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Ordinary Differential Equations – Lecture #1 
Basic notions 
There are many contexts in which we seek to discover the relationship between two (or more) variables, e.g. 

( )y y x=  or ( )x x t= . Such relations are often determined by local information – rates that are measurable or 
which are given by known formulas. This is the essence of an ordinary differential equation (ODE). 

For example, for the relation 2 1y x= − , it’s the case that 2dy
dx x=  and with the additional requirement that 

(0) 1y = − , this rate information and the initial condition completely determine the relation 2 1y x= − . The 
derivative statement is a (first order) differential equation and the requirement that the graph pass through the 
point (0, 1)−  is called an initial condition. We can understand this geometrically by looking at the slope field – 
a drawing in the xy-plane that indicates the slope at any point as determined by the given differential equation. 

  
The left image shows only the slope field. The right image indicates the unique solution that matches this slope 
field and the given initial condition. One important theme that we’ll explore will be the conditions under which 
a given differential equation will yield unique solutions for a given initial condition. 

Definition: Given a differential equation in the form ( , )dy
dx F x y= , an isocline is a curve along which the slope 

is constant. 

Isoclines are especially useful for drawing slope fields by hand. For any specific slope, we find the 
corresponding isocline and pencil in little dashes to indicate that slope along the isocline. If we do this for a 
range of values for the slope, we can usually get a very good indication of the slope field and of the solutions 
(also called integral curves) it will yield. Note that in the example above, the isoclines were all vertical lines 
because 2dy

dx x=  will be constant where x is constant. 

Unrestricted growth 
The are many situations from physics to finance in which unrestricted growth at a fixed relative growth rate is 
the rule. If we express this as a differential equation in how a quantity P grows in time t, the corresponding 
differential equation may be expressed in terms of a fixed relative growth rate k as 1 dP

P dt k=  or in terms of 

absolute growth rate as dP
dt kP= . We will presumably also have some initial condition 0(0)P P= . 

The slope field in this case will have horizontal lines as its isoclines, i.e. 
constant constant.dP

dt kP P= = ⇒ =  
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You have most likely already seen an analytic solution to 
this differential equation. It is an example of a separable 
equation in which we can algebraically separate the 
variables and integrate both sides of the equation. That is, 
we can formally write dP

P kdt=  and integrate to get 

ln ktdP
P kdt P kt c P Ae= ⇒ = + ⇒ =∫ ∫  

where we’ve used some basic facts about rules of exponents 
and absolute value to get the result. Note that this yields 
exponential growth where the rate k appears as the 
coefficient in the exponent. If we also use the initial 
condition, we have 0

0(0)P Ae A P= = = , so individual 

solutions are given by 0( ) ktP t P e= . The picture at left 
indicates the case where 0k >  (growth) with several 
integral curves shown. The 0k <  case would give 
exponential decay. 

Differential equations can also involve higher order derivatives. For example, Newton’s 2nd Law is usually 
stated as F ma=  where m  represents mass, F  is the applied force, and a  is the acceleration. We know that if 
x  represents position, and v  represents velocity, then dx

dtv =  and dv
dta = , so Newton’s 2nd Law can also be 

expressed as the 2nd order ordinary differential equation 
2

2
d x F

mdt a= = . In the special case of uniform 

acceleration (or a constant applied force), this is simple to solve. We have dv
dt a=  (constant), so 1v at c= + . If 

the initial velocity is 0(0)v v= , then 1 0(0)v c v= = , so 0( )dx
dt v t at v= = + . One more integration gives 

21
0 22( )x t at v t c= + + , and if the initial position is 0(0)x x=  then 2 0(0)x c x= = , so 21

0 02( )x t at v t x= + + . 

Logistic model for growth in a limited environment 
In an environment where a population grows with limited 
resources, it’s not realistic to expect unlimited growth. We can 
model this situation by assuming that the relative growth rate 
k  declines linearly with growing population, at some point 
(called the carrying capacity) vanishes, and becomes negative 
when population exceeds this carrying capacity. This is most 
simply stated as 1 (1 )dP P

P Ldt k= −  or ( )dP
dt cP L P= −  where 

k
Lc = . This is known as the logistic growth model. 

The slope field and some trajectories are shown (right) for the 
differential equation .5 (2.5 )dP

dt P P= − . 

 
There are two special isoclines for the logistic model, namely the places where 0dP

dt = . These occur where 
0P =  and where P L=  and correspond to equilibria. If the initial condition lies on either of these lines, the 

solutions will be constant for all t, i.e. ( ) 0P t =  or ( )P t L= . For initial conditions exceeding L, solutions will 
decay down to the carrying capacity. For any initial condition between 0 and L, the solutions will rise and 
eventually level off at the carrying capacity. Though not meaningful in application, initial values less than 0 will 
yield solutions that diverge negatively away from 0. We see in this relatively simple model the important 
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distinction between stable equilibria (nearby solutions converge toward the equilibrium) and unstable 
equilibria (nearby solutions diverge away from the equilibrium). 

Though we can analytically solve the logistic equation (using separation of variables and the method of partial 
fractions) to give an explicit formula for solutions, the point here is simply that it’s often possible to understand 
qualitatively how the solutions behave just from understanding the slope field – even if we don’t produce 
explicit solutions. 

Definition: A differential equation of the form 1
11 1 0( ) ( ) ( ) ( ) ( )n n

n nn
d x d x dx
dt dtdtp t p t p t x t q t−

−−+ + + + = , where 

1 1 0( ), , ( ), ( ), ( )np t p t p t q t−   are functions of the independent variable t, is called an nth order linear ordinary 
differential equation. In the case where ( ) 0q t =  for all t, we call the equation homogeneous. Otherwise we 
call it inhomogeneous. 

The first three of the previous examples of ODEs (ordinary differential equations) were linear: (a) 2dy
dx x=  in 

inhomogeneous; (b) 0dP
dt kP− =  is homogeneous with constant coefficients; and (c) 

2

2  (constant)d x
dt a=  is 2nd 

order inhomogeneous. The last example given was not linear since it cannot be put into the required form. 

In general, any 1st order ODE can be put in the form ( , )dy
dx F x y=  for some function ( , )F x y . If an initial 

condition ( )y a b=  is given, we call this an initial value problem (IVP). [If we are working with t  as the 
independent variable and x  as the dependent variable, we would have ( , )dx

dt F t x= .] 

Question: Under what conditions will this differential equation yield a unique solution for a given initial 
condition? This is actually two questions: (a) Does a solution exist?; and (b) Is this solution unique? 
The answer to these questions is the subject of the following important theorem: 

Existence and Uniqueness Theorem: Suppose ( , )F x y  and the partial derivative yF  are continuous in some 
rectangle R containing the point 0 0( , ) ( , )x y a b= . Then for some open interval I containing a , the initial value 

problem ( , )dy
dx F x y= , ( )y a b=  has a unique solution defined on the interval I. 

Example: Analyze the ODE dx
dt tx=  using its slope field, and solve it analytically to give a formula for all 

solutions where defined. 

 

Solution: First, note that the right-hand-side is ( , )F t x tx=  which 
clearly satisfies the conditions for existence and uniqueness of 
solutions (for any initial condition). 
This is a separable equation. We rewrite dx

dt tx=  as dx
x tdt=  and 

integrate dx
x tdt=∫ ∫  to get 21

2ln x t C= + . If we exponentiate both 

sides and use some familiar algebra rules we get 
21

2( ) tx t Ae= . If an 
initial condition is given as 0(0)x x= , this will give us the (unique) 

solution 
21

2
0( ) tx t x e= . 

A proof of the Existence and Uniqueness Theorem can be found in the Appendix of the Edwards & Penney text. 
The condition that yF  be continuous is actually slightly more restrictive than is necessary to prove the theorem, 
and proofs in other texts use a milder restriction that requires only that this derivative be bounded in a particular 
way. Another good source for this theorem is the text by Hirsch, Smale, and Devaney. It is quite technical. 
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Example: Analyze the ODE dy y
xdx =  using its slope field, and solve it analytically to give a formula for all 

solutions where defined. 

 

Solution: The slope field for dy y
xdx =  is pretty easy to 

understand here. Take note, however, that if we have any 
initial condition where 0x = , the only integral curve through 
that point will be a vertical line, so we’ll be unable to solve 
for ( )y y x=  near such a point. This coincides with the fact 
that ( , ) y

xF x y =  is discontinuous at any such point. 
Further note that though there appear to be local solutions 
passing through any other point, all such solutions pass 
through (or at least converge toward) the origin. 
This ODE is easy to solve: Rewrite dy y

xdx =  as dy dx
y x=  and 

integrate dy dx
y x=∫ ∫  to get that ln lny x C= +  and y Ax=  

for some constant A. These are just the lines through the 
origin that we see in the diagram, and there is no unique 
solution passing through (0,0) . 

Orthogonal trajectories: Given any ODE of the form ( , )dy
dx F x y= , since dy

dx  represents the slope at any given 
point, we can rotate all of these to give orthogonal (perpendicular) slopes that are the negative reciprocals of the 
original slopes. That is, we would look at the new ODE 1

( , )
dy
dx F x y= − . 

Example: Using the previous example, the ODE corresponding to its orthogonal trajectories will be dy x
ydx = − . 

Analyze this using its slope field and solve it analytically to give a formula for all solutions where defined. 

 

Solution: It should be apparent that the integral curves will be 
circles everywhere perpendicular to the radial lines of the 
previous example. The Existence and Uniqueness Theorem 
will fail where 0y = , and this corresponds precisely to where 
these circles would “fold over” between the upper semicircle 
and lower semicircle. Any solution ( )y x  will not be 
extendable beyond such a point. 

We can rearrange dy x
ydx = −  as ydy xdx= −  and integrate 

ydy xdx= −∫ ∫  to get 2 21 1
2 2y x c= − +  or, more simply, 

2 2x y C+ = . These are the circles mentioned above. They 

yield solutions 2y C x= −  and 2y C x= − −  and we would 
use initial conditions to determine the value of C and whether 
we have the upper or lower graph as our solution. 

A note on numerical methods 
We may go into some detail about this elsewhere. The videos by Prof. Arthur Mattuck (MIT Open Courseware) 
on this subject are highly recommended. The main thing to keep in mind is that the software used to produce 
slope fields and graphical solutions (integral curves) does not operate via magic or divine guidance. There are 
specific algorithms like Euler’s method, various improved Runge-Kutta methods, or perhaps the Dormand-
Prince method that give solutions using various error correction methods to produce relatively accurate 
graphical solutions. 
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Integral Curves, Trajectories, Orbits 
A solution to such an initial value problem is called an integral curve. The Existence and Uniqueness 
Theorem and some parts of its proof can be interpreted in terms of the geometry of integral curves. 

Integral Curve Theorem: 
(a) Whenever ( , )F x y  is defined, integral curves of ( , )dy

dx F x y=  cannot cross at a positive angle. [This is 
essentially why the curves have a “parallel” nature.] 

(b) If the partial derivative y
F
y F∂
∂ =  is continuous in a region, then the integral curves cannot even be tangent to 

each other at any point in that region. 

It sometimes happens when analyzing the slope field of a 1st order ODE that certain integral curves separate 
other integral curves that are qualitatively fundamentally different. For example, a circular integral curve might 
separate those curves which spiral inward from those that spiral outward. Such an integral curve is called a 
separatrix. Discovering a separatrix often allows us to separately analyze the behavior of an ODE for initial 
conditions in different regions. 

Example: Analyze the ODE 1dy
dx x y=

+
 using its slope field, and solve it analytically if possible. 

 

Solution: It’s easy to produce isoclines for this example. The 
slope will be constant wherever constantx y+ = , and these are 
just lines with slope 1m = − . The line where 0x y+ = , i.e. the 
line y x= −  is somewhat problematic in that the slope 
becomes vertical along this line. [The Existence and 
Uniqueness Theorem will therefore break down everywhere on 
this line – not surprising as the slope field suggests curves 
“folding over” at all such points. The isocline where 

1x y+ = −  is unusual in that 1dy
dx = −  everywhere along this 

line which also has slope 1− . This line is, in fact, an integral 
curve which you can verify by differentiating 1y x= − −  and 
substituting it into the ODE. The integral curves above and 
below this line are fundamentally different, so this line is a 
separatrix. 

This differential equation does not yield simple analytic solutions of the form ( )y y x= . However, we can turn 
things sideways and see if it’s possible to solve for ( )x x y= . Basic calculus permits us to rewrite the 
differential equation as dx

dy x y= + . This can then be written in the form dx
dy x y− = , a first order inhomogeneous 

linear differential equation. We will investigate two approaches to solving such a first order linear ODE. 
 

Definition: A differential equation of the form 1
11 1 0( ) ( ) ( ) ( ) ( )n n

n nn
d x d x dx
dt dtdtp t p t p t x t q t−

−−+ + + + = , where 

1 1 0( ), , ( ), ( ), ( )np t p t p t q t−   are functions of the independent variable t, is called an nth order linear ordinary 
differential equation. In the case where ( ) 0q t =  for all t, we call the equation homogeneous. Otherwise we 
call it inhomogeneous. 

We are specifically concerned with 1st order ODEs of the form ( ) ( )dy
dx p x y q x+ =  (or ( ) ( )dx

dt p t x q t+ = ). 
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Integrating factors 

Definition: An integrating factor for a given first order ODE is a function ( )v x  such that when both sides of 
the ODE are multiplied by ( )v x  the resulting differential equation consists of known derivatives on both sides 
of the equation. The ODE can then be solved by integrating both sides and then solving for the dependent 
variable in terms of the independent variable. 

It’s always possible to formally solve ( ) ( )dy
dx p x y q x+ =  via an integrating factor. We seek ( )v x  such that we 

can integrate both sides of the equation ( ) ( ) ( ) ( )dy
dxv x p x y v x q x + = 

. The left-hand-side is dy
dxv pvy+ , and if  

we note that ( ) ( )dyd
dx dxvy v v x y′= + , we can then look for ( )v x  such that dy

dxv dy
dxpvy v+ = ( )v x y′+  or simply 

pvy v y pv v′ ′= ⇒ = . This can then be rewritten as ( ) ( )
( ) ( )( ) ( )v x v x

v x v xp x dx p x dx′ ′= ⇒ =∫ ∫ . This gives 

( )
ln ( ) ( ) ( )

p x dxv x p x dx C v x e∫= + ⇒ =∫  as an integrating factor. This approach, of course, works best if 
you can find an antiderivative of the function ( )p x . 

We then have the new ODE ( )( ) ( ) ( ) ( )d
dx v x y x v x q x= , so integration gives ( ) ( ) ( ) ( )v x y x v x q x dx C= +∫ . We 

can then solve for 1
( )( ) ( ) ( )v xy x v x q x dx C = + ∫ . If we insert the integrating factor ( )

pdxv x e∫= , we can write 

this solution as ( ) ( )
pdx pdxy x e q x e dx C−  ∫ ∫= +  ∫ . It may not be pretty, but it works if you can actually do the 

integrals. You may find it simpler to just know how to get the integrating factor and then proceed with the 
integrations. 

If we switch variables in our example (just to be ever so conventional), our equation becomes dy
dx y x= +  or 

dy
dx y x− = . In this case, ( ) 1p x = − , ( )p x dx x= −∫  is the simplest antiderivative, and the integrating factor is 

then ( ) xv x e−= . We then have ( ) ( )x x xdy d
dx dxe y e y xe− − −− = = . We can then integrate using integration by parts 

to get x x x xe y xe dx xe e C− − − −= = − − +∫ . If we then multiply both sides by xe , we get ( ) 1 xy x x Ce= − − + . If, 
for example, we had the initial condition that (0) 3y = , we would then have (0) 1 3y C= − + = , so 4C =  and we 
would get the unique solution ( ) 1 4 xy x x e= − − +  for this initial value problem. 

Considering the relatively simple expression for this solution, you might think that there could be a simpler 
approach. There is, but it requires us to start our way down an important path that will lead to some of the most 
important methods and perspectives in this entire course. This is the Linearity path. 

Linearity 
In the context of functions of one variable, linearity is an often abused word. In fact, a function of the form 

( )f x mx b= +  is NOT a linear function. It is more appropriately called a 1st order affine function. Linearity is a 
property most simply characterized by the fact that linear functions preserve scaling and adding. The linear 
functions of one variable consist only of those of the form ( )f x mx= . Note that 

( ) ( ) ( ) ( )f ax m ax a mx af x= = = , i.e. it preserves scaling, and ( ) ( ) ( ) ( )f x y m x y mx my f x f y+ = + = + = + , i.e. 
it preserves addition. 
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Definition: Formally we say that a function is linear if for all inputs 1 2,x x  and constants 1 2,c c  we must have 

1 1 2 2 1 1 2 2( ) ( ) ( )f c x c x c f x c f x+ = + . 

In the case of functions : n mT →R R , linearity means that the scaling of vectors and the addition of vectors is 
preserved via a linear transformation. All such transformations are of the form ( )T =x Ax  where A is an m n×  
matrix with constant entries. Linearity then translates into the matrix algebra facts that ( ) ( )k k=A x Ax  and 

( )+ = +A x y Ax Ay , or (combined) ( )α β α β+ = +A x y Ax Ay  for all scalars ,α β  and all vectors ,x y . 

Our current situation involves working with functions in the same way that we looked at vectors in nR . Just as 
we can scale and add vectors, we can also scale and add functions. A transformation that acts on functions in a 
manner analogous to the way matrices act on vectors is known as a linear (differential) operator. The basic 
examples are differentiation and multiplication by a fixed function. We can then compose these basic operators 
and add them to form more complicated operators. 

There are many spaces of functions in which we can seek solutions to differential equations. Perhaps the most 
common such space is the space of functions that are differentiable to all orders. 

Multiplication by a fixed function is a linear operator 
Suppose we have a fixed function ( )p x  and we define a transformation of functions by [ ]( ) ( ) ( ) ( )T f x p x f x= . 

We can easily see that for any constant c, [ ] [ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T cf x p x cf x cp x f x c T f x= = = , so ( ) ( )T cf cT f= , 
i.e. T preserves scaling. Similarly, if 1f  and 2f  are two functions, then 

[ ] [ ] [ ]1 2 1 2 1 2 1 2 1 2( ) ( ) ( )( )( ) ( )( ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T f f x p x f f x p x f x f x p x f x p x f x T f x T f x+ = + = + = + = + . 
This is really just the distributive law, but the result is that formally 1 2 1 2( ) ( ) ( )T f f T f T f+ = + , i.e. T preserves 
addition of functions. Together, this shows that T is a linear operator. 

Differentiation of functions is a linear operator 
Let D be the transformation defined by ( )D f f ′= . That is, [ ]( ) ( ) ( )D f x f x′= . The old refrains you learned in 
first semester calculus are precisely what makes this a linear operator: (a) The derivative of a constant times a 
function is the constant times the derivation of the function; and (b) The derivative of a sum is the sum of the 
derivatives. In symbolic terms, ( )D cf cf ′=  and ( )D f g f g′ ′+ = + . We can put these together as a single 
linearity rule: 1 1 2 2 1 1 2 2( ) ( ) ( )D c f c f c D f c D f+ = + . 

The composition of linear operators (or any linear function), where defined, is also linear 
If  S and T are both linear operators and if the composition S T  is defined, then using the linearity properties 
of both we have that for all scalars 1 2,c c  and functions 1 2,f f , 

( )
( ) ( )

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

( ) ( ( )) ( ( ) ( ))

( ( ) ( ( )) ( ) ( )

S T c f c f S T c f c f S c T f c T f

c S T f c S T f c S T f c S T f

+ = + = +

= + = +



 

 

For example, since differentiation acts linearly, we can compose this with itself to get the 2nd derivative and 
this also acts linearly. The same holds for higher order derivatives. 

The sum of two linear operators is also a linear operator 
The sum of two operators is defined in the same way we add any functions, i.e. ( )( ) ( ) ( )S T f S f T f+ = + . 
If  S and T are both linear operators, then we’ll have that for all scalars 1 2,c c  and functions 1 2,f f , 

[ ]
[ ] [ ] [ ] [ ]

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

1 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

S T c f c f S c f c f T c f c f c S f c S f c T f c T f

c S f c T f c S f c T f c S f T f c S f T f c S T f c S T f

+ + = + + + = + + +

= + + + = + + + = + + +
 

If we put together the facts that composition of linear operators and the addition of linear operators yields 
another linear operator, we see that the expression 1

11 1 0( ) ( ) ( ) ( )n n
n nn

d x d x dx
dt dtdtp t p t p t x t−

−−+ + + +  for functions 
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1 1 0( ), , ( ), ( )np t p t p t−   represents a linear operator acting on an undetermined function ( )x t . If we write this 

operator as 1
11 1 0( ( )) ( ) ( ) ( ) ( )n n

n nn
d x d x dx
dt dtdtT x t p t p t p t x t−

−−= + + + + , we then know by linearity that 

1 2 1 2( ( ) ( )) ( ( )) ( ( ))T x t x t T x t T x t+ = +  and ( ( )) ( ( ))T c x t cT x t=  and, more generally, 

1 1 2 2 1 1 2 2( ( ) ( )) ( ( )) ( ( ))T c x t c x t c T x t c T x t+ = + . 

Now that we have paved the road to Linearity, we can apply this idea to solving linear differential equations. 

Linearity method using homogeneous solutions and particular solutions 
Suppose we have an inhomogeneous linear ODE of the form ( )T f g=  where T  is an nth order linear 
differential operator. We can produce ALL solutions to ( )T f g=  as follows: 
(1) First solve the homogeneous equation ( ) 0T f =  to find a general expression for all such solutions. Call this 
the homogeneous solution hf . It will generally involve n arbitrary constants. 
(2) Find a single particular solution to the inhomogeneous equation ( )T f g= . Call this particular solution pf . 

(3) The general solution to ( )T f g=  is then h pf f f= + . 

Proof of the method: We know that ( )pT f g= , so suppose f  is any other solution to ( )T f g= . Then 
( ) ( ) ( ) 0p pT f f T f T f g g− = − = − = . So pf f−  solves the homogeneous equation and must be included 

among all homogeneous solution, i.e. p hf f f− = . Therefore h pf f f= + . 
This fact is really the same thing that we see when solving a consistent, inhomogeneous system of linear 
algebraic equations. In matrix form, if the system is represented as =Ax b  where A is an m n×  matrix, and if 

hx  represents all solutions to the homogeneous equation =Ax 0  and px  is a single solution to =Ax b , then all 
solutions to =Ax b  will be of the form h p= +x x x . Typically, these homogeneous solutions are lines, planes or 
higher-dimensional analogues (subspaces) passing through the origin. This just says that the inhomogeneous 
solutions are parallel translates of these subspaces. 

So, let’s solve the problem already: 
The ODE dy

dx y x− =  is first order, linear, and inhomogeneous. 

(1) The homogeneous equation is just 0dy
dx y− =  or dy

dx y= . We’ve already solved this to get all solutions in the 

form x
hy Ae= . 

(2) We can find an inhomogeneous solution by educated guessing (formally called the method of undetermined 
coefficients). Try a solution of the form y ax b= + . Calculate dy

dx a=  and substitute into the ODE to get 

( ) ( )dy
dx y a ax b a b bx x− = − + = − − = . We can solve this by choosing 0a b− =  and 1b− = . So 1b = −  and 

1a = − , and a particular solution is therefore 1py x= − − . 

(3) By linearity, all solutions are therefore of the form 1x
h py y y Ae x= + = − − . This agrees with our previous 

result. 

And our original problem dx
dy x y− =  gives 1yx Ae y= − −  where the constant A is determined by initial 

conditions. If you compare this with the slope field picture on the first page, you’ll see that this accurately 
describes all of the integral curves including the separatrix which occurs where 0A = . 

Notes by Robert Winters 


