution.] 

So 7 5 2( ) ( ) ( )p hy x v x y x x x x−= =  = . The general solution is therefore 5 2( )y x Ax x−= +  where A is an arbitrary 

constant. 

Example #2 (sinusoidal input): Find the general solution to the ODE 2 cos3dx
dt

x t+ = . [This is the same 

problem we solved in the previous lecture.] 

Solution: Last time we solved the homogeneous ODE to get 2( ) t

hx t ce−= . If we use 2( ) t

hx t e−=  and 

( ) cos3q t t=  for the variation of parameters, we get 2

2( ) cos3
( )

( ) cos3t
h

tq t t
ex t

v t dt dt e t dt−= = =   . 

The integral is found using integration by parts (twice) and some algebra. As a reminder of integration methods, 

the calculation would go something like this: 

( ) ( ) ( )

2 2 2 2 2 2

2 2 2 2

1 2 1 2 1 2
3 3 3 3 3 3

13 31 2 4 1 2 2
3 9 9 9 3 9 13 13

cos3 sin 3 sin 3 sin 3 cos3 cos3

sin 3 cos3 sin 3 cos3 cos3 cos3 sin 3

t t t t t t

t t t t

I e t dt e t e t dt e t e t e t dt

e t t I I e t t I e t dt e t t

 = = − = − − +
 

= + −  = +  = = +

  


 

So the particular solution is ( )( )2 23 32 2
13 13 13 13

( ) cos3 sin 3 cos3 sin 3t t

px t e t t e t t−= + = +  and the general solution is 

then 
2 32

13 13
( ) cos3 sin 3tx t ce t t−= + +  where c is an arbitrary constant to be determined by initial conditions. 

You can check that this coincides with the solution we derived last time via other methods. We also have the 

option of putting this in the form 2

0
1
13

( ) cos(3 )tx t ce t −= + −  where 0 56.31    as we showed last time. 

Notes by Robert Winters 


