
 1 

Worked Examples of Laplace Transform and Convolution 

Problem 1: Solve the differential equation:     3 2 2 , (0) 0, (0) 0tx x x e x x−+ + = = =    

Plan: This problem is certainly most easily solved using other methods, but it should help to illustrate how the 
Laplace transform and convolution are applied to the solution of an ordinary differential equation. 

The methodology is based on two basic ideas. 

Idea #1: Find a way to transform a differential equation into an algebraic equation. Then solve it using basic 
algebra. Then transform back to get the desired solution. We do this via the Laplace transform. 

Idea #2: Solve the given system for its unit impulse response, then find a way to use this to solve the system 
for any given input signal. We do this via convolution. 

The two essential definitions are these: 

Convolution: Given two functions ( )w t  and ( )f t , define 
0

( )( ) ( ) ( )
t

w f t w t f dt t t∗ = −∫ . We showed in class 

that if we can solve the differential equation ( ) ( )p D x tδ=  for the unit impulse response ( )w t  (also called the 
weight function), then the differential equation ( ) ( )p D x f t=  will have the solution ( )( )w f t∗ . This fact is also 
known as Green’s Formula. 

Laplace Transform: Given a function ( )f t , we define its Laplace transform to be the function 

0
( ) [ ( )]( ) ( )stF s f s e f t dt

∞ −= = ∫L . This function is generally only defined for come subset of values of the 

(complex) parameter s known as its region of convergence. 

The usefulness of this transform method is built on the fact that we can relatively easily find the Laplace 
transform for most everything that appears in a given differential equation of the form ( ) ( )p D x f t= , and once 
we have a table of these transforms we can generally invert the process by inspection. Another essential fact is 
that the Laplace transform acts linearly, and this allows us to decompose complex problems into a sums of 
simple problems. 

The Old (and Very Good) Solution: For 3 2 2 , (0) 0, (0) 0tx x x e x x−+ + = = =   , the homogeneous equation 
3 2 0x x x+ + =   is easy to solve. Its characteristic polynomial is 2( ) 3 2 ( 2)( 1)p s s s s s= + + = + +  which yields 

the two roots 2s = −  and 1s = − . This gives the two independent solutions 2te−  and te− , and all homogeneous 
solutions are of the form 2

1 2( ) t t
hx t c e c e− −= + . Note that both of these homogeneous solutions are transient in the 

sense that they decay exponentially as t increases. 

Next, we need to find a particular solution ( )px t  that satisfies the inhomogeneous differential equation. One 
look at the right-hand-side and we see that the Exponential Response Formula (ERF) won’t work – there is 
resonance. We can, however, use the Resonant Response Formula to get the particular solution 

2 2( ) 2
( 1) 1

t t
t

p
te tex t te

p

− −
−= = =

′ −
, so the general solution is 2

1 2( ) ( ) ( ) 2t t t
h px t x t x t c e c e te− − −= + = + + . Its derivative 

is 2
1 2( ) 2 2 2t t t tx t c e c e te e− − − −= − − − + . Substituting the (rest) initial conditions gives 1 2

1 2

(0) 0
(0) 2 2 0

x c c
x c c

= + = 
 = − − + = 

, 

and these can be solved to give 1 22, 2c c= = − , so the solution is 2( ) 2 2 2t t tx t e e te− − −= − + . 
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Solving directly by Laplace transform: We calculated the following Laplace transforms: 

(1) 1( )kte
s k

=
−

L  with region of convergence Re( )s k> , so 2 1( )
2

te
s

− =
+

L . 

(2) If the Laplace transform of ( )x t  is ( )X s , then the Laplace transforms of its derivatives are 
( ( )) ( ) (0 )x t sX s x= − −L   and 2( ( )) ( ) (0 ) (0 )x t s X s s x x= − − − −L   . In the case of rest initial conditions 
(0 ) (0 ) 0x x− = − = , these are greatly simplified and, in fact ( ( ) ) ( ) ( )p D x p s X s=L . Specifically, 

2 2( 3 2 ) ( ) 3 ( ) 2 ( ) ( 3 2) ( ) ( ) ( )x x x s X s sX s X s s s X s p s X s+ + = + + = + + =L   . 

If we now transform the entire differential equation, we get 2 2( 3 2) ( )
1

s s X s
s

+ + =
+

. 

We then solve for 2 2 2

2 2( )
( 1)( 3 2) ( 2)( 1) 2 1 ( 1)

A B CX s
s s s s s s s s

= = = + +
+ + + + + + + +

. 

There are many good ways to find the unknowns A, B, and C. For example, if we multiply through by the 
common denominator to clear fractions, we get 22 ( 1) ( 1)( 2) ( 2)A s B s s C s= + + + + + + . Plugging in the specific 
values 2s = −  and 1s = −  quickly yields that 2A =  and 2C = . Plugging in, for example, 0s =  and using the 

values for A and C then yields 2B = − . So 2

2 2 2( )
2 1 ( 1)

X s
s s s

= − +
+ + +

. 

Consulting our table of common Laplace transforms, we see that 22 (2 )
2

te
s

−=
+

L , 2 (2 )
1

te
s

−=
+

L , and 

2

2 (2 )
( 1)

tte
s

−=
+

L , so transforming back gives 2( ) 2 2 2t t tx t e e te− − −= − + . 

Solution using unit impulse response and convolution: In class we solved the equation 3 2 ( )x x x tδ+ + =   

with rest initial conditions (0) 0, (0) 0x x= = to find the weight function 2
0 0

( )
0t t

t
w t

e e t− −

< =  − + > 
. This is also 

called the unit impulse response. Note that the Laplace transform of ( )w t  is 1( )
( )

W s
p s

=  where ( )p s  is the 

characteristic polynomial for this system. 

If we use ( ) 2 tf t e−= , then convolution of the weight function and the given input signal gives: 

2( ) ( )

0 0

2 2 2 2 2

0

( )( ) ( ) ( ) 2 ( )

( 2 2 ) 2 ( 1) 2 ( 0) 2 2 2 ( )

t t t t

t t t t t t t t t

w f t w t f d e e e d

e e e d e e e t e e te x t

t t t t t

t t

t t

t

t t t t

t

= = − − − − −

= =

= − − − − − − −

=

∗ = − = − +

= − + = − − + − = − + + =

∫ ∫

∫
 

Problem 2: Solve the differential equation:     2 3 cos 2 , (0) 0, (0) 0tx x x e t x x−+ − = = =    

The characteristic polynomial in this case is 2( ) 2 ( 2)( 1)p s s s s s= + − = + − . If we solve this problem using the 
Laplace transform with ( )W s  as the Laplace transform of ( )x t , then with rest initial conditions the left-hand-

side will have transform ( ) ( ) ( 2)( 1) ( )p s X s s s X s= + − . We know that 2 2(cos ) st
s

ω
ω

=
+

L , so using the 

exponential shift rule and linearity, 2

3( 1)(3 cos 2 )
( 1) 4

t se t
s

− +
=

+ +
L . The entire differential equation therefore 
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transforms to 2

3( 1)( 2)( 1) ( )
( 1) 4

ss s X s
s

+
+ − =

+ +
 or 2

3( 1)( )
[( 1) 4]( 2)( 1)

sX s
s s s

+
=

+ + + −
, a rational function. In the 

complex plane, this function has poles at 1s = , 2s = − , 1 2s i= − + , and 1 2s i= − − . 

It’s worth noting, even before developing the explicit solution, that qualitatively the fact that there’s one pole 
with positive real part ( 1s = ) means that the solution will be unstable in the long term (exponential growth). 
The other poles indicate transient behavior, exponential decay and decaying oscillations (for the complex 
conjugate pair of poles). 

The next step is to carry out the partial fractions decomposition. It is helpful to remain ever mindful of the 
ultimate goal of having the terms be easily recognizable as Laplace transforms of familiar functions so that we 
can invert the process and find the solution. With this in mind, let’s express the partial fractions decomposition 
in the following form: 

2 2

3 3 ( 1)( )
[( 1) 4]( 2)( 1) ( 1) 4 2 1

s A s B C DX s
s s s s s s

+ + +
= = + +

+ + + − + + + −
 

The reason for this choice is that we know that 2(cos 2 )
4

st
s

=
+

L  and 2

1( cos 2 )
( 1) 4

t se t
s

− +
=

+ +
L ; and 

2

2(sin 2 )
4

t
s

=
+

L  and 2

2( sin 2 )
( 1) 4

te t
s

− =
+ +

L ; and 2 1( )
2

te
s

− =
+

L  and 1( )
1

te
s

=
−

L . 

Let’s clear the fractions by multiplying by the common denominator. This yields: 
2 23 3 [ ( 1) ]( 2)( 1) [( 1) 4]( 1) [( 1) 4]( 2)s A s B s s C s s D s s+ = + + + − + + + − + + + +  

Depending on your algebraic tastes, there are many ways to proceed to find the unknowns. You could, for 
example, multiply everything out, collect terms, match coefficients, and then solve a system of four linear 
equations in four unknowns to find A, B, C, and D. Perhaps a simpler approach is to substitute specific values 
for s that will yield simple relations. [This is the basis of the Heaviside “cover-up” method.] 

1s =  yields 1
46 24D D= ⇒ =  and 2s = −  yields 1

53 15C C− = − ⇒ =  

After these, the choices are less obvious, but any choices will yield usable equations. For example, 
1s = −  yields 8 3 3 3

5 5 5 100 2 8 4 2 1 2 2B C D B B B B= − − + = − − + = − − ⇒ = − ⇒ = −  

0s =  yields 3 5 9 9
5 2 10 203 2( ) 5 10 2 2 5 10 2 1 2A B C D A B C D A A A= − + − + = − − − + = − + − + ⇒ = − ⇒ = −  

So we have 2 2 2

9 3 11
20 10 5 4 9 3 1 1

520 20 4
( 1) 1 2 1 1( )

( 1) 4 2 1 ( 1) 4 ( 1) 4 2 1
s sX s

s s s s s s s
− + −    +    = + + = − − + +       + + + − + + + + + −      

. 

Note, in particular, the adjustment in the 2nd term to conform to the fact that 2

2( sin 2 )
( 1) 4

te t
s

− =
+ +

L . 

We can now use linearity and the fact that each of these terms are multiples of known transforms to conclude 
that the solution is 29 3 1 1

520 20 4( ) ( cos 2 ) ( sin 2 )t t t tx t e t e t e e− − −= − − + + . 

It’s worth noting that the examples presented here could have been done without transform methods or 
convolution. The real utility of these methods is in dealing with more irregular input signals and in 
understanding qualitatively the long-term behavior of solutions by analyzing the poles. 


