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Math E-21c – Ordinary Differential Equations – Lecture #13 

Repeated eigenvalues (with geometric multiplicity less than the algebraic multiplicity) 

Suppose we want to solve a system of the form d
dt

=x Ax  where A is a non-diagonalizable 2 2  real matrix with 

a repeated eigenvalue  . In this case, we can always find a change of basis matrix S such that 

1 1

0
−  

= =   
S AS B . Why? 

Generalized eigenvectors 

When the algebraic multiplicity k of an eigenvalue   of A is greater than 1, we will usually not be able to find k 

linearly independent eigenvectors corresponding to this eigenvalue. This is the case where the geometric 

multiplicity (the number of linearly independent eigenvectors corresponding to this eigenvalue) is strictly less 

than the algebraic multiplicity of this eigenvalue. The next best thing to an eigenvector is often referred to as a 

“generalized eigenvector”. 

If, for example, a matrix A had   as an eigenvalue with algebraic multiplicity 2, but the geometric multiplicity 

was 1, we could certainly find an actual eigenvector 1v  such that 1 1= Av v , but we would not be able to 

produce a 2nd linearly independent eigenvector. However, it can be shown (and we’ll demonstrate this in an 

example) that we will always be able to find a vector 2v  such that 2 1 2= + Av v v . Another way of stating this 

is that 1( ) − =I A v 0  and 2 1( ) − = −I A v v  (or 2 1( )− =A I v v ), so 2

2 1( ) ( ) − = −  − =I A v I A v 0 . If an 

eigenvector is a vector in ker( ) −I A , then a generalized eigenvector would be in 
2ker( ) −I A . 

In the case where the algebraic multiplicity was 3 and the geometric multiplicity was only 1, we’d also seek a 

vector in 
3ker( ) −I A , namely a vector 3v  such that 3 2 3= + Av v v . The idea is that a generalized eigenvector 

is a vector such that the transformation acts on it by scaling together with a shift by the previously found vector. 

It can be shown that this process will always yield k linearly independent vectors corresponding to the 

eigenvalue , the first few vectors of which will be actual eigenvectors of A. If a matrix A has all real 

eigenvalues and if we carry out this process for all eigenvalues of A, we’ll produce a complete basis 

 1, , n= v vB  where we assume that all vectors corresponding to a given eigenvalue are grouped together and 

ordered in the way in which they were found. 

As in the previous two cases, 
1 1[ ] [ ]t te e− −=  =A B

A SBS S S  and it comes down to finding [ ]te B
. This is 

perhaps most easily done by explicitly solving the corresponding differential equations. In the new coordinates, 

this system translates into 

1
1 2

2
2

du
u u

dt
du

u
dt

 
=  + 

 
 = 
 

. The second equation is easily solved to get 
2 2( ) (0)tu t e u= . We 

can guess a solution for the first equation of the form 
1 1 2( ) t tu t c te c e = + . Differentiating this and substituting 

into the first equation, we get 
1 2 1 2 2( ) ( ) (0)t t t t t tc e te c e c te c e e u     + +  = + + . Comparing like terms, we 

conclude that 1 2 (0)c u= . Substituting 0t = , we further conclude that 1 2(0)u c= . Putting these results together, 

we get 
1 2 1 1 2( ) (0) (0) (0) (0)t t t tu t u te u e e u te u   = + = + . We therefore have that 

1 1 2 1

2 22

( ) (0) (0) (0)
( ) (0)

( ) (0)(0) 0 0

t t t t t t

t t t

u t e u te u ue te e te
t

u t ue u e e

     

  

     +   
= = = =        
       

u u  
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So, [ ]
0

t t
t

t

e te
e

e

 



 
=  
 

B  in this case and the solution is given by 1 1( ) [ ] (0)
0

t t
t

t

e te
t e

e

 
− −



 
= =  

 

B
x S S S S x . 

An alternate method of deriving this result was in Problem Set #12: 

If 
1

0

 
=   

B  (there are analogous forms in cases larger than 2 2  matrices), we write 
1

0

 
= =  +  

B I P  

where 
0 1

0 0

 
=   

P . There is a simple relationship between the solutions of the systems d
dt

=x Bx  and d
dt

=u Pu , 

namely ( ) ( )tt e t=x u . This is easily seen by differentiation: 

[ ( )] ( ) ( ) ( )t t t t t t t td d d
dt dt dt

e t e e e e e e e       = = + = + = + =  + =  + =x uu u Pu u Pu Iu I P u I P u Bx  

together with the fact that (0) (0)=x u . 

Furthermore, solving d
dt

=u Pu  is simple:  If 1

2

u

u

 
=  
 

u , then with 
0 1

0 0

 
=   

P  we have 1 2

2

( )

( ) 0

u t u

u t

  = 
 

 =  

. 

The second equation gives that 2 2 2( ) (0)u t c u= = , a constant. The first equation is then 
1 2( ) (0)u t u = , so 

1 2 1( ) (0)u t u t c=  + . At 0t =  this gives 1 1(0)u c= , so 1 1 2( ) (0) (0)u t u u t= +  . Together this gives: 

1 1 2 1

2 2 2

( ) (0) (0) (0)1 1
( ) (0) (0)

( ) (0) (0)0 1 0 1
tu t u u t ut t

t e
u t u u

+         
 = = = = =                  

P
u u u  

Therefore 
1

( ) (0) (0)
0 1 0

t t
t

t

t e te
t e

e

 




  
= =      

x x x , so 
1

0 1 0

t t
t t

t

t e te
e e

e

 




  
  = =        

B  for 
1

0

 
=   

B . 

Problem: Solve the system 

4 4

dx
y

dt
dy

x y
dt

 
= 

 
 = − +
 

 

with initial conditions (0) 3, (0) 2x y= = . 

Solution: In matrix form, we have d
dt

=x Ax  

where 
0 1

4 4

 
=  − 

A  and 
3

(0)
2

 
=   

x . We again 

start by finding the eigenvalues of the matrix: 

1

4 4

 − 
 − =   − 

I A , and the characteristic 

polynomial is 2 2( ) 4 4 ( 2)p  = − + = −A
. 

This gives the repeated eigenvalue 2 =  with 

(algebraic) multiplicity 2. We seek eigenvectors: 

2 1 0

4 2 0

−      
=     −      

 gives the (redundant) 

equations 2 0− =  and 4 2 0−  = . Therefore 2 =  , so we can choose 
1

1

2

 
=   

v  or any scalar multiple of 

this as an eigenvector, but we are unable to find a second linearly independent eigenvector. (We say that the 

geometric multiplicity of the 2 =  eigenvalue is 1.) 
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The standard procedure in this case is to seek a generalized eigenvector for this repeated eigenvalue, i.e. a 

vector 2v  such that 2( ) −I A v  is not zero, but rather a multiple of the eigenvector 1v . Specifically, we seek a 

vector such that 2 1 2= + Av v v . This translates into seeking 2v  such that 2 1( ) − = −I A v v . That is, 

2 1 1

4 2 2

−  −     
=     −  −     

. This gives redundant equations the first of which is 2 1− = −  or 2 1 =  + . 

If we (arbitrarily) choose 0 = , then 1 = , so 
2

0

1

 
=   

v . The fact that 1 1

2 1 2

2

2

= 
 

= + 

Av v

Av v v
 tells us that with the 

change of basis matrix 
1 0

2 1

 
=   

S , we will have 1 2 1
[ ]

0 2
−  

= = =  
A S AS BB

. 

If we apply the previously outline procedure, we get 
2 2

2

2

1
[ ]

0 1 0

t t
t t

t

t e te
e e

e

  
= =      

B . The solution to the system 

is therefore 1 2 2 21 0 1 1 0 3 1 3 3 4
( ) [ ] [ ] (0)

2 1 0 1 2 1 2 2 2 1 4 2 8
t t t t tt t t

t e e e e e
t t

− −             
= = = = =             − + − −             

A B
x S S x   

That is, 
2

2

( ) (3 4 )

( ) (2 8 )

t

t

x t e t

y t e t

 = −
 

= − 
. It’s worth noting that this can also be expressed as 2 23 1

( ) 4
2 2

t tt e te
   

= −      
x . 

The phase portrait in this case has just one invariant (eigenvector) direction. It gives an unstable node which 

can be viewed as a degenerate case of a (clockwise) outward spiral that cannot get past the eigenvector 

direction. 

Similar calculations enable us to deal with cases such as a repeated eigenvalue where the geometric multiplicity 

is 1 and the algebraic multiplicity is 3 (or even worse). 

Finally, an actual system may exhibit several of these qualities – one or more complex pairs of eigenvalues, 

repeated eigenvalues, and distinct real eigenvalues. The Jordan Canonical Form of the matrix for such a system 

can be analyzed block by block and each of the above solutions applied within each block to determine the 

evolution matrix for the entire system. 

Summarizing the Main Idea: 

Given a system of 1st order linear differential equations d
dt

=x Ax  with initial conditions (0)x , we use 

eigenvalue-eigenvector analysis to find an appropriate basis 1{ , , }n= v vB  for Rn and a change of basis 

matrix 
1 n

  
 =
 
   

S v v  such that in coordinates relative to this basis ( 1−=u S x ) the system is in a standard 

form with a known solution. Specifically, we find a standard matrix 1[ ] −= =B A S ASB
, transform the system 

into d
dt

=u Bu , solve it as ( ) [ ] (0)tt e= B
u u  where [ ]te B

 is the evolution matrix for B, then transform back to the 

original coordinates to get ( ) [ ] (0)tt e= A
x x  where 

1[ ] [ ]t te e −=A B
S S  is the evolution matrix for B. That is 

1( ) [ ] [ ] (0)t tt e e −= =A B
x S S x . This is easier to do than it is to explain, so here are a few illustrative examples: 

Moral of the Story: It’s always possible to find a special basis relative to which a given linear system is in its 

simplest possible form. The new basis provides a way to decompose the given problem into several simple, 
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standard problems which can be easily solved. Any complication in the algebraic expressions for the solution is 

the result of changing back to the original coordinates. 

The standard 2 2  cases are: 

Diagonalizable with eigenvalues 1 2,  : 1

2

0

0

 
= =   

B D  
1

2

0
[ ] [ ]

0

t
t t

t

e
e e

e





 
= =  

 

B D  

Complex pair of eigenvalues a ib =  :  
a b

b a

− 
=   

B   
cos sin

[ ]
sin cos

t at bt bt
e e

bt bt

− 
=   

B  

Repeated eigenvalue   with GM AM :  
1

0

 
=   

B   
1

[ ]
0 10

t t
t t

t

e te t
e e

e

 




   
= =     

B  

In general, you should expect to encounter systems more complicated than these 2 2  examples. 

Fundamental Matrices 

In the case where initial conditions are not specified, it is often simpler to express solutions not in terms of the 

evolution matrix but rather in terms of the corresponding fundamental matrix. Specifically, when we 

standardize a system of the form d
dt

=x Ax  in terms of a matrix B via the 1− =S AS B  protocol, then 1−=A SBS , 

1[ ] [ ]t te e −=A B
S S , and 

1( ) [ ] [ ] (0)t tt e e −= =A B
x S S x . However, if the initial conditions are not specified, we can 

simply express 
1 (0)− =S x c  where 

1

n

c

c

 
 

=
 
  

c  is a constant vector. Then ( ) [ ] [ ] ( )t tt e e t= = =A B
x S c M c  where 

( ) [ ]tt e= B
M S  is a time-varying matrix known as the fundamental matrix for this system. 

Nonlinear systems 

Though we have spent considerable time on systems that can be expressed as d
dt

=x Ax  where A is an n n  

matrix (and especially the case of a 2 2  matrix), the reality is that most 1st order systems of ODEs are not of 

this form. That is, the functions on the right hand sides for the systems are not linear functions. In fact, the 

system may not even be autonomous. It’s still possible to understand these more complicated systems, but the 

analysis is not nearly as straightforward – even in the case of autonomous (time independent) systems. We’ll 

take up some of these methods in the next lecture, but there’s at least one nonlinear case that we can handle by 

relating it directly to the linear case. 

Problem: Solve 

5

4 10

dx
x y

dt
dy

x y
dt

 
= + + 

 
 = − + +
 

 with initial conditions (0) 2, (0) 1x y= = − . 

Solution: Though the functions on the right-hand side may look simple (first order polynomial expressions), 

they are not linear. However, we can express this (translated) system as: 
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5 1 1 5

4 10 4 1 10

dx
dt
dy

dt

d x y x

x y ydt

  + +       
 = = = + = +       − + + −         

x
Ax b  where 

1 1

4 1

 
=  − 

A  and 
5

10

 
=   

b  and 
2

(0)
1

 
=  − 

x  

If we use the PPLANE tool to look at the underlying vector fields and the flow of each system, we observe that 

they appear identical except that the equilibrium is at (0,0)  for the linear case, and elsewhere for the nonlinear 

case (see next page). This suggests that we first find the equilibrium. At an equilibrium we’ll have 

d

dt
= + =

x
Ax b 0 , so = −Ax b . We can usually (though not always!) solve for the equilibrium as 1

p

−= −x A b  

unless the matrix A is not invertible. Fortunately, in this case A is invertible and we calculate 

1 1
5

1 1 5 1

4 1 10 6p

− −     
= − = − =     −     

x A b . The key idea is to change to a new coordinate system by translating the 

axes to center them at this equilibrium point. That is, let 
p= −u x x . This gives 

p= +x u x  and we calculate: 

( ) ( )p p

d d

dt dt
= = + = + + = + + = + =

u x
Ax b A u x b Au Ax b Au 0 Au  

  

5

4 10

dx
dt
dy

dt

x y

x y

 = + + 
 

= − + +  

 
4

dx
dt
dy

dt

x y

x y

 = + 
 

= − +  

 

So 
d

dt
=

u
Au , and we know how to solve any such system, i.e. ( ) [ ] (0)tt e= A

u u . 

We can then observe that (0) (0) p= −u x x , so ( ) ( ) ( ) [ ][ (0) ]t

p p pt t t e= + = = + −A
x x u u x x x . 

In our example, 
1 1

4 1

 
=  − 

A , so 
1 1

4 1

− − 
− =  − 

I A





, 2( ) ( 1) 4p  = − +A
 and the (complex) eigenvalues 

are 1 2i = +  and 1 2i = + . 
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The eigenvalue 1 2i = +  gives (complex) eigenvector 
1 1 0

2 0 2
i i

i

     
= = + = +          

w u v , and if we use the basis 

 
0 1

, ,
2 0

    
= =         

v uB  with change-of-basis matrix 
0 1

2 0

 
=   

S  and 1 1
2

0 1

2 0
−  
=   

S , we’ll have 

1 1 2
[ ]

2 1
− − 

= = =   
A S AS BB

 with evolution matrix 
cos2 sin 2

[ ]
sin 2 cos2

t t t t
e e

t t

− 
=   

B . Since 1−=A SBS  we’ll have 

1[ ] [ ]t te e −=A B
S S . Since 

2
(0)

1

 
=  − 

x , we have 
2 1 1

(0)
1 6 5

     
= − =     − −     

u , so we get: 

1 1
2

5
1 2
2

1 0 1 cos 2 sin 2 0 1 1
( ) [ ][ (0) ] [ ] [ (0) ]

6 2 0 sin 2 cos 2 2 0 5

1 ( sin 2 cos 2 )1 sin 2 cos 2 5

6 2cos 2 2sin 2 2 6 (5cos 2 2

t t t

p p p p

t

t

t

t t
t e e e

t t

e t tt t
e

t t e t

− −         
= + − = + − = +         −         

+ +     
= + =     − − − + −     

A Bx x x x x S S x x

sin 2 )t

 
 
 

 

So 
5
2

( ) 1 ( sin 2 cos 2 )

( ) 6 (5cos 2 2sin 2 )

t

t

x t e t t

y t e t t

 = + + 
 

= − + −  
, but the qualitative picture showing outward spirals coming out from the 

shifted equilibrium is the primary point. 

There’s a straightforward extension of this idea that brings together the recent topics involving linear systems of 

ODEs and some of our previous topics in which we used linearity properties to construct solutions to nth order 

linear equations in terms of homogeneous and particular solutions. 

Consider a nonlinear system that can be expressed in the form ( )d t
dt

= +x Ax F  where A  is an n n  (constant) 

matrix. This can also be expressed in the form: ( )d t
dt

− =x Ax F . The case where ( )t =F 0  can then be properly 

characterized as a homogeneous system. This should be reminiscent of first-order linear equations of the form 

( )dx ax f t
dt

− =  which could be solved either using linearity methods (homogeneous plus particular) or by using 

an integrating factor. Can we do something similar for such a nonlinear system? 

Suppose ( )p tx  is a particular solution of ( )d t
dt

− =x Ax F , and let ( )tx  be any other solution. Consider the 

vector-valued function ( ) ( )pt t−x x . We calculate: 

( ( ) ( )) ( ( ) ( )) ( ) ( )
p

p p p

dd dt t t t t t
dt dt dt

  
− − − = − − − = − =  

   

xxx x A x x Ax Ax F F 0  

So ( ) ( )pt t−x x  is a solution of the (homogeneous) linear system d
dt

=x Ax . If we express the general solution of 

this linear system as ( )h tx , then we have ( ) ( ) ( )p ht t t− =x x x  and therefore ( ) ( ) ( )h pt t t= +x x x . Since we can 

always explicitly solve the homogeneous system, everything then comes down to finding a particular solution, 

and for this we’ll see that previous methods such as the Method of Undetermined Coefficients and Variation 

of Parameters can be adapted to this more general situation. 
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A nonautonomous example 

The case of a nonautonomous (time-dependent) system is generally more difficult to analyze, but in some cases 

it is straightforward. We can adapt methods developed earlier in the course to solve these problems completely. 

Example: Find the general solution for the system 
( , , ) 5 6 1

( , , ) 3 4

dx
dt
dy

dt

f x y t x y t

g x y t x y t

 = = − + + 
 

= = − +  

. 

Solution: This system may be expressed as 
5 6 1

( )
3 4

dx
dt
dy

dt

x t
t

y t
d
dt

  − +     
 = = + = +     −       

Ax Fx . We can rewrite this 

as ( )td
dt

− =Ax Fx  which is reminiscent of the first-order linear equations we solved earlier in the course – only 

now with vector-valued functions instead of scalar-valued functions. We can adapt our earlier linearity methods 

in which we split the problem into (a) finding all homogeneous solutions, (b) find a particular solution, and (c) 

adding these to produce all possible solutions. 

Solving for the homogeneous solutions where d
dt

− =Ax 0x  is precisely the same as solving d
dt

= Axx  which 

we have done. Specifically, for 
5 6

3 4

− 
=  − 

A , the eigenvalues were 1 2 =  with eigenvector 
1

2

1

 
=   

v , and 

2 1 = −  with eigenvector 
2

1

1

 
=   

v . This yields all solutions of the form 2

1 2

2 1
( )

1 1
t t

h t c e c e−
   

= +      
x . 

We can use an adapted version of the Method of Undetermined Coefficients to find a particular solution. 

Specifically, for 
1

( )
t

t
t

+ 
=   

F , we might try a solution of the form ( )p

at b
t

ct d

+ 
=  + 

x . Substitution gives 

(5 6 1) (5 6 1)

(3 4 1) (3 4 )

a a c t b d

c a c t b d
d
dt

− + + − +   
= =   − + + −   

x  or 
(5 6 1) ( 5 6 1) 0

(3 4 1) (3 4 ) 0

a c t a b d

a c t b c d

− + + − + − +   
=   − + + − −   

 and these yield the 

system of equations 

5 6 1

3 4 1

5 6 1

3 4 0

a c

a c

a b d

b c d

− = − 
 − = − 
 
− + − = −
 

− − =  

 with solutions 1a = , 3b = − , 1c = , 5
2

d = − . So 5
2

3
( )p

t
t

t

− 
=  − 

x . 

Therefore, all solutions are of the form 
2

1 2 5
2

32 1
( ) ( ) ( )

1 1
t t

h p

t
t t t c e c e

t
−

−    
= + = + +      −     

x x x . 

Note: The earlier nonautonomous system 

5

4 10

dx
x y

dt
dy

x y
dt

 
= + + 

 
 = − + +
 

 with initial conditions (0) 2, (0) 1x y= = −  could 

also have been solved in this manner. We express this system as: 
1 1 5

4 1 10

d x

ydt

     
= + = +     −     

x
Ax b  where 

1 1

4 1

 
=  − 

A  and 
5

10

 
=   

b  and 
2

(0)
1

 
=  − 

x . We previously found the equilibrium to be 
1

6p

 
=  − 

x , a fixed 

point that is, in fact, a particular solution. The homogeneous solutions are just the solutions of 
d

dt
=

x
Ax  which 
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are 1

2

sin 2 cos2
( )

2cos2 2sin 2
t

h

ct t
t e

ct t

  
=   −   

x . Therefore, all solutions are of the form 

1

2

sin 2 cos2 1
( ) ( ) ( )

2cos2 2sin 2 6
t

h p

ct t
t t t e

ct t

    
= + = +    − −    

x x x . If we substitute the initial conditions 
2

(0)
1

 
=  − 

x , we 

can determine the constants and arrive at the unique solution 
5
2

1 ( sin 2 cos 2 )
( )

6 (5cos 2 2sin 2 )

t

t

e t t
t

e t t

 + +
=  

− + − 
x . 

Variation of Parameters 

Suppose we have a nonautonomous and inhomogeneous system in the form ( ) ( )d t t
dt

= +x P x F  where ( )tP  is 

an n n  matrix that may have time-dependent entries (though this includes the simpler case where this is a 

constant matrix). If we are able to find the general solution of the (homogeneous) system ( )d t
dt

=x P x  in the 

form 1 1( ) ( ) ( ) ( )h n nt c t c t t= + + =x x x M c  where 

1

n

c

c

 
 

=
 
  

c  is a constant vector, we can try to “vary the 

parameters” in search of a particular solution to the inhomogeneous system ( ) ( )d t t
dt

= +x P x F . That is, we seek 

a solution of the form 

1

1 1 1

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

n n n

n

v t

t v t t v t t t t t t

v t

    
   

= + + = =   
       

x x x x x M v . 

Differentiation gives  ( ) ( ) ( ) ( ) ( ) ( )d
dt

d
t t t t t t

dt
 = = +

x
M v M v M v .  

If 1 1( ) ( ) ( ) ( )h n nt c t c t t= + + =x x x M c  gives the homogeneous solutions, then ( )hd
t

dt
=

x
M c  because c is a 

constant vector. Further note that because ( )h
h

d t
dt

=x
P x , we have ( ) ( ) ( )t t t =M c P M c  or, more simply 

( ) ( ) ( )t t t =M P M . Substitution gives ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t + =M v M v P M v ( ) ( ) ( ) ( ) ( )t t t t t+ =M v P M v ( )t+F , 

so ( ) ( ) ( )t t t =M v F . Because the columns of the matrix ( )tM  are linearly independent solutions, this matrix 

must be invertible. Therefore  
1

( ) ( ) ( )t t t
−

 =v M F  and we can (hopefully) integrate each of the component 

functions to determine  1( ), , ( )nv t v t . 

If we apply this method to the system 
5 6 1

( )
3 4

dx
dt
dy

dt

x t
t

y t
d
dt

  − +     
 = = + = +     −       

Ax Fx , we’ll have 

2 2

2

2 1 0 2
( ) [ ]

1 1 0

t t t

t

t t t

e e e
t e

e e e

−

− −

    
= = =    

     

A
M S  for the fundamental matrix. 

Its inverse is  
2 2

1

2 2
( )

2 2

t t t t

t

t t t t

e e e e
t e

e e e e

− − − −
− −

   − −
= =   

− −   
M . 
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So  
2 2 2

1 1
( ) ( ) ( )

2

t t t

t t t t

te e e
t t t

te e te e

− − −
− +   −  

 = = =    
− −    

v M F . Integration gives 

21
2( )

2

t

t t

e
t

te e

− −
=  

−  

v . 

Therefore, a particular solution will be 

2 2

2

1
2

51
2 2

1 2 32
( ) ( ) ( )

22

t t t

t t t t

t te e e
t t t

t te e te e

− −

−

− + − −       −
= = = =       

− + − −−       
x M v  which 

agrees with the result we obtained using undetermined coefficients. 

Please see the first several pages of the Nonlinear Systems and Linearization Supplement, in particular 

horizontal and vertical nullclines, equilibria, and how to use these to produce a qualitative picture of the 

underlying vector fields from which we can sketch qualitative solutions (phase plane analysis). These may also 

be found in the Lecture #14 Notes. We’ll cover the topics in that Supplement next week as well as some 

additional ideas and applications. 

Notes by Robert Winters 


