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Math E-21c – Ordinary Differential Equations – Lecture #14 

Nonlinear systems 

Most differential equations and systems of differential equations one encounters in practice are nonlinear. For 

example, a biologist might model the populations ( )x t  and ( )y t  of two interacting species of animals by the 

following nonlinear system: 

(6 2 )

(4 )

dx
x x y

dt

dy
y x y

dt

 
= − −  

 
 = − −
  

 

where the populations are measured in thousands. (To understand the rationale behind these equations, read: 

J.D. Murray, Mathematical Biology, Chapter 3: Continuous Models for Interacting Populations, Springer-

Verlag, 1989.) 

For given initial values x0 and y0 this system has a unique 

solution (a rigorous proof of this fact is beyond the scope of 

this course), but it turns out that there is no closed formula 

for this solution. Still, we can gain a good understanding of 

the evolution of this system and its long-term behavior by 

taking a qualitative graphical approach. We can write the 

system as: 

(6 2 )
(4 )

d x x x y
y x yydt

− −   =
− −     

, 

that is, the solutions are the flow lines of the vector field: 

(6 2 )
(4 )

x x y
y x y

− − 
− −  

. 

We could use a computer to generate this vector field (or a corresponding 

direction field), but it turns out that even without the aid of a computer it 

is not hard to analyze the long-term behavior of the system. 

To facilitate this discussion, let us write ( , ) (6 2 )f x y x x y= − −  and 

( , ) (4 )g x y y x y= − − . Our task is to draw a rough sketch of the vector 

field 

( , ) (6 2 )
( , ) (4 )

f x y x x y
g x y y x y

− −   =
− −      

 

We might start by finding the horizontal and vertical vectors in the field (when 

( , ) 0g x y =  or ( , ) 0f x y = , respectively).  

Now ( , ) (4 ) 0g x y y x y= − − =  when 0y =  or 4 0x y− − = , that is, when 0y =  

or 4x y+ = . 

The horizontal line segments indicate that the vectors of the field are horizontal 

there; at this point, we don’t worry about the direction.  

Next, we find out where the vectors are vertical, that is, where 

( , ) (6 2 ) 0f x y x x y= − − = . 
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If we draw the last two figures on the same axes, then we can see the four points 

where both ( , ) 0f x y =  and ( , ) 0g x y = . 

These are the equilibrium solutions of the system: If the system is initially in one 

of these states, then it will remain unchanged (since 0
dx

dt
=  and 0

dy

dt
= ). 

To find the equilibrium solution in the first quadrant, we solve the system 

2 6

4

x y

x y

+ = 
 

+ = 
. 

The equilibria are (2, 2) , (0, 4) , (3,0) , and (0,0) . 

The curves where ( , ) 0f x y =  and ( , ) 0g x y =  are sometimes called the nullclines of the system. What happens 

in the four regions enclosed by the nullclines, labeled (I) to (IV) in the diagram? Since neither ( , )f x y  nor 

( , )g x y  will ever be zero inside one of these regions, the signs of ( , )f x y  and ( , )g x y  will remain unchanged 

throughout a given region (since the functions ( , ) (6 2 )f x y x x y= − −  and 

( , ) (4 )g x y y x y= − −  are continuous). All we need to do is determine these signs 

at one sample point in each region.  

We can represent our work in a table: 

Region 
Sample 

Point 

Sign of 
( , )f x y  

Sign of 
( , )g x y  

Vector 
( , )
( , )

f x y
g x y
 
  

 

I (1,1)  + + up and right 

II (3,3)  – – down and left 

III (0.1,4)  + – down and right 

IV (3,0.1)  – + up and left 

Now we can also fill in the direction of the vectors on the nullclines: it has to be compatible with the directions 

in the adjacent regions.  

What does this analysis tell us about the long-term behavior of this system? Let us consider various scenarios: 

If the point 0 0( , )x y  representing the initial populations is located in region III, then the trajectory will move to 

the right and down, and it cannot “escape” from region III since the vectors along the boundaries point “the 

other way.” The trajectory will approach the equilibrium (2, 2) . 

A similar reasoning shows that a trajectory starting in region IV will approach the equilibrium (2, 2) . 

A trajectory starting in region I has three “options”: It can approach the equilibrium point (2, 2)  while 

remaining in region I at all times, or it can “cross over” into regions III or IV. The final outcome will always be 

the same: the trajectory will approach (2, 2) . 
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A trajectory starting in region II has the three options just discussed (for region I), but besides that it may seem 

conceivable that a trajectory could “merge” with the x-axis or the y-axis, approaching the equilibrium (3,0)  and 

(0, 4) , respectively. Note, however, that there is already a (straight-line) trajectory approaching (3,0)  from the 

right. But trajectories cannot merge since the trajectory for a given initial value is unique, for positive and 

negative t (think about it!). 

Let us summarize: as long as there are some animals from each species present initially (that is, 0x  and 0y  are 

both positive), then the system will eventually approach the equilibrium state 

(2, 2) . If 0 0x   and 0 0y = , then the system will approach (3,0) ; if 0 0x =  and 

0 0y  , then it will approach (0, 4) .  

To the right we sketch a phase portrait for this system, for the first quadrant: 

We say that (2, 2)  is a stable equilibrium, meaning that all trajectories starting 

near (2, 2)  will approach (2, 2)  as t goes to infinity (more precisely: there is a 

disc centered at (2, 2)  such that all trajectories with initial value within this disc 

will approach (2, 2)  as t goes to infinity). 

Linearization 

In applications one is often interested in the behavior of a 

dynamical system near an equilibrium state. If we zoom in on the 

phase portrait above near the equilibrium point (2, 2) , we see a 

picture that looks a lot like one of the phase portraits we found 

when we studied linear systems (the case of two negative 

eigenvalues). 

To study the behavior of a nonlinear dynamical system near an 

equilibrium point, we can linearize the system. We will first 

explain this approach in general and then return to the example discussed above. Consider a system 

( , )

( , )

dx
f x y

dt

dy
g x y

dt

 
=  

 
 =
  

 

with an equilibrium solution ( , )a b , that is, ( , ) ( , ) 0f a b g a b= = . In multivariable calculus, you learned that the 

linear approximation of a function ( , )f x y  near a point ( , )a b  is given by 

( , ) ( , ) ( , ) ( ) ( , ) ( )
f f

f x y f a b a b x a a b y b
x y

 
 +  − +  −

 

.
 

To understand this formula, note that the rate of change of f in the x-direction near the point ( , )a b  is 

approximately ( , )
f

a b
x




, so that  

( , ) ( , ) ( , ) ( )
f

f x b f a b a b x a
x


 +  −


. 

Likewise, the rate of change of f in the y-direction near ( , )a b  is approximately ( , )
f

a b
y




, so that  

( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( ) ( , ) ( )
f f f

f x y f x b a b y b f a b a b x a a b y b
y x y

  
 +  −  +  − +  −

  
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To linearize the system 

( , )

( , )

dx
f x y

dt

dy
g x y

dt

 
=  

 
 =
  

 near an equilibrium point ( , )a b  means to replace the functions ( , )f x y  

and ( , )g x y  by their linear approximations. Keeping in mind that ( , ) 0f a b =  and ( , ) 0g a b = , this 

approximation is 

( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( )

dx f f
a b x a a b y b

dt x y

dy g g
a b x a a b y b

dt x y

  
=  − +  −   

 
  =  − +  −

   

     or     

( , ) ( , )

( , ) ( , )

f f
dx a b a b x ax y
dt
dy g g y ba b a b
dt x y

  
 

  −   
   = 
      −        

 

We can use the substitution u x a= −  and v y b= −  to simplify further: 

( , ) ( , )

( , ) ( , )

f f
du a b a b ux y
dt
dv g g va b a b
dt x y

  
 

     
   = 
              

J

 

The matrix J is called the Jacobian matrix of the system at the point ( , )a b . Consider the example discussed 

above, where 

2

2

( , ) 6 2 6 4

( , ) 4 4 2

f f
f x y x x xy x y x

x y
g g

g x y y xy y y x y
x y

 
= − − = − − = −

 
 

= − − = − = − −
 

 

at the point (2, 2) , so that 

(2,2) (2,2) 4 2

(2,2)

2 2(2,2) (2,2)

f f

x y

g g

x y

  
  − −  
   = =
     − −  
   

J

.

 

We find the eigenvalues 1,2 3 5 = −  with associated eigenspaces 

3 5

2
span

1 5
E
− +

 
=  − − 

    and    
3 5

2
span

1 5
E
− −

 
=  − +  .  

Note that the phase portrait of the linearized system looks a lot like the phase portrait of the original system 

near the equilibrium point; in this introductory course we cannot make this relationship precise. Let us just state 

some important facts, without proof. Let J be the matrix of the linearized system. Then: 

• If both eigenvalues of J have a negative real part, then ( , )a b  is a stable equilibrium of the original system. 

• If J has at least one eigenvalue with a positive real part, then ( , )a b  is not a stable equilibrium of the 

original system. 



 5 revised December 8, 2023 

Example:  Consider the system 

( 1)

(2 )

dx
x y

dt

dy
y x y

dt

 
= −  

 
 = − −
  

. Note that (1,1)  is an equilibrium 

solution of this system.  

Is this equilibrium stable?  

Answer: The phase plane analysis is inconclusive in this case. We cannot tell whether the 

trajectories spiral inwards, spiral outwards, or are closed. 

Alternatively, we can linearize near (1,1) . 

A routine computation shows that 
0 1
1 1

 =
− −  

J with eigenvalues 
1,2

1 3

2

i− 
 = .  

It follows that (1,1)  is a stable equilibrium; the trajectories starting near that point spiral 

inward, approaching (1,1) . 

Summary 

In this section we discuss two methods that help us analyze a system of the form 

( , )

( , )

dx
f x y

dt

dy
g x y

dt

 
=  

 
 =
  

 

Phase Plane 

The trajectories of the system are the flow lines of the vector field 

( , )
( , )

f x y
g x y
 
  

.
 

• To get a sense for this vector field, we first sketch the nullclines ( , ) 0f x y =  (where the vectors are vertical) 

and ( , ) 0g x y =  (where the vectors are horizontal). 

• Next we identify the equilibria, where ( , ) 0f x y =  and ( , ) 0g x y = . 

• Then we can use the sample points in the regions between nullclines to determine the direction of the 

vectors. 

• Use the rough vector field drawn in the previous three steps to draw some representative trajectories, and 

predict the long-term behavior for the various initial values, if possible. 

Linearization 

Suppose ( , )a b  is an equilibrium of the system, that is, ( , ) 0f a b =  and ( , ) 0g a b = . Replacing the functions 

( , )f x y  and ( , )g x y  by their linear approximations near ( , )a b , we obtain the linearized system 

( , ) ( , )

( , ) ( , )

f f
a b a b

u ux yd

v g g vdt
a b a b

x y

  
     
 =   
     
   

J
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where u x a= −  and v y b= − . Then the phase portrait of this linearized system “looks a lot like” the phase 

portrait of the original system near ( , )a b . In particular, if the real parts of both eigenvalues of J are negative, 

then ( , )a b  is a stable equilibrium of the original system. If the real part of at least one eigenvalue of J is 

positive, then ( , )a b  isn’t a stable equilibrium of the original system. The matrix J is called the Jacobian matrix 

of the system at the point ( , )a b . 

Example: Use phase plane analysis to describe the 

trajectories/flow of the system 
2 2

2 2

( , ) 8

( , )

dx
dt
dy

dt

f x y x y

g x y x y

 = = + − 
 

= = −  

. 

Start by finding and drawing the nullclines. 

Horizontal Nullclines (HNC) are curves along 

which the vector field is purely horizontal, i.e. its 

vertical component is zero. These occur where 
2 2( , ) ( )( ) 0g x y x y x y x y= − = − + = , i.e. the lines 

y x=  and y x= − . 

Vertical Nullclines (VNC) are curves along which 

the vector field is purely vertical, i.e. its horizontal 

component is zero. These occur where 
2 2( , ) 8 0f x y x y= + − = , i.e. the circle 

2 2 8x y+ = . 

This enables us to identify and solve for the 

equilibria which occur at the intersection of 

horizontal and vertical nullclines. We next mark these nullclines with, respectively, horizontal dashes and 

vertical dashes taking care not to “crowd the equilibrium.” We delay closer examination of the equilibria until 

we do the Jacobian analysis, i.e. linearization around each equilibrium. The four equilibria are at (2, 2) , (2, 2)− , 

( 2, 2)− , and ( 2, 2)− − . 

Next, we pick points on the nullclines and determine the direction of the vector field along each segment of the 

nullclines. The then use “interpolation” to “continuity” to draw a good sampler of vectors in each sector 

bounded by nullclines. This enables us to (in pencil!) speculate about the general flow everywhere. 

Finally, we analyze each of the equilibria using the Jacobian matrix: With ( , ) ( , ), ( , )x y f x y g x y=F , the 

Jacobian at any point is 
2 2

2 2

x y

x y

f f x y

g g x y

   
= =   −  

FJ . 

In particular: 

4 4
(2,2)

4 4

 
=  − 

F
J  yields the characteristic polynomial 

2( ) 32 0p  =  − =  with eigenvalues 4 2 =  . This 

translates into one growth direction and one decay direction (they’re actually perpendicular because the matrix 

is symmetric, but that’s a result from the Spectral Theorem in Linear Algebra). This agrees with what we 

speculated from the initial sketch of trajectories. 

4 4
(2, 2)

4 4

− 
− =   

FJ  yields the characteristic polynomial 
2( ) ( 4) 16 0p  =  − + =  with eigenvalues 4 4i =  . 

The fact that the eigenvalues are complex indicates rotation, and the fact that the real part is positive indicates 
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growth, i.e. outward (unstable) spirals. The vector field shows these to be counterclockwise outward spirals, and 

this agrees with what we speculated from the initial sketch of trajectories. 

4 4
( 2, 2)

4 4

− 
− + =  − − 

F
J  yields the characteristic polynomial 

2( ) ( 4) 16 0p  =  + + =  with eigenvalues 

4 4i = −  . The fact that the eigenvalues are complex indicates rotation, and the fact that the real part is 

negative indicates decay, i.e. inward (stable) spirals. The vector field shows these to be clockwise inward 

spirals, and this agrees with what we speculated from the initial sketch of trajectories. 

4 4
( 2, 2)

4 4

− − 
− − =  − 

F
J  yields the characteristic polynomial 

2( ) 32 0p  =  − =  with eigenvalues 4 2 =  . 

This translates into one growth direction and one decay direction. This agrees with what we speculated from the 

initial sketch of trajectories. 

 

Pendulum Example: The dynamics of a frictionless pendulum of length L are given by the system 

sin

d

dt

d g

dt L

 
=   

 
 = − 

  

 

where  is the angle the rod of the pendulum makes with the vertical line, 
d

dt


=  is the angular velocity, 

and g is the gravitational constant. 

The vertical nullcline will be 0 =  and there 

will be horizontal nullclines whenever sin 0 =

, i.e. when n =  for all integers n . This gives 

equilibria at ( , ) ( ,0)n  = . The Jacobian 

matrix at these equilibria will be 

1

0 1
( ,0)

( 1) 0nF g
L

J n +

 
=  − 

, so when n  is an 

even integer, it’s 
0 1

0
g
L

 
 − 

 which has complex 

eigenvalues with real part 0. This corresponds to 

periodic (clockwise) orbits in the vicinity of 

those equilibria. [Technically, all we can say is 

that the linear approximation would be periodic, 

but the actual orbits also have this property.] 

When n  is an odd integer, the Jacobian matrix 

at those equilibria is 
0 1

0
g
L

 
 
 

 which has one 

positive (real) eigenvalue and one negative 

(real) eigenvalue. This corresponds to hyperbola-like orbits in the vicinity of those equilibria. 

The phase portrait shows these alternating types of equilibria. The period orbits correspond to the pendulum 

having low energy and oscillating back and forth. The other orbits (except for the borderline cases) correspond 

to the pendulum having high energy and swinging over the top repeatedly without oscillation. 
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We can modify this slightly to account for friction. 

This results in the system 

sin

d

dt

d g
c

dt L

 
=   

 
 = −  − 

  

 

for some positive scalar c. If, for example, we 

choose 0.1c =  and do the same phase plane 

analysis, we’ll have the same equilibria, but the 

trajectories will be fundamentally different – 

indicative of the pendulum dying down over time. 

 

Higher dimensional Illustrations 

One thing that makes two-variable nonlinear 

systems relatively easy to analyze is that trajectories 

cannot intersect at a nonzero angle, i.e. they cannot 

cross. This effectively “confines” trajectories and 

allows us to make qualitative predictions relatively 

easily. In higher dimensions, there is no such 

confinement and the possibilities are far more 

interesting. Even relatively simple systems can exhibit such things as a mix of periodic trajectories and 

aperiodic trajectories and very sensitive dependence on initial conditions, i.e. “chaos”. This is also known as the 

“butterfly effect,” i.e. the possibility that in a weather model the perturbation of initial conditions associated 

with a butterfly flapping its wings somewhere could well result in a catastrophic weather event after some time 

has passed. This observation has far-reaching consequences. In particular, if very simple models exhibit such 

sensitive dependence on initial conditions, then longer-term predictability in some systems may be an 

impossibility. No matter how accurate the model is, it may simply be impossible to apply it for longer than a 

relatively short period of time. 

One famous example – arguably the first – was produced somewhat accidentally by Edward Lorenz while 

analyzing fluid flow in the context of meteorology. A simplified version involving only three variables was 

rather world-shaking. This example showed the existence of the “Lorenz attractor” – a subset in 3-dimensions 

toward which nearby trajectories converged but within which trajectories exhibited seemingly endless variation 

even though the system was completely deterministic. [Ref: https://en.wikipedia.org/wiki/Lorenz_system] 

Another model of some relevance is one proposed in a 1927 paper by W.O. Kermack and A.G. McKendrick 

entitled “Mathematical Theory of Epidemics”. After some considerable analysis they produced a simple 

nonlinear model in three variables involving several parameters. The system is: 
dx
dt
dy

dt
dz
dt

xy

xy ly

ly

 = −
  

=  − 
 

=
  

 with constraint x y z N+ + = . 

The authors go on to show that their model quite accurately matched the mortality data from the plague in the 

island of Bombay over the period from December 1905 to July 1906. In contrast with the Lorenz attractor, this 

epidemiological model yields stable predictions. 

[Ref: http://math.rwinters.com/E21c/KermackMcKendrick1927-epidemics.pdf] 

Notes by Robert Winters 
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